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Oftprint from Sedimentation of Small Particles in a Viscous Fluid, edited
by E.M. Tory and published by Computational Mechanics Publications in
1996. Page numbering follows the original article. This is the submitted
text, and the published text appears to differ only in the omission of
punctuation from the equations.
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Some basic principles in interaction
calculations
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Abstract

Some general aspects of the interactions taking place within a suspension can be
understood by exploiting properties of the Stokes equations; these properties and their
applications are described. Specifically, the way in which reversibility can be used to
predict overall properties of a flow is explained by analysing several applications both
informally and formally; Faxén’s laws for the response of a particle to an ambient
flow are examined to clarify common conceptual difficulties; and the use of lubrication
theory to approximate interactions between close particles is developed carefully. In
addition, the ways in which tensors can be used to summarize interaction results are
covered, and the principles are illustrated whereby tensor relations can be simplified
by appealing to geometrical symmetries and the character of tensor transformations.

Nomenclature

a Radius of spherical or circular particle
A B Resistance tensors

E Rate-of-strain tensor

f Equivalent surface forces

F. F; Force on particle

Acceleration due to gravity
Green’s function for Stokes flow
Resistance tensor
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height of lubrication gap
K, Ki Resistance coefficients
Length of lubrication gap
Couple acting on particle
Mass of particle
Unit normal vector
Pressure
Fluid velocity
Ambient fluid velocity
Velocity components
Scaled velocity components
Velocity on a boundary
Velocity of a particle
Time
Unit tangential vector
Period of motion
Position vectors
Centroid of particle
Shear rate
Small nondimensional gap
Alternating tensor
Point on surface of particle
Viscosity
Stress tensor
Derivative of Green’s function for Stokes flow
Angular velocity of particle
Vorticity, angular velocity
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1 Introduction

The Stokes equations for low-Reynolds-number flow are obtained from
the Navier-Stokes equations by omitting the inertia terms, and are

Vp = uViu and V-u=0, (1)

where u is the velocity field of the fluid, p is the pressure and y is the
viscosity (Batchelor 1967; Happel & Brenner 1963; Kim & Karrila 1991).
If the systems being considered consist of rigid walls and rigid particles,
the boundary conditions are the ‘no slip’ ones: on all boundaries u = U,
where U is the local motion of the boundary.

Since the Stokes equations are a set of linear equations, they are
mathematically more tractable than the nonlinear Navier-Stokes equa-
tions. This means that it is possible to obtain more detailed information
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about the interactions between suspended particles at low Reynolds num-
bers than it is at higher Reynolds numbers. The calculations are lengthy,
however, and the large amount of daunting detail involved can make it
difficult for a person starting in the field to follow the procedures being
used. For this reason, any simplifications that are possible in particular
cases should be exploited. There are several mathematical tools available
to simplify calculations, although some of them require familiarity with
the more advanced aspects of vector and tensor analysis; these tools are
the subject of this chapter.

2 Stokes equations and reversibility

The property of reversibility states that a solution of the Stokes equa-
tions is valid, under appropriate conditions, both if time runs forward
and if time runs backwards. By itself, reversibility implies interesting
effects, but it gains greater significance when combined with other sym-
metry arguments, because then some surprisingly powerful statements
can be deduced. For example, the fact that a spherical particle sedi-
menting near a vertical wall always maintains the same perpendicular
distance from the wall can be demonstrated without solving any specific
flow problem. In a similar way, reversibility predicts that a tumbling,
nonspherical particle in shear flow will execute a periodic orbit and will
not drift to any preferred orientation. The ease with which such pre-
dictions can be obtained contrasts strongly with the difficulty of their
verification by detailed calculations of the forces acting on the particles;
in particular cases the effects can appear to rely on the miraculous can-
cellation of unlikely terms.

A mathematical proof of reversibility is tedious to write out, so it is
better to start with an informal discussion of the idea and its applica-
tions. The property of reversibility arises because the Stokes equations
are linear and do not contain the time explicitly. The omission of the time
derivative Qu /0t from the Navier-Stokes equations has the consequence
that time-dependent effects can enter a flow problem only through the
boundary conditions, and through the evolution of particle positions. To
put it another way, the flowfield (u,p) at any time ¢ is determined com-
pletely by the positions and velocities of the boundaries at that instant,
and it is unaffected by any considerations of history. For example, if an
expanse of fluid contains a sphere moving with a velocity V', then the
flow around the sphere can be found without regard to how the sphere
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obtained its position and velocity; the same flow will be found whether
the sphere is moving at constant velocity V' or whether it is undergoing
an oscillatory motion and has the velocity V only at that instant. Conse-
quently, if time is reversed, there is no change in the governing equations,
and the system retraces its steps, moving in a valid Stokes flow.

Some visually compelling demonstrations of reversibility can be seen
in the film Low-Reynolds-number flows that was made by G.I. Taylor in
1967*. One demonstration, for instance, uses very viscous oil in the an-
nulus between two concentric vertical cylinders, the inner cylinder being
able to rotate about its vertical axis. Some dye is injected into the oil
and then the cylinder is rotated, causing the dye to smear out, or so it
seems. When the motion is reversed, however, all the dye returns to its
starting position (except for a little blurring due to molecular diffusion).
A similar demonstration, using the same apparatus, places a rigid body
in the oil, and again the inner cylinder is rotated. The body translates
and rotates away from its initial configuration, but when the wall motion
is reversed, the body returns to its starting point. Another demonstra-
tion shows a small mechanical fish vainly trying to swim by flapping a
tail. At high Reynolds number, it moves forward, but at low Reynolds
number, each time the tail reverses its motion, so does the fish.

