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Abstract. We consider a monic polynomial of even degree with sym-
bolic coefficients. We give a method for obtaining an expression in the
coefficients (regarded as parameters) that is a lower bound on the value of
the polynomial, or in other words a lower bound on the minimum of the
polynomial. The main advantage of accepting a bound on the minimum,
in contrast to an expression for the exact minimum, is that the algebraic
form of the result can be kept relatively simple. Any exact result for a
minimum will necessarily require parametric representations of algebraic
numbers, whereas the bounds given here are much simpler. In principle,
the method given here could be used to find the exact minimum, but only
for low degree polynomials is this feasible; we illustrate this for a quartic
polynomial. As an application, we compute rectifying transformations
for integrals of trigonometric functions. The transformations require the
construction of polynomials that are positive definite.

1 Introduction

Let n ∈ Z be even, and let Pn ∈ R[a0, . . . , an−1][x] be monic in x, that is,

Pn(x) = xn +
n−1∑

j=0

ajx
j . (1)

A function L(aj) of the coefficients is required that is a lower bound for Pn(x),
i.e., L must satisfy

(∀x)Pn(x) ≥ L(aj) . (2)

The problem definition does not require that the equality in (2) be realized. If
that is also the case, then L is the minimum of Pn:

min
x∈R

Pn(x) = Lmin(aj) . (3)

Thus Lmin obeys

(∀x)Pn(x) ≥ Lmin(aj) , (∃x)Pn(x) = Lmin(aj) , (4)

and Lmin ≥ L, where L satisfies (2).

D. Kapur (Ed.): ASCM 2007, LNAI 5081, pp. 22–31, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



Unconstrained Parametric Minimization of a Polynomial 23

The problem described has connections to several areas of research, includ-
ing parametric optimization, quantifier elimination and polynomial positive-
definiteness. Much of the work on parametric optimization concerns topics such
as the continuity of the optimum as a function of the parameters, or the perfor-
mance of numerical methods; see, for example, [1, 2, 4]. The following problem
was considered in [1].

min{λ2x2 − 2λ(1 − λ)x | x ≥ 0} .

The unique solution for the unconstrained problem is found for λ �= 0 to be
−(1−λ)2, which is realised when x takes the value x̂ = (1−λ)/λ. The constrained
problem has this solution only for λ ∈ (0, 1) and ceases to be smooth at the end
points. The unconstrained problem is covered in this paper, although the focus
is on higher degree polynomials.

There has been a large amount of work on a related problem in quantifier elim-
ination. For n = 4, Lazard [7] and Hong [5] have solved the following problem.
Find a condition on the coefficients p, q, r that is equivalent to the statement

(∀x)x4 + px2 + qx + r ≥ 0 . (5)

The solution they found is
[
[256r3 − 128p2r2 + 144pq2r + 16p4r − 27q4 − 4p3q2 ≥ 0 ∧ 8pr − 9q2 − 2p3 ≤ 0]

∨
[27q2 + 8p3 ≥ 0 ∧ 8pr − 9q2 − 2p3 ≥ 0]

] ∧
r ≥ 0 . (6)

It is clear that a solution of (3) gives a solution of this problem, since (5) is
equivalent to the statement r = − min(x4+px2+qx |x). The question of positive
definiteness is also related to the current problem. Ulrich and Watson [8] studied
this problem for a quartic polynomial, except that they included the constraint
x ∈ R+, the positive real line.

Previous work has all been directed towards calculations of the minimum of
a given polynomial. For n = 2, the minimum of a quadratic polynomial is a
standard result.

min
x∈R

P2(x) = min(x2 + a1x + a0) = a0 − 1
4a2

1 , (7)

and this is attained when x = − 1
2a1. For larger n, there is only the standard

calculus approach, which uses the roots of the derivative. This, however, is only
possible for numerical coefficients, because there is no way of knowing which root
corresponds to the minimum. Floating-point approximations to the minimum are
easily obtained.

If all of the coefficients of P2n are purely numerical, rather than symbolic,
then there are many ways to find the minimum. For example, Maple has the
command minimize and the command Optimize:-Minimize. An example is
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>minimize( x^4 - 5*x^2 + 4*x ,x);
RootOf(2 _Z^3 - 5 _Z - 2,index=3 )^4

- 5*RootOf(2 _Z^3 - 5 _Z - 2,index=3 )^2
+ 4 RootOf(2 _Z^3 - 5 _Z - 2,index=3 )

which can be simplified by Maple to

-(5/2) RootOf(2 _Z^3-5 _Z-2,index=3)^2
- 3 RootOf(2 _Z^3-5 _Z-2,index=3)

The second argument of RootOf selects, using an index, the appropriate root of
the polynomial.

