Reasoning about the Elementary Functions of
Complex Analysis*

Robert M. Corless!, James H. Davenport?**, David J. Jeffrey!, Gurjeet Litt!,
and Stephen M. Watt!

! Ontario Research Centre for Computer Algebra, University of Western Ontario
WWW.Oorcca.on.ca
2 Dept. Mathematical Sciences, University of Bath, Bath BA2 7AY, England
jhd@maths.bath.ac.uk

Abstract. There are many problems with the simplification of elemen-
tary functions, particularly over the complex plane. Systems tend to
make major errors, or not to simplify enough. In this paper we outline
the “unwinding number” approach to such problems, and show how it
can be used to prevent errors and to systematise such simplification, even
though we have not yet reduced the simplification process to a complete
algorithm. The unsolved problems are probably more amenable to the
techniques of artificial intelligence and theorem proving than the original
problem of complex-variable analysis.

Keywords: Elementary functions; Branch cuts; Complex identities.
Topics: Al and Symbolic Mathematical Computing; Integration of Log-
ical Reasoning and Computer Algebra.

1 Introduction

The elementary functions are traditionally thought of as log, exp and the trigono-
metric and hyperbolic functions (and their inverses). This list should include
powering (to non-integral powers) and also the n-th root. These functions are
built in, to a greater or lesser extent, to many computer algebra systems (not
to mention other programming languages [8,12]), and are heavily used. How-
ever, reasoning with them is more difficult than is usually acknowledged, and all
algebra systems have one, sometimes both, of the following defects:

— they make mistakes, be it the traditional schoolchild one

1= Vi= DP = -1 0

or more subtle ones (see footnote 6);

* The authors are grateful to Mrs. A. Davenport for her help with the original of [3],
and to Dr. D. E. G. Hare of Waterloo Maple for many discussions.

** This work was performed while this author held the Ontario Research Chair in
Computer Algebra at the University of Western Ontario. Background work was
supported by the European Commission under Esprit project OpenMath (24.969).

— they fail to perform obvious simplifications, leaving the user with an impos-
sible mess when there “ought” to be a simpler answer. In fact, there are two
possibilities here: maybe there is a simpler equivalent that the system has
failed to find, but maybe there isn’t, and the simplification that the user
wants is not actually valid, or is only valid outside an exceptional set. In
general, the user is not informed what the simplification might have been,
nor what the exceptional set is.

Faced with these problems, the user of the algebra system is not convinced that
the result is correct, or that the algebra system in use understands the func-
tions with which it is reasoning. An ideal algebra system would never generate
incorrect results, and would simplify the results as much as practicable, even
though perfect simplification is impossible, and not even totally well-defined: is
14z + -+ 2190 “simpler” than (% —1)/(z —1)?

Throughout this paper, z and its decorations indicate a complex variable,
while z, y and ¢ indicate real variables. The symbol & denotes the imaginary
part, and R the real part, of a complex number. For the purposes of this paper,
the precise definitions of the inverse elementary functions in terms of log are
those of [4]: these are reproduced in Appendix A for ease of reference.

2 The Problem

The fundamental problem is that log is multi-valued: since exp(2wi) = 1, its
inverse is only valid up to adding any multiple of 27i. This ambiguity is tra-
ditionally resolved by making a branch cut: usually [1, p. 67] the branch cut
(—00,0], and the rule (4.1.2) that

-1 < Slogz < 7. (2)

This then completely specifies the behaviour of log: on the branch cut it is
continuous with the positive imaginary side of the cut, i.e. counter-clockwise
continuous in the sense of [10].

What are the consequences of this definition!? From the existence of branch
cuts, we get the problem of a lack of continuity:

lim log(z + iy) # logz : (3)
y—0~
for < 0 the limit is log x — 27i. Related to this is the fact that

logZ # log 2z 4)

! Which we do not contest: it seems that few people today would support the rule

one of us (JHD) was taught, viz. that 0 < Slogz < 2m. The placement of the

branch cut is “merely” a notational convention, but an important one. If we wanted

a function that behaves like log but with this cut, we could consider log (z) =
~—~

[0,27)
log(—1)—log(—1/z) instead. We note that, until 1925, astronomers placed the branch
cut between one day and the next at noon [7, vol. 15 p. 417].

on the branch cut: instead logZ = log 2z + 274 on the cut. Similarly,

log G) £ “log (5)

on the branch cut: instead log(1/z) = —log z + 2mi on the cut.