The above demonstrations require reversibility alone; the next one
combines reversibility with another symmetry possessed by the flow.
Consider a sphere falling parallel to a vertical plane wall. The fact that
the sphere falls at a constant distance from the wall is demonstrated in
the following way. First one imagines that the sphere falls for a short time
downwards. For the sake of setting up a contradiction, it is necessary
to conjecture that it is not the case that the sphere stays at a constant
distance from the wall, and that instead it moves away from the wall.
Now consider what would happen if time were to run backwards. Clearly
the sphere would retrace its path and move closer to the wall as it rose.
Now observe that a second way to get the sphere to move upwards is to
reverse gravity while leaving time running forward. Because the wall is a
plane, the flow situation after gravity has been reversed is identical to the
situation before (notice that this geometrical symmetry is independent of
the reversibility just described). Accordingly, if the sphere is subjected
to an upward force, then, by the starting conjecture, it will move away

* Tt is a pity, in view of the fact that only a small number of films exist
of G.I. Taylor, that this one was made when he had a heavy cold.
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Figure 1. A sphere falling, or rising, next to a plane wall.

from the wall as it rises, as shown in figure 1.

This is a contradiction: on the one hand, geometrical symmetry says
that an upward-moving sphere will move away from the wall, while re-
versibility says that the sphere will move towards the wall. The conclu-
sion is that it will neither move closer nor away, but stay at the same
distance.

Reversibility is also important for periodic motion. Numerous peri-
odic motions have been found in systems of particles moving in Stokes
flow, and their existence can have a strong influence on calculations. If
the system is scleronomic, meaning the external forces on the flow do not
change with time, then a moving system of particles that passes through
a configuration twice must be executing a periodic motion, and reversibil-
ity combined with another symmetry can prove this, as the tumbling of
an ellipsoidal particle in a shear flow illustrates. The ellipsoid executes a
closed periodic orbit, and this orbit is described by an orbital constant,
whose value depends upon how the particle starts its motion. One might
suppose that the ellipsoid would follow an orbit that is not exactly peri-
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odic, and drift from one orbit to another, perhaps seeking out a preferred
orbit. To fix a coordinate system, assume that the shear flow is given
by uw = vz, for some . If the ellipsoid were to alter its orbit and shift
to one described by a larger (say) constant, then reversing time would
cause it to return to the orbit with a lower constant. The flow, however,
has a reflectional symmetry in the zy plane, and this reflection also re-
verses the shear flow (with time running forward) and therefore implies
that the ellipsoid will still, in the reversed flow, increase its orbital con-
stant. Again the contradiction can be resolved only by requiring that the
particle remain in the same orbit always.

Quite large systems of particles can be trapped in periodic motion.
Clusters of particles sedimenting under gravity in an infinite container
have been studied by several authors (Hocking 1964; Caflisch et al. 1988;
Tory et al. 1991; Tory & Kamel 1992; Golubitsky et al. 1991) and
clusters of up to 6 particles were found to be capable of periodic mo-
tion. However, although reversibility and geometric symmetry were used
during the proof of this result, by themselves they are not sufficient to
guarantee periodicity.

The reader may have noticed that the examples given above share
a common feature, viz. that reversibility was used in each case to say
that something would not happen. In general terms, one might say that
reversibility tends to prevent systems from evolving. It is clearly a pow-
erful way of stopping anything interesting happening in the flow, and
therefore it is useful to be clear on the limits of its stifling grip. The
assumptions that are necessary for reversibility to be important can be
examined by treating some simple examples in greater mathematical de-
tail. One clarification is the fact that the principle of reversibility usually
takes a stronger form than the one given in the opening statement of this
section. For many systems, not only is the motion reversible, the dis-
placements are the same whatever the rate at which they take place.

An example that captures the essence of G.I. Taylor’s demonstrations
in a simpler geometry is shown in figure 2. A box contains fluid and a
suspended force-free particle, and is constructed so that one side can slide
to create motion. The lower wall, y = 0, slides so that the point labelled
X moves from z = a at time ¢t = 0, to x = b at time ¢t = T. At time
t the point has position x = X (¢). The boundary conditions are then
u = tU(t) = tdX/dt on y = 0 and u = 0 on the other walls. The particle
performs rigid-body motion, having velocity V' and angular velocity {2
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Figure 2. A simplified version of Taylor’s demonstration.

with respect to its centroid at x.. The boundary condition on its surface
is then
u=V+02x(x—x), (2)

and in addition V' and §2 are chosen so that the total force [o -n dS
on the particle is zero, as is the total moment [o -n x (z — z.) dS.
Here o is the stress tensor. It will now be proved that, for the purpose
of calculating the displacements of fluid particles, it does not matter how
the point X gets from z = a to x = b; in other words, for all possible
functions X (¢), the fluid elements and the suspended particle will have
undergone the same displacement, when the point X arrives at x = b.

The proof solves the flow problem at time ¢ in two steps. First, let
the wall have unit velocity, instead of its actual velocity V(¢), and let
the corresponding velocity and pressure solutions be u*(x) and p*(x),
and the corresponding motion of the particle be given by U* and £2*.
Then the actual flow problem has solution V (¢)u*(x) and V (¢)p*(x), and
further the particle moves with V (¢)U* and V (t)£2*. The proof that the
solution satisfies the governing equations depends on linearity:

pVA(V(tyu') = uV (V" = V(V(t)p") = V() Vp" |
and so the V(¢) cancels and pV?u* = Vp* by definition. The force-free
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condition is also satisfied, because, using subscript notation,

ou;  Ou;
GUZ—Mﬁ+u{ﬁﬁ+Jﬁ}

xj T
— V() (—p iy + [ iy —’]) — V()07

$]’ Z;

Since a;‘j integrates to zero force, so does o;;. The other boundary con-
ditions are satisfied in a similar manner.