2 Algorithm for Lower Bound

We now describe a recursive algorithm. In principle, it could be used to find
the minimum of a parametric polynomial, and indeed we show this below for a
quartic polynomial, but the main intended use is for a simpler lower bound.

Consider a polynomial given by (1). We shall express the lower bound to Pn

in terms of that for Pn−2. This recursive descent terminates at P2, for which we
have the result (7). The descent is based on the following obvious lemma.

Lemma 1. If f(x) and g(x) are two even-degree monic polynomials, then

inf(f(x) + g(x)) ≥ inf f(x) + inf g(x).

Proof: The equality holds when the minima of f and g are realized at the same
critical point x. �
It is convenient at this point to acknowledge the evenness of the degree by
changing notation to consider P2n. We apply the lemma by using the standard
transformation x = y−a2n−1/(2na2n) to remove the term in x2n−1 from P2n(x).
Thus we have the depressed polynomial

P2n(y) = a2ny2n +
2n−2∑

j=0

bjy
j. (8)

Now, we split P2n into two even-degree polynomials with positive leading
coefficients by introducing a parameter kn satisfying kn > 0 and kn > b2n−2.

P2n = [a2ny2n + (b2n−2 − kn)y2n−2] + [kny2n−2 + . . .] = P
(1)
2n + P

(2)
2n .

The minimum of P
(1)
2n is

inf(P (1)
2n ) = − (n − 1)n−1(kn − b2n−2)n

nnan−1
2n

which is obtained at the critical points y2 = (n − 1)(kn − b2n−2)/(na2n).
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Since deg P
(2)
2n = 2n − 2 < 2n, we can recursively compute the minimum and

critical point of P
(2)
2n . Let the minimum and the corresponding critical point of

P
(2)
2n be M(kn−1, . . . , k2), N(kn−1, . . . , k2) respectively. Then by Lemma 1, we

have

inf(P2n) ≥ − (n − 1)n−1(kn − b2n−2)n

nnan−1
2n

+ M.

Therefore, a lower bound for P2n is obtained after recursion in terms of pa-
rameters kn, kn−1, . . . , k2. If it is possible to choose the ki such that

(n − 1)(kn − b2n−2)
na2n

= N(ki−1, . . . , k2)2 , (9)

at each recursive step, then an expression for the minimum would be obtained.
However, our main aim is to find lower bounds in as simple a form as possible,
hence we choose each ki to satisfy the requirements in a simple way.

Since the ki will appear in the denominators of expressions, it is not a good
idea to allow a value that is too small. Otherwise there will be computational dif-
ficulties. A simple choice is ki = 1, but this may not satisfy 1 > b2i−2. Therefore
we have chosen to use

ki = max(1, 1 + b2i−2) .

Table 1. A Maple procedure for computing a lower bound on the value of an even-
degree monic polynomial

BoundPoly:=proc(p,var)
local m,n,a,b,c,redpoly,y,p1,p2,tp,par:
# Input: An even degree (parametric) polynomial p(var).
# Output: a lower bound.
m:=degree(p,var):
if m=0 or modp(m,2)<>0 then error("Bad input") end if;
a:=coeff(p,var,m):
b:=coeff(p,var,m-1):
c:=coeff(p,var,m-2):
if m=2 then

(4*a*c-b^2)/(4*a):
else

n:=m/2:
redpoly:=expand(subs(var=y-b/(m*a),p)):
b:=coeff(redpoly,y,m-2):
par:=max(1,b+1):
p1:=a*y^m+(b-par)*y^(m-2):
p2:=expand(redpoly-p1):
tp:=(n-1)^(n-1)*(par-b)^n/(n^n*a^(n-1)):
simplify(-tp+BoundPoly(p2,y)):

end if
end proc:
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This has the advantage that the simple value 1 will be selected whenever pos-
sible, and otherwise the more complicated value is used. Several other choices
were tried, for example, ki = 1 + |b2i−2|. In either case, the results are much
simpler if Maple is able to determine the sign of b2i−2, otherwise many unsim-
plified expressions can appear in the output. The first choice gives the following
algorithm, which is presented in Maple syntax in table 1.

3 Examples

Consider the polynomial

p = x6 + x4 − 2x3 + x2 − ax + 2 . (10)

Applying the algorithm, we obtain

30299/17280− (3/20)a − (1/5)a2 . (11)

Using a numerical routine, we can choose varying values of a and compute the
numerical minimum and then plot this against the bound just obtained. This is
shown in figure 1.

a
K2 K1 0 1 2 3

min(p)

K1

1

2

Fig. 1. The minimum of the polynomial p(x) defined in (10) and the lower bound given
in (11). The solid line is the exact minimum. Although very close, the two curves never
touch.