Although not normally explained this way, the problem with (1) is a conse-
quence of the multi-valued nature of log: if we define (as for the purposes of this
paper we do)

V7 = exp (% log z) , (6)

then —7/2 < §y/z < /2. On the real line, this leads to the traditional resolution
of (1), namely that Va2 = |z|.
Three families of solutions have been proposed to these problems.

— Prof. W. Kahan points out that the concept of a “signed zero”? [9] (for
clarity, we write the positive zero as 0% and the negative one as 07) can be
used to solve the above problems, if we say that, for z < 0, log(z + 0%4) =
log z + i whereas log(z + 0~ %) = log z — wi. Equation (3) then becomes an
equality for all z, interpreting the x on the right as + 07¢. Similarly, (4)
and (5) become equalities throughout. Attractive though this proposal is,
it does not answer the fundamental question as far as the designer of a
computer algebra system is concerned: what to do if the user types log(—1).

— The authors of [5] point out that most “equalities” do not hold for the
complex logarithm, e.g. log(22) # 2log 2 (try 2 = —1), and its generalisation

log(z122) # log z1 + log 2s. (7

The most fundamental of all non-equalities is Pas log exp z, whose most ob-
vious violation is at z = 27i. (A similar point was made in [2], where the
correction term is called the “adjustment”.) They therefore propose to for-
malise the violation of this equality by introducing the unwinding number

KC, defined?® by
z —loge? Sz—7
k&) = —0 :[o l €z ®

(note that the apparently equivalent definition | S2t™| differs precisely on
the branch cut for log as applied to exp z).

2 One could ask why zero should be special and have two values. The answer seems to

be that all the branch cuts we need to consider are on either the real or imaginary
axes, so the side to which the branch cut adheres depends on the sign of the imaginary
or real part, including the sign of zero. To handle other points similarly would require
the arithmetic of non-standard analysis.
Note that the sign convention here is the opposite to that of [5], which defined K(z)
as | %522 |: the authors of [5] recanted later to keep the number of —1s occurring in
formulae to a minimum. We could also change “unwinding” to “winding” when we
make that sign change; but “winding number” is in wide use for other contexts, and
it seems best to keep the existing terminology.

This definition has several attractive features: K(z) is integer-valued, and
familiar in the sense that “everyone knows” that the multivalued logarithm
can be written as the principal branch “plus 2wik for some integer k”; it
is single-valued; and it can be computed by a formula not involving loga-
rithms. It does have a numerical difficulty, namely that you must decide if
the imaginary part is an odd integer multiple of 7 or not, and this can be
hard (or impossible in some exact arithmetic contexts), but the difficulty is
inherent in the problem and cannot be repaired e.g. by putting the branch
cuts elsewhere.

Some correct identities for elementary functions using K are given in Table 1.

1. z =loge® + 2miK(z) .

2. K(alogz) =0Vz€Cifandonlyif —1<a<1.
3. log z1 + log z2 = log(z122) + 2miK(log z1 + log z2) .
4. alog z = log z° + 2miK(alog 2) .

5. Zab — (Za)be27rib}<l(a log z) .

Table 1. Some correct identities for logarithms and powers using K.

(7) can then be rescued as
log(z122) = log 21 + log 2o — 2miK(log 21 + log 232). 9)
Similarly (4) can be rescued as
logZ = log z — 27iK (log z) . (10)

Note that, as part of the algebra of K, K(logz) = K(—logz) # K(log1/z).
K(z) depends only on the imaginary part of z.