The displacement of a fluid element is calculated by considering what
happens during a time 6t. If a fluid element is at x () (the subscript is
a reminder that xj is a Lagrangian quantity), then its motion is given
by

— =u(xL(t),?), (3)

where wu is the Eulerian velocity that obeys the Stokes equations. There-
fore, in time 6t, the displacement of the fluid element is given approxi-
mately by dtu(xr,t) = 6tV (t)u}, using the results established above.
Now 6tV (t) = dx, the displacement of the boundary. Thus all fluid dis-
placements during the motion are proportional to the corresponding dis-
placement of the boundary, implying that the total displacement of any
particular element is proportional to fOT V(t)dt = X(T)— X(0) =b—a,
whatever the function X (¢). This can be seen in the demonstrations in
Taylor’s film, where the fact that the cylinder is turned in a variable
way by hand is not important, so long as it is stopped at the same place
each time. In addition, when the handle is returned to its starting posi-
tion, only the overall displacement is important, meaning that each fluid
element returns to its starting position when the handle does.

The above calculations were for systems with rigid particles, but
similar considerations show that systems with free surfaces may also be
candidates for reversibility. If a fluid contains a free surface or an in-
terior void, one idealization is to suppose the surface to be stress free,
i.e. o¢-n = 0, where n is a unit normal to the surface. For this case,
the governing equations again admit a solution proportional to the in-
stantaneous velocity of the driving boundary element. This is because
o-n=V(t)o*-n =0. Another common approximation is to suppose
that surface tension is so high that a void has a permanent spherical
shape. In this case the appropriate boundary conditions are u-n =V -n,
where V is the rigid-body velocity of the spherical void (determined as
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part of the solution), together with t-o -n = 0 where ¢ is a unit tangent
vector to the surface. The equations and boundary conditions are again
linear and scale with the boundary velocity.

The strong form of reversibility applies to systems in which the Stokes
equations contain a single time scale, imposed by the boundaries through
the boundary conditions. Such cases will arise whenever a problem is
simplified to a single effect. As soon as other time scales enter the system,
reversibility is weakened. Consider allowing the particle in figure 2 to
sediment because of gravity while the wall of the box is moved. In this
case, the force-free boundary condition on the particle is replaced by

/a-ndSzMg, (4)

where M is the mass of the particle and g is the acceleration due to
gravity. The problem no longer scales with the velocity of the boundary,
because if u* is defined as before, the new boundary condition becomes

/cr-ndSzV(t)/a*-ndSzV(t)Mg.

This makes sense physically, because the sedimentation rate of the par-
ticle is independent of the motion of the wall, and the particle will move
different amounts during an experiment, depending upon whether the
wall slides slowly or quickly. Thus, only a weakened reversibility argu-
ment could be constructed for this system, by tying the speed of the wall
to the sedimentation rate, which is too restricted to find an application.
Similarly, turning to the system containing a free surface, one could im-
pose a more realistic boundary condition containing a finite amount of
surface tension. This would again destroy the scaling of the solution with
wall velocity.

In the context of rigid particles, the major way in which reversibil-
ity is destroyed in theoretical investigations is through departures from
Stokes flow. The previous examples have considered different bound-
ary conditions, while the governing equations have remained unchanged,
but there are many ways in which the governing equations, themselves,
can change. For example, the effects of small amounts of inertia have
been investigated by a large number of authors, as have the effects of
non-Newtonian terms in the stress-strain relation. Calculations based
on these idea are reviewed in Leal (1980). More generally, all systems
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containing very small particles will be subject to physical processes that
modify the governing equations and destroy reversibility, such as electric
charge effects, Brownian motion, and so on.

3 Faxén laws

Faxén laws are exact mathematical statements about the response of
a particle to an ambient flow. They are used, however, mostly in the
approximate calculation of interactions between particles, and this am-
bivalence can be a cause of confusion. Suppose that a region of fluid
contains an ambient flow field u® (), and suppose that a rigid spherical
particle is introduced into this field at a point @ = xy. The force F
and couple L experienced by the sphere, which is stationary, are given
exactly by

F = 6map [u™(zo) + %a2V2u°°(:c0)] , (5)

and
L = 8ma’uV x u™(zg) . (6)

Laws for other quantities are also known. It is certainly striking, on
first acquaintance, to see that only the local velocity and its first and
second derivatives are important, no matter how complicated the ambient
flow may be. As Kim & Karrila (1991) point out, the interpretation
can be simplified further by noting that V2u® is proportional to the
ambient pressure gradient. It is natural to contrast this simplicity with
the lengthy calculations in the literature of the motion of a particle near
a wall or a second particle, and to wonder how it can be exact. Students
sometimes draw a diagram of a sphere in a maelstrom of streamlines, and
ask whether Faxén laws applies to this situation.

An understanding of whether Faxén laws are exact or approximate
can be obtained by reviewing a proof of them, here the proof that was
given in the appendix to Batchelor (1972). Any solution of the Stokes
equations can be written in the form of surface integrals over the bound-
aries of the region (Kim & Karrila 1991, section 2.4.2).

u@) = [0 Ge-§+n Be-¢) uldsE), (0

where m is a normal pointing into the fluid, G is a Green’s function and
Y is its derivative. The first term in the integrand contains n - o d.S,
which is the force exerted on the fluid by the surface element dS at &.
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Then G(xz—¢&)-(n-o dS) is the velocity field produced at « by that force.
The second term n - X' - u dS corresponds to a ‘double layer’, and has
a similar interpretation. The solution (7) can be interpreted by saying
that the flow outside a rigid particle cannot tell the difference between
a physical boundary and an appropriate distribution of point forces and
double layers. Faxén'’s theorem is derived by adding such a distribution
of forces to a region of fluid so as to represent the presence of a particle.
Suppose that there is a point &g in the fluid such that all boundaries
are at least a distance R away, and suppose these distant boundaries
have produced a flow field ©* near (. Finally, suppose that forces f
have been found that emulate the presence of an additional sphere. In
general, double layers are also needed, but Kim & Karrila (1991, 2.4.3)
show that the force layer is sufficient in the case of a rigid particle. Then
the velocity field near xg is

u(w) = u™ + / F(€)-G(e - £) dS(€) . (8)

Integrating over all points  on the surface of the sphere, where u = 0,
proves the theorem (Batchelor 1972).