For different values of a, this example shows both very close bounds and very
poor ones. Thus for the case a = 1.5, the lower bound on the minimum is 1.078,
whereas the true minimum is 1.085. In contrast, for large a, the exact minimum
is asymptotically −5(a/6)6/5, whereas the bound is −a2/5, so the bound can
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be arbitrarily bad in that case. However, as shown in the next section, in the
intended application, there is no need for a close bound; any bound will be just
as good.

A second example shows a different form of output. We assume the condition
a > 0 and look for a lower bound on

p = x6 + x4 − 2x3 + (1 + a)x2 − x + 2 . (12)

With the Maple assumption assume(a,positive), we obtain the bound

24251 + 24628a

3456(5 + 4a)
.

Notice that since a > 0, the denominator is never zero. We can quickly check
the accuracy of this bound by trying a numerical comparison. Thus for a = 10,
the bound takes the value 30059/17280 ≈ 1.7395, while the minimum value
is actually 1.9771. For large, positive, a the minimum is asymptotically 2 and
the bound is asymptotically 6157/3456 ≈ 1.78, so in this case the asymptotic
behaviour is good.

4 The Minimum of a Quartic Polynomial

Although the main implementation aims for a simple lower bound, it has already
been stated that the same approach can be used to find an minimum. We show
that this is so, but also show the more complicated form of the result, by deriving
an exact minimum for a quartic polynomial. As above, we need consider only a
depressed quartic.

Theorem 1: If the coefficient b1 �= 0, the quartic polynomial

P4(x) = x4 + b2x
2 + b1x

has the minimum
inf P4 = b2k2 − 3

4k2
2 − 1

4b2
2 , (13)

where

k2 = s1/3 +
b2
2

9s1/3 +
b2

3
, (14)

s = 1
4b2

1 + 1
27b3

2 + 1
36

√
81b4

1 + 24b2
1b

3
2 . (15)

Moreover, the minimum of P4 is located at x = xm = − 1
2b1/k2.

Proof: As above, the polynomial P4 is split into two by introducing a parameter
k2 satisfying k2 > 0 and k2 > b2.

P4 = [y4 + (b2 − k2)y2] + [k2y
2 + b1y] = P

(1)
4 + P

(2)
4 .
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The minimum of P
(1)
4 is

inf(y4 + (b2 − k2)y2) = − 1
4 (k2 − b2)2 ,

given the restrictions on k2. The coordinate of this minimum obeys y2 = 1
2 (k2 −

b2). The minimum of P
(2)
4 is −b2

1/2, by (7), and therefore

inf(P4) ≥ −b2
1/(4k2) − 1

4 (k2 − b2)2 . (16)

Equating the coordinates of the two infima gives an equation for the value of
k2 at which the lower bound equals the minimum of P4.

k2 − b2

2
=

(
−b1

2k2

)2

.

This is equivalent to the cubic

k3
2 − b2k

2
2 − 1

2b2
1 = 0 , (17)

which equation can also be obtained by maximizing the right side of (16) di-
rectly. It is straightforward to show that (17) has a unique positive solution,
and furthermore it is always greater than b2, as was assumed at the start of the
derivation. Rewriting (17) in the form

1
2k2

2 − 1
2b2k2 = b12/(4k2) ,

allows the expression (16) to be transformed into the form given in the theorem
statement. �
Since (17) has a unique positive solution, its solution takes the form (14) given in
the theorem. For some values of the coefficients, the quantity s will be complex,
but if s1/3 is always evaluated as the principal value, then k2 given by (14) is
the real positive solution.

Theorem 2: For the case b1 = 0, the quartic polynomial

P4(x) = x4 + b2x
2 (18)

has the minimum
inf P4 = − max(0, −b2/2)2 ,

at the points x2
m = max(0, −b2/2).

Proof: By differentiation. �
Implementation. The discussion here is in the same spirit as the discussion in [3].
The following issues must be addressed by the implementer, taking into account
the facilities available in the particular CAS.

For a polynomial with numerical coefficients in the rational-number field Q,
the infima can be algebraic numbers of degrees 1, 2 or 3. If the formulae (13) and
(14) are used for substitution, the answer will always appear to be an algebraic
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number of degree 3, and the simplification of such numbers into lower degree
forms cannot be relied on in some systems. Therefore, if it is accepted that the
system should return the simplest expressions possible, then the best strategy in
this case is not to use (14), but instead to solve the cubic equation (17) directly.
Even if simplicity is not an issue, roundoff error in the Cardano formula often
results in a small nonzero imaginary part in k2.