— Although not formally proposed in the same way in the computational com-
munity, one possible solution, often found in texts in complex analysis, is
to accept the multi-valued nature of these functions (we adopt the com-
mon convention of using capital letters, e.g. Ln, to denote the multi-valued
function), defining, for example

Arcsinz = {y|siny = z}.

This leads to V22 = {£z}, which has the advantage that it is valid through-
out C. Equation 7 is then rewritten as

In(z122) =Lnzy + Lnz,, (11)

where addition is addition of sets (A + B = {a+b:a € A,b € B}) and
equality is set equality?.

4 “The equation merely states that the sum of one of the (infinitely many) logarithms
of z1 and one of the (infinitely many) logarithms of z2 can be found among the

However, it seems to lead in practice to very large and confusing formulae.
More fundamentally, this approach does not say what will happen when the
multi-valued functions are replaced by the single-valued ones of numerical
programming languages.

A further problem that has not been stressed in the past is that this approach
suffers from the same aliasing problem that naive interval arithmetic does [6].
For example,

Ln(z?) =Lnz+Lnz #2Lnz,

since 2Ln(z) = {2log(z) + 4kwi : k € Z}, but Ln(z) + Ln(z) = {2log(z) +
2kmi : k € Z}: indeed if 2 = —1, log(z?) ¢ 2Ln(z). Hence this method is
unduly pessimistic: it may fail to prove some identities that are true.

3 The role of the Unwinding Number

We claim that the unwinding number provides a convenient formalism for rea-
soning about these problems. Inserting the unwinding number systematically al-
lows one to make “simplifying” transformations that are mathematically valid.
The unwinding number can be evaluated at any point, either symbolically or
via guaranteed arithmetic: since we know it is an integer, in practice little ac-
curacy is necessary. Conversely, removing unwinding numbers lets us genuinely
“simplify” a result. We describe insertion and removal as separate steps, but
in practice every unwinding number, once inserted by a “simplification” rule,
should be eliminated as soon as possible. We have thus defined a concrete goal
for mathematically valid simplification.?

The following section gives examples of reasoning with unwinding numbers.
Having motivated the use of unwinding numbers, the subsequent sections deal
with their insertion (to preserve correctness) and their elimination (to simplify
results).

4 Examples of Unwinding Numbers

This section gives certain examples of the use of unwinding numbers. We should
emphasise our view that an ideal computer algebra system should do this manip-
ulation for the user: certainly inserting the unwinding numbers where necessary,
and preferably also removing/simplifying them where it can.

4.1 Forms of arccos

The following example is taken from [4], showing that two alternative definitions
of arccos are in fact equal:

(infinitely many) logarithms of 2122, and conversely every logarithm of z122 can be
represented as a sum of this kind (with a suitable choice of [elements of] Ln z; and
Ln 22).” [3, pp- 2569-260] (our notation).

5 Just to remove the terms with unwinding numbers, as is done in some software
systems, could be called “over-simplification.”

Theorem 1.

%10g<\/1+z+i\/1_z)=—ilog(z+i\/1—z2)- (12)

2 2

First we prove the correct (and therefore containing unwinding numbers) version

of \/2122;\/5\/5.
Lemma 1.

(2122 :\/Z\/g(_l)lc(logzﬁ-logm)‘ (13)
Proof.

vaE = exp 3 (og(a1:2))

1
= exp (5 (log z1 + log 2o — 2wiK(log 21 + log zg))>

= /z1y/z2 exp (—miK(log z1 + log 22))
— \/Z\/E(_I)K(logzl—i-log z2)

Lemma 2. Whatever the value of z,

V1—2V14+2z=+v1-22

This is a classic example of a result that is “obvious”: the schoolchild just squares
both sides, but in fact that loses information, and the identity requires proof.
To show this, consider the apparently similar “result”S:

V=i—zV—i+ z=v/—1 - 22.

If we take z = i/2, the left-hand side becomes \/—3i/2 \/—i/2: the inputs to the
square roots” have arg = —n /2, so the square roots themselves have arg = —7 /4,
and the product has arg = —7/2, and therefore is —iv/3/2. The right-hand side
s /=3/4=1iV3)2.