For the present discussion, the important question is how the forces f
modify u®°. It was postulated that ©°° was produced by distant bound-
aries, at least a distance R away. Simple examples of the interaction of
a point force with a boundary are well known. The flow produced by
a point force at a distance R from a rigid plane is equal to the sum of
the flow produced by the force and the flow produced by an equal point
force on the other side of the plane, a distance R from it, and some
weaker effects (Lorentz 1896). Similarly, a point force outside a sphere
produces ‘reflections’ inside the sphere (Fuentes, Kim & Jeffrey 1988).
Since u*° includes all of the effects of the distant boundaries, it will have
to be corrected for the additional forces introduced by the reflections.
The order of magnitude of these corrections can be estimated by saying
that the images have the same magnitude as the forces f, and they are
at least a distance R away. Since a point force produces a velocity field
that decays as the reciprocal of distance, the disturbance to 4 will be
O(R™1). This discussion shows that another way to write Faxén’s law is

F = 6map [u™(zo) + %a2V2u°°(wo)} +O(R™Y). 9)

The usual statement of the law assumes that the limit R — oo has been
taken.
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Some of the usual questions about Faxén laws can now be answered.
The first question asks ‘Is it really exact?’. The answer is ‘Yes’, provided
the limit R — oo is accepted. This limit is often taken in fluid mechanics,
and although it can cause difficulties, for example uniform flow around
a cylinder in two dimensions, it is usually accepted if ©* is simple. The
second question asks ‘Does it apply to flows with large curvature?’. Large
curvature means that the values of V4 and higher derivatives are large,
in order for the streamlines of ©u® to be highly curved. Here the answer
is ‘Technically yes, but in practice no’. It is technically yes, because it is
possible mathematically to imagine a flow with large curvature produced
by very distant boundaries. It is no in practice, because the person
asking the question is almost certainly thinking of a situation in which
the curvature is caused by boundaries fairly close to the particle. For
example, the particle is in a curving pipe or near other particles. Thus
the flow is probably not caused by large forces far away, but by ordinary
forces that are close. In this case the questioner is really refusing to ignore
the reflections from the boundary, in other words, refusing to accept the
premise of the theorem.

4 Lubrication theory and close particles

The interactions between two nearly touching particles can often be cal-
culated using Ilubrication theory. This ‘theory’ is actually a set of ap-
proximations that allow the Navier-Stokes equations to be simplified to
a form in which they are more easily solved. In order for the approxima-
tions to be valid, the particles must be nearly touching, and in addition
their relative motion must cause the fluid in the gap between them to
be highly sheared. For example, if two close particles are in the pro-
cess of moving past each other, then lubrication theory can be applied,
but if they are sedimenting side-by-side with no relative motion between
them, it cannot. Although the name lubrication theory is a reminder
that the approximations were first worked out in the analysis of flows
in lubricated bearings, the theory in the low-Reynolds-number context
is not identical to its engineering namesake; some of the ways in which
the approximations are developed in Stokes flow give the application a
distinctive slant.

The aspects of the theory that will be explored are the definition of
the gap between the particles, the handling of the edge of the gap, and the
role of the fluid far from the gap. It is important to discuss these points
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Figure 3. A plate approaching a wall.

because the justification for the theory is usually informal; it is devel-
oped initially for a situation in which the approximations have a strong
intuitive appeal, or for a situation in which they can be proved correct.
Subsequently, the approximations are applied to situations in which the
justification is less straightforward, and there is a danger that future cal-
culations will continue to use them when they have really ceased to apply.
The discussion here follows a pattern similar to that just described: it
starts with an example in which the justification for the approximations
is easy to accept and then proceeds to greater mathematical elaboration.

A simple two-dimensional flow serves as a starting point: consider a
flat plate approaching a plane at speed V. The fluid between the plate
and the plane occupies the rectangular region labelled in figure 3 as the
gap region. The region has length 2L and height i, and h decreases with
time at the rate dh/dt = —V. In order for the plate to move, the fluid
in the gap must be squeezed out. During time §t, the volume of the gap
decreases by 2LV 6t (for unit length in the third dimension), and since
this equals the flux of fluid at the two edges of the gap, the fluid must be
leaving with an average velocity LV/h. The only force available to drive
this flow is a pressure gradient in the gap, implying that the pressure
must be highest in the centre of the gap in order to create the required
gradient. This pressure is calculated approximately by considering the
order of magnitude of each term in the Stokes equations. Let x and y
measure distance respectively along the gap and across it, and let the
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non-dimensionalized velocity components be given by v = V(u,v). If
the pressure is given by puV'p, the equations are

Pu  0%u _Op

Z 4 = 1
O0x? * oy2  Ox’ (10)
v v Op
R 11
O0x? + oy2 oy’ (11)
ou Ov
42 =0. 12
ox * oy 0 (12)

The no-slip boundary conditions require that
u(z,0) =u(z,h) =0 and wv(z,00=0 and w(z,h)=-1.

Since, from the boundary conditions, v goes from —1 to 0 in a distance
h, the term 0v/dy will be approximately —1/h, and then, from the conti-
nuity equation (12), this implies that du/0z = 1/h. This in turn implies
u ~ z/h, which is consistent with our global estimate above. Since u
grows with x while v does not, it must be that v > v for x > h, i.e.
away from the centre of the gap. So the terms in (11) are much less
than those in (10), and (11) can be neglected. Further, dp/dy can be
set to zero in comparison with dp/0z, meaning that p is approximately
independent of y. The assumption that pressure is approximately con-
stant across a thin layer of fluid is also used in boundary-layer theory.
In equation (10), the derivative 9>u/9y? must be of the order of Vx/h3,
since u changes from 0 at the walls to Vz/h in the flow. The estimate
u ~ Vx/h also implies 8%u /022 ~ 0, so clearly 0%u/0y® > 0?u/0z?, and
therefore (10) can be approximated by

2
Fu_dp (13)
oy? dz
the total derivative of p showing that it depends only on z. Integrating
(13) gives u = 3p'y(y — h), where p' = dp/dz, and substituting into (12)
and integrating gives v = 75p"y?(3h — 2y). At this stage the pressure is
still unknown. The expression for v satisfies the boundary condition on

y = 0, but it can only satisfy v = —1 on y = h if p satisfies the equation

h3 d%p

1242 (14
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Therefore p = —622 /h3 + Az + B. The calculation is completed by
applying boundary conditions on p. By the symmetry of the problem,
A =0, but what about B, the pressure at the centre of the gap?