For symbolic coefficients, the main problem is the specialization problem [3].
Since Theorem 1 excludes b1 = 0, it is important to see what would happen if
the formulae (13) and (14) were returned to a user and later the user substituted
coefficients giving b1 = 0. Substituting b1 = 0 into (14) gives

k2 = 1
3 (b3

2)
1/3 + b2

2/3(b3
2)

1/3 + b2/3

For b2 > 0 this gives k2 = b2, while for b2 < 0 it simplifies to k2 = 0. For
b2 = 0, the system should report a divide by zero error. Thus for b2 �= 0, (13)
and (14) work even for b1 = 0, although it should be noted that the position
of the minimum, −b1/2k2, will give a divide by zero error for all b2 < 0. It is
important to remember in this discussion that the mathematical properties of
(13) and (14). Thus, the fact that it is possible to obtain the correct result for
b1 = b2 = 0 by taking limits is not relevant; what is relevant is how a CAS will
manipulate the expressions.

An alternative implementation can use the fact that some CAS have functions
for representing one root of an equation directly. In particular, Maple has the
RootOf construction, but in order to specify the root uniquely, an interval must
be supplied that contains it. The left side of (17) is − 1

2b2
1 for k = 0, b2 and hence

the interval can start at max(0, b2). By direct calculation, the left side is positive
at |b2|+b2

1/6+1. An advantage of this approach is the fact that b1 = b2 = 0 is no
longer an exceptional case, at least for the value of the minimum: the position
still requires separate treatment.

5 Application to Integration

Let ψ, φ ∈ R[x, y] be polynomials over R, the field of real numbers. A rational
trigonometric function over R is a function of the form

T (sin z, cos z) =
ψ(sin z, cos z)
φ(sin z, cos z)

. (19)

The problem considered here is the integration of such a function with respect
to a real variable, in other words, to evaluate

∫
T (sinx, cosx) dx with x ∈ R.

The particular point of interest lies in the continuity properties of the expression
obtained for the integral. General discussions of the existence of discontinuities
in expressions for integrals have been given by [6] and [10].

A simple example shows the difficulty to be faced. The integral below was eval-
uated as shown by all the common computer algebra programs (Maple, Mathe-

matica and others); notice that the integral depends on a symbolic parameter a.
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U(x) =
(a cos4 x + 3 sin2 x cos2 x)

cos6 x + (a sin x cos2 x + sin3 x)2
, (20)

∫
U(x) dx = arctan(a tan x + tan3 x) . (21)

It is a simple calculation to see that the integrand U(x) is continuous at x = π/2,
with U(0) = 0, but the expression for the integral is discontinuous at the same
point, having a jump of π. We have

lim
x↑π/2

arctan(a tan x + tan3 x) − lim
x↓π/2

arctan(a tan x + tan3 x) = π .

The notion of a rectifying transformation was introduced in [6], and can be
applied to this situation.

The general problem is to rectify expressions of the form arctan [P (u)], where
P ∈ R[u], and without loss of generality is monic. Moreover, u = tan x, where x
is chosen according to the properties of the integrand. We note first the identity

arctanx − arctan y = arctan
x − y

1 + xy
+

{
sgn(y)π , for 1 + xy < 0 ,

0 , otherwise.
(22)

We shall use this in a formal sense, dropping the piecewise constant. The two
cases of P of even degree and P of odd degree are treated separately. For P of
even degree, we transform as follows.

arctanP (u) → arctanP (u) − arctan(1/k) → arctan
P − 1/k

1 + P/k
= arctan

kP − 1
k + P

.

The first step simply adds a constant to the result of the integration. The second
step uses formula (22), dropping the piecewise constant. The final expression will
now be continuous provided

∀u ∈ R, P (u) + k > 0 .

The problem, therefore, is to choose k so that this condition is satisfied. Notice
that since P (u) is even degree and monic, it will always be possible to satisfy
the condition, and the problem is to find an expression for k. Also note that in
the example, P contains a parameter, so a simple calculus exercise will not be
sufficient to determine k.

For P of odd degree, we transform as follows.

arctan(P (u)) → arctan(P (u)) − arctanu/k + arctanu/k − arctanu + x

→ arctan
P (u) − u/k

1 + P (u)u/k
+ arctan

u/k − u

1 + u2/k
+ x ,

= arctan
kP − u

k + uP
+ arctan

u − ku

k + u2 . (23)

The first step in the transformation uses the formal identity

arctanu = arctan(tanx) → x .
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The second step combines the inverse tangents in pairs, again dropping the
piecewise constants. This will be a continuous expression provided

∀u ∈ R, k + uP (u) > 0 .

Since P has odd degree, uP has even degree, so again k exists. Our aim is
therefore to obtain an expression for k in each case.

For the specific integral example given in (21), we have that uP = u4 + au2,
and the above routine gives the lower bound k = −1/4 (max (1, a + 1) − a)2.
This value can now be used in (23).
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