As the plate approaches the plane, the fluid from the gap region
will escape into the surrounding fluid, spreading out until it reaches the
ambient pressure. Depending upon the Reynolds number of the flow
outside the gap, this could even be a jet-like flow. The problem of how
the fluid slows down on leaving the gap is a difficult calculation and it
is better avoided if possible. Consequently, it is assumed that as soon
as the fluid reaches x = +L, the pressure equals the pressure outside
the gap (which is zero). This gives p = 6(L? — 2?)/h3, and a non-
dimensionalized force of 2 fOLp dz = 8L3/h3. The last assumption is
in fact the specification of the edge of the gap (which was left vague
above) and the reader’s acceptance of it depends to some extend on
mathematical outlook. The clear-cut geometry suggests strongly that
the pressure will reach the ambient one within a distance O(h) from the
edge, that is, within the circle labelled ‘edge of gap’ on figure 3. This will
induce an error O(h/L), which is of the same order as the approximations
made in obtaining (13). It is possible to contrive flow conditions outside
the gap that would invalidate the assumptions about the edge of the
gap, but it is not a serious worry and the approximations above are well
established.

The above example is important in engineering lubrication theory,
but for sedimentation studies and other particulate interaction problems,
the geometry is only generally relevant. Keeping with the simplification
of two-dimensions, consider a cylinder approaching a plane, again with
velocity V, as shown in figure 4. From looking at the figure, one can
be convinced that there is a gap region between the cylinder and plane,
although it is no longer possible to point to the edge of the gap with the
confidence felt in the first example. One proceeds to analyse the flow in
the gap, in the hope that everything will turn out all right in the end.

Let the radius of the cylinder be a and let the gap be h at its min-
imum. The velocities and pressure are again V(u,v) and pVp and the
approximations leading to (12) and (13) still apply. The boundary con-
ditions can be simplified by expanding the expression for the cylinder
surface for small values of x. Thus

y=a+h—Va®—12= h+—+0() H+0(z%), (15)



112

Edge of
Gap?

Gap region

Figure 4. A cylinder approaching a wall.

where H has the obvious definition. The omission of the terms O(z*) can
be justified formally using a scaling argument, but the formal treatment
is deferred until later. The solutions of (12) and (13) subject to the
conditions u(z,0) = u(z, H) = v(z,0) = 0 and v(z, H) = —1 are

6a 3r  2hx 2a
p:—H2+A<ﬁ+ﬁ+3 — arctan \/_> +B, (16)
1dp

e H 17
= 2 d:ﬁy(y ) 1)

)

o pry

- H-2 1

v= 5P y°(3 y) + 1 (18)

As in the previous case, A = 0 by the symmetry of the problem, and if it
is provisionally assumed that there is a point x = L where the gap ends
and p = 0, one obtains B = —24a3(L? + 2ah)~2. Now some interesting
things can be observed. Unlike the first example, the value of B is not
so critical here. For example, the pressure at the centre of the gap is
6a/h? + B, and provided L > h, the contribution of B is unimportant.
Further, the force on the cylinder is

F%Q/OLpdxxiﬁx/iW(Z)_%[ 8;7{ <L2> ] ) (19)

and this expression depends only weakly on L. The influence of the edge
of the gap can be suppressed completely by taking the limit L — oo, and
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in some presentations, this limit is taken early in the treatment, so that
the edge of the gap never appears.

The lubrication result (19) can be compared with the exact result
obtained by Jeffrey & Onishi (1981). When their solution is expanded
for small h, it becomes

F=3V2r (g) k - % (§>_% +0 ((Zf) - (20)

Both (19) and (20) contain the same leading term, but (20) contains a
second singular term. Numerically, both terms are important: if A = 0.1,
then the force according to the exact solution is 148.31, whereas one term
of (15) gives 134.2 and two terms give 148.25. So the comparison provides
reassurance on one point, but raises another. In particle geometries, the
edge of the gap can be avoided to leading order, but lubrication theory
must be extended to higher order to capture all of the important terms.
Can the edge of the gap be ignored at higher order? This question has
been investigated in three-dimensional flows.

The change from two dimensions to three dimensions weakens the
interactions between close particles, and as a result the edge of the gap
(wherever it is) threatens to stay in the calculations. In order to justify
lubrication theory in this case, O’'Neill & Stewartson (1967) constructed
a complete matched-asymptotic-expansion analysis of a specific problem.
It is worth quoting some of the introductory remarks of their paper con-
cerning the status of lubrication theory. They wrote ‘... although it [the
theory of lubrication] has been extensively developed for many years ...
it suffers from a number of drawbacks. First, it is difficult to perform
experiments ... Secondly, the theory has developed on an ad hoc basis ...
Furthermore, in certain types of problems, ... what is known about the
actual flow properties makes one sceptical of the sufficiency of lubrica-
tion theory.” (The italics are the authors’.) Thus although many writers
use the terms ‘well established’ and ‘widely accepted’ interchangeably,
O’Neill & Stewartson apparently saw lubrication theory as being only
the latter, and not yet the former.

Their lengthy analysis is given here only in outline, just enough to
exhibit their main achievements, which are a formal scheme that allows
the approximations to be improved, and a proper treatment of the edge
of the gap. If the sphere has radius a, nondimensional cylindrical co-
ordinates are (ar,f,az), where the z axis is perpendicular to the plane.
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Letting U be the velocity of the sphere along the = axis, the velocity can
be nondimensionalize and the dependence on # removed by writing the
velocity in the form uw = U(ucosf,vsinf, wcosf) and the pressure as
ulp cos@/a. The gap is again h, and the small parameter e is defined to
be € = h/a. The centre of the sphere is then at z = 1 4+ €. The formal
recognition that du/0z > 0u/0r is made by introducing new variables
R =1/€e/? and Z = z/e, because (to be brief) at the centre of the gap,
z runs from 0 to € and Z runs from 0 to 1. The derivatives can now be
compared by converting them to R and Z.

8/0z =€ 10/0Z > 8)or = € /?0/0R .

Similarly, the assertion u > w is formalized by putting (u,v,w) =
(6_1/ 2U,V,W). The Stokes equations can be approximated by keeping
the leading terms in e.

oP 9%U P 9%V
= =2 =" 21,22
OR 072’ R 072’ (21,22)
oP ou U+V oW
z-"  grT R Taz 7V (23,24)

The approximation of the upper surface of the gap is similar to the
two-dimensional case, and is Z = H =1+ %RQ. Then U = =V =1 on
Z + H and W = 0. The solution is

P =6R/5H? , (25)

_6—9R2Z2 2 + 7R?

U= 10H3 + 5H?2 Z (26)
3 .5 2
=" 72 - 2
1% 5HQZ 5HZ’ (27)
8R — 2R3 2R3 — TR
— 7z3 afv AV 52 ]
W 1 + g 2 (28)

The non-dimensionalized force on the plane Fj is given, after integrating
with respect to 6, by an integral containing the edge of the gap region
Rg.

Re roU oV 8 2 4/5
F, = = 7 =—log(1+iR:) -+ 1.
v /0 <az az)zzoRdR 158+ afie) v o
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The edge of the gap appears in the expression for the force in a way
that cannot be removed by taking the limit Rg — oo, and this is the
feature that this example was chosen to show. The bolder calculators
now continue by replacing Rg by its unstretched counterpart r% = eRé.
To leading order in ¢, the force becomes

2
F, = 18—5[log(7%;) —loge —log2] — 5 +O(e) .

They would continue by arguing that the value of rg can be at most the
radius of the sphere, and so is a number O(1). This leads immediately
to the estimate

Fp = £ 1og e+ 0(1) . (29)

The advantage of this strategy is that the main result, namely the singu-
lar term in the force law, is arrived at quickly. The disadvantage is that
the O(1) constant cannot be obtained, and the argument is not satisfying
to the more mathematically fastidious. An early use of this approach, in
a heat-conduction context, was described in Keller (1963).

In order to obtain a stronger demonstration that the main result re-
ally is independent of the outer boundary, O’Neill & Stewartson solved
for the flow around a sphere translating while touching the plane (low
Reynolds number everywhere in the flow). The simplification in the
geometry is sufficient to express the solution in terms of one ordinary
differential equation, although it is still too lengthy to reproduce here.
When the force on the plane is calculated from this solution, it is infi-
nite. Consequently, the lubrication region is invoked again, but now it
is excluded from the problem outside the gap. Thus the force integral is
computed by integrating over all r > r¢g, and is found to be

Fw: %]Og(?/?‘g)-ﬁ-[{,

where K is a known integral that must be evaluated numerically. This
calculation shows two things. If the integration were carried until r = 0,
the result would be infinite, but if it is added to the inner force contribu-
tion, the two terms in log rg cancel, leaving a finite result. Thus O’Neill
& Stewartson finally concluded that

Fy =% loge™' +0.9543 . (30)

The logarithmic term can be confidently ascribed to the gap solution,
but the constant term contains contributions from each region, and so
cannot be ascribed to either one separately.
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On of the attractions of lubrication theory is the fact that it can
yield important information about interactions from a relatively simple
analysis of only one part of the flow. If the edge of the gap cannot
be removed from the calculations, lubrication theory loses some of its
appeal. Thus the importance of the O’Neill & Stewartson result lies in
the fact that it provides a foundation for other lubrication calculations
to draw on. Even if the edge of the gap remains in the result of a gap
calculation, it can be removed by postulating that a full analysis would
find a cancelling term in the solution outside.

In a number of publications, lubrication theory has been pushed even
further. Thus the approximations above have been carried to higher order
in Jeffrey (1989), where it is shown that eventually some global proper-
ties of the flow must be taken into account in order to continue; by this
stage, however, the interactions are extremely weak, and of only spe-
cialized interest. In another direction, the requirement of rigid surfaces
has been relaxed and the approach of two drops considered (Davis et al.
1989). It is in the nature of approximations that they will be applied to
weaker and weaker interactions until they break down. As the borders
of applicability are approached, from various directions, the more formal
treatment described here, although more cumbersome than the intuitive
approach, becomes increasingly important, because it will show when
the region of applicability of the approximations has been left. In the
context of heat conduction, one analysis of the accuracy of extensions
such as those just discussed has been published in Kocabiyik & Jeffrey
(1994), but none in fluid flow.

The important conclusions remain, however, that the singular be-
haviour of the force between close particles is determined by the gap
between them and their relative motion. It is not possible to avoid the
forces becoming singular within the assumptions of Stokes flow and rigid
particles; only by changing the boundary conditions can finite interac-
tion forces be obtained. Another important conclusion is the fact that
clusters of close particles interact to leading order in a pairwise fashion.
Thus the total force on one particle is the sum of lubrication interactions
with its nearly touching neighbours.

O’Neill & Stewartson pointed out the dearth of experimental verifica-
tion of lubrication theory that pertained in 1967. Since then, there have
been some improved experimental tests of the predictions of lubrication
theory. For a cylinder approaching a plane, Trahan & Hussey (1985)
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found good agreement with experiment. The motion of one sphere ap-
proaching a much larger one has been followed very accurately by Lecoq
et al. (1995) and excellent agreement found with the theory.

5 Review of vectors and tensors

The interactions between particles are essentially vectorial in nature, but
the difficulties of accounting for this can be made worse by some sim-
ple misconceptions about vectors and tensors. Consequently, this section
reviews vectors and tensors, with an emphasis on those ideas that are
not commonly treated in introductory courses, and yet are important in
Stokes flow. It is assumed that the reader already has some familiarity
with vectors and tensors, whether written in bold-face or subscript nota-
tion. For those not familiar with tensors, the books by Aris (1962) and
Borisenko & Tarapov (1968) are two of many good introductions.

It is a common misconception that a vector is defined to be a quantity
that has a length and a direction. Most textbooks on mechanics introduce
vectors in this way, because such a definition is easily understood, it
corresponds to a simple mental picture, and it allows beginning students
to cover all of the basic material of mechanics. (Davis 1986; Morse &
Feshbach 1953, p 9). However, in order to simplify vectorial equations in
the context of Stokes flow, this definition must be modified. The more
complete definition is that a vector describes a quantity that has a length
and a direction in a way that is not limited to any one coordinate system.
This definition is made mathematical by considering explicitly how the
description of a vectorial quantity changes as the coordinates change, and
it then becomes necessary to divide vectors into polar and axial vectors
(Morse & Feshbach 1953, p10).

Consider two coordinate systems, for simplicity, Cartesian systems.
Position @ is given in the first system by components (1, z2,x3) and in
the second by components (z}, x5, z4). The law relating these two sets
of components is x; = aj;Tj = aj171 + a;272 + a;373, where the Einstein
summation convention is written out (just this once). It should be noted
that the quantity a;; is not a tensor; it is another misconception that
anything with two subscripts is a tensor. A vector f is now defined to
be a collection of 3 components, either (f1, fa, f3) in the first system or
(f1, f3, f3) in the second, such that the f; are functions of & and such
that f/ = a;;fj. In words, the components of f transform according to
the same law as that for position.
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The need for axial vectors is demonstrated by considering a rotating
rigid body in a very simple case: a rigid body rotating around the z axis
with vector angular velocity w = (2k. Consider velocities in the XY
plane. The velocity (vg,vy) at any point (z,y) is given by v = w x 7,
meaning its components are given by

vy = —0y vy = N . (31, 32)

First consider the transformation to a dashed coordinate system defined
by ' =y, ' = —x and 2’/ = z, which is a rotation about the z axis. The
matrix agjl.) for this transformation is

0
V=1 -1

0

(33)

OO =
_ o o

The matrix o) can be used to transform both w, which remains 2k,
and v whose components in the new coordinates become v}, = v, and
v; = —uv;. Now consider the transformation to another new, doubly
dashed, coordinate system defined by z” = z, v = y and 2" = —z. Tg?

reader will notice that the new system is left handed. The matrix a, J
for this transformation is

0
0. (34)
~1

4@

[eviN el
o = O

Clearly, this transformation causes the z component of any vector to
change sign, since anything pointing along the old positive z axis must
now point along the negative 2" axis. Suppose that this applies to the
quantity w. The transformation !, = —w, = —£ would lead to a
difficulty, because the velocity components for v would become

[

1
y = wpt = —z .

vh=-wly =y and v

Thus the x and y velocities are now the negative of what they were before,
although those axes were unchanged. The only way to correct this is
to introduce a negative sign somewhere in the chain of definitions, and
the standard place is the transformation law for w. Thus the equation
v = w X r is kept intact (as is the definition of cross product in terms
of components) as is the fact that v and » transform according to the
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vector law. Now, however, w transforms according to a pseudovector law,
namely w, = az(-Jl-)wj, but wf = —az(-;)wj. This is the difference between
ordinary, or polar, vectors such as velocity, force and position, and axial
vectors such as angular velocity, and angular momentum.

The difference between vector types must be respected when con-
structing equations to describe fluid flows, because in any equation each
term must be the same type. Consider, as an example, the Navier-Stokes
equation in the form (Batchelor 1967, eq 5.1.1),

ou 1 9
E—uxwzF—V(p/p—f—gu-u)—i-l/Vu. (35)
Here, w = V X u is the vorticity, and an axial vector. Each term in
the equation is a polar vector, and in particular u X w is a polar vector
because an axial vector crossed with a polar gives a polar. A similar
analysis applies to the vorticity equation (Batchelor 1967, eq 5.2.2)

%‘;:zw-Vu—i-z/VQw . (36)
This contains axial vectors, and in particular the term w - Vu is axial
because an axial vector dotted with a polar gives an axial.

If subscript notation is used instead of bold face, then the alternating
tensor €;;x, which appears in the subscript equivalent of cross product, is
a pseudotensor. Thus v; = €;j,w;T contains two pseudotensors on the
right-hand side and hence they are compatible with the polar vector on
the left.

Another aspect of the use of vectors in Stokes flow is the use made
of the dyadic product (also called the outer product). It is convenient
to take a quantity such as (U - )z and write it U - (zx) with the
understanding that the evaluation has not changed. The first way of
writing leads one to think in terms of the scalar U -  being constructed
first, and then the result used as the coefficient of the vector x; the second
way leads one to think of a dot product being taken between a vector
U and a second-rank tensor . For a single term, the change looks
merely like a complication, but when several terms are being added,
the rearrangement allows expressions to be factored that could not be
factored otherwise. Thus the expression (a-b)c+ (a-d)e can be factored
by writing

(a-b)c+(a-d)e=a-(bc)+a-(de)=a- (bc+de) . (37)
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Notice that the order of the terms is important. Thus a- (be) = (a - b)c,
but a - (eb) = (a - ¢)b. Also a - (bc) # (bc) - a. Only in special cases
such as a - (bb) = (bb) - @ can the ordering be altered. If the ordering
is strictly adhered to, the parentheses can be dropped. If the equations
obtained this way become difficult to interpret, remember that they can
always be multiplied out and returned to a vector equation.

Dyadics are special sorts of tensors, being tensors built up from vec-
tors. Another special tensor that is very useful is the unit tensor I, defined
by I-a = a -1 = a for any a. In subscript notation, I is the Kronecker
delta.

One application of these ideas that will be used in the next section is
to the breakup of a vector into components parallel and perpendicular to
a given direction. Let d be a direction (a unit vector) and let a be any
vector. The component of @ parallel to d is (a-d)d = (dd)-a. Obviously
the perpendicular component is @ — (@ - d)d. In dyadic notation, one can
say that the component of a parallel to d is obtained by taking the dot
product of @ and dd. Similarly, the perpendicular component is obtained
by taking the dot product of @ with 1—dd, since (I-dd)-a = a—(a-d)d.
Notice that the perpendicular property can be proved in general without
touching the vector a as follows. Since d -d =1,

d-(1-dd)-a=(d-1-d-dd)-a=(d—d)-a=0.

6 Linearity and tensors

Vector notation greatly simplifies the equations of fluid mechanics, and
this simplification brings with it greater understanding and ease of ma-
nipulation. Just explore the old books on fluid mechanics, with their
equations of motion written out in component form! The linearity of
the Stokes equations allows these notational simplifications to go a step
further, and mirror in notation more aspects of the flow. Consider the
velocity field w around a unit sphere that is moving with velocity U.
The field is usually written

3 1 z-U (3 3
U (= +— o2 2. 38
v (47‘ * 47“3) TE <47‘ 4r3> (38)
Here x is a point in the fluid and r = |x|. It is fairly easy to see that
if the magnitude of the velocity U is doubled, the magnitude of u at
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every point is doubled also. More can be seen, however, if the equation
is rewritten using the results of the previous section.

3 1 zx (3 3
The new feature of this equation is the fact that the brackets do not
contain U; the effects of the velocity of the sphere and the geometry of
the sphere have been separated in the presentation of the equation.

To put it another way, in one dimension a scalar quantity « depends
linearly on a scalar quantity § when o« = k3, and moreover the coefficient
of proportionality k is also scalar. In (39) there is a similar linear rela-
tionship u = K- U, only now the linking coefficient has become a tensor,
because u and U are not in the same direction (as a scalar coefficient
would imply).

A second example is provided by the drag on a non-spherical particle.
The force F is linearly related to the velocity of the particle U, but not
necessarily in the same direction, as is shown by writing ' = A-U. The
tensor A is called a resistance tensor and it contains only geometrical
factors and information about the particle shape, but nothing about the
velocity. This is some help, but A still contains 6 scalar components (not
9, because the reciprocal theorem shows it is symmetric), and could be
a difficult object to work with. If, however, the particle is axisymmetric,
A can be simplified further. Suppose the axis of symmetry is d (a unit
vector), then

A = Kidd + Ksl (40)

where K71 and K> are scalars based on the shape. The proof first extracts
the component of velocity parallel to d. From above, this is U - dd. By
symmetry, the force is parallel to this component, so F = K| |U -dd. The
velocity perpendicular to d is U - (I — dd) and in this case too, the force
is parallel to the velocity component. Therefore FF = K, U - (I — dd).
Add these together to get

F=KU-(dd)+K,U-(I1-dd)= [Kjdd+ K, (1-dd)]-U, (41)

and thus KQ = KL and Kl = K” — KJ_.

The general method can be illustrated with a more general example.
Consider an axisymmetric particle that is translating with velocity V'
and rotating with angular velocity £2. Since the boundary conditions are
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linear in these quantities (cf. equation (2) above), the force is a linear
combination of them

F=A-U+B-02. (42)

Since F', U and 2 are vectors, the coefficients are second-rank tensors,
as shown. Furthermore, since §2 is an axial vector, B will have to be a
pseudotensor. The simplification of A and B can be achieved in two ways.
Happel & Brenner (1963) turned to the fundamental definition of vectors
and tensors given above, and studied the behaviour of the components of
the tensors under different transformations. By choosing transformations
based on the symmetries of the geometries, they deduced the forms of
the tensors A and B. Here, a different approach is used, one that can be
understood by making an analogy with dimensional analysis.

Dimensional analysis is based on the idea that an equation must
be dimensionally consistent: each term must have the same dimensions.
Furthermore, only quantities relevant to the problem can appear. In a
similar way, vector equations must have consistent vectorial parts. The
first step, then, is to list the vectors upon which A and B can depend.
Since the velocity and rotation have already been taken care of in the
linear expression, only the axis of symmetry d is left. Therefore, A and
B must be built from d and the two tensors | and €. Since A links F' and
V', both polar vectors, it cannot contain €. Since it is second rank, it will
have to contain d in the form dd and contain I. The only combination
possible was given in equation (40). The scalar coefficients will contain
the remainder of the geometric information.

Now B joins a polar vector and an axial vector and therefore must
contain €. The only way to get a second-rank tensor is to contract the
third-rank € with the vector d. Thus the desired form is B;; = K3ze¢;jrdg,
and again the scalar coefficient contains the remainder of the geometric
information.

As a final example, consider an axisymmetric particle in a uniform
rate-of-strain field, that is, a shear field without vorticity. The flow is
given by u = E - &, where E is a symmetric and traceless second-rank
tensor. For the force F' to depend linearly on E, a third-rank tensor must
be introduced. In subscript notation,

Fiy = GijpEji, -

Now Gjx must be built from d; and d;;, since it joins polar vectors. The
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most general form for G;j is then
Gijk = K4didjdk + K5di5jk + K6dj5ik + K7dk5ij . (43)

Since Ejy, is traceless, the term K5d;d;;, cannot contribute to F; and may
therefore be dropped. Similarly, because Ej; is symmetric, the terms
Kegdjd;, and Kr7dgd;; will always contribute to Fj in the form Kg + K7,
so one term could be dropped. However, for reasons of asthetics, they
are more commonly set equal. Thus G is reduced to depending on
two independent scalar functions. As in the case of A, there is some
arbitrariness in assigning the two functions, cf. equations (40) and (41),
and different authors might vary in their choices.
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