Proof. It is sufficient to show that the unwinding number term in lemma, 1 is
zero. Whatever the value of z, 1 + z and 1 — z have imaginary parts of opposite
signs. Without loss of generality, assume Sz > 0. Then 0 < arg(l +2) < 7
and —7 < arg(l — z) < 0. Therefore their sum, which is the imaginary part of
log(1+ z) +1og(1 — 2), is in (—m,7]. Hence the unwinding number is indeed zero.
Proof of Theorem 1. Now

2
/1 /1— /7
< ;z+i TZ> =z4+iVl—2z2V1l+z=2+iy1-22

% Maple V.5, in the absence of an explicit declaration that z is complex, will say that
the two are almost never equal, with the difference being —2i+/1 — 22, but in fact at
z = 21, the two are equal.

" One is tempted to say “arguments of the square root”, but this is easily confused
with the function arg; we use ‘inputs’ instead.

by the previous lemma. Also 2loga = log(a?) if K(2loga) = 0, so we need only
show this last stipulation, i.e. that

—E<ar \/1+z+i\/1—z <E
g S8 2 2 | =7

This is trivially true at z = 0. If it is false at any point, say zo, then a path from
29 to 0 must pass through a z where ‘arg (\/(1 +2)/24+i/(1— z)/Q)‘ =7/2,

ie. /(14 2)/2+1iy/(1—2)/2 =it for t € R, because, first, arg is continuous
for |z| < m/2, and indeed for |z| < 7, and, second, that the inputs to arg are
themselves discontinuous only on z > 1 and z < —1, and on these half-lines, the
arguments in question are 0 and 7/2, which are acceptable. Coming back to the
continuity along the path, we find that by squaring both sides, z + iv/1 — 22 =
—t2 i.e. (z4+12)? = —(1—22). Hence 22t2+t* = —1,s0 2 = —(1 + 1) /(2t?) < -1,
and in particular is real. On this half-line, as stated before, the argument in
question is +m/2, which is acceptable. Hence the argument never leaves the
desired range, and the theorem is proved.

4.2 arccos and arccosh

cos(z) = cosh(iz), so we can ask whether the corresponding relation for the
inverse functions, arccosh(z) = iarccos(z), holds. This is known in [4] as the
“couthness” of the arccos/arccosh definitions. The problem reduces, using equa-
tions (20) and (26), to

210g<\/z—;71+\/?> z; (%log (\/1;—z+i\/1;z>>7
l°g(\/z§1+\/z§1)élog<\/1;z+i\/17>.

Since loga = logb implies a = b (n.b. this is not true for exp, which is part of
the point of this paper), this reduces to

[z—172 [1—2% 1-
D) =3 3 =+v-1 5
z—1

By lemma 1, the right-hand side reduces to |/ 252 (—1)~*(les(=1)+1og(5)) Hence
the two are equal if, and only if, the unwinding number is even (and therefore
zero). This will happen if, and only if, arg (231) < 0,i.e. Sz < 0 or §z =0 and
z> 1.

i.e.

4.3 arcsin and arctan

The aim of this section is to prove the correct expression for arcsin in terms of
arctan. We note that we need to add unwinding number terms to deal with the
two cuts Rz < —1, Sz =0 and Rz > 1, Sz = 0.

Theorem 2.

arcsin z = arctan \/1%—% + 7K(—log(l + 2)) — 7K(—log(1 — 2)). (14)

We start from equations (19) and (21). Then

27 arctan

\/12——z2 —log (1 +z%z2) — log (1 ‘Z\/%—zz)
= log ([1+iﬁ]/[1—iﬁ]>

+27TZIC (log(l + /L\/T—ZQ) — log(l — Z\/T—ZQ))
= log[iz + V1 — 22]?

+27TZIC log(l + /L\/T—zz) — log(l — /L\/T—zz))

= 2j arcsin(z)

—omik (2 log(iz + v/1 — z2))

z z
—) —log(l —i——
) gl — i)
The tendency for K factors to proliferate is clear. To simplify we proceed as
follows. Consider first the term

K (2 log(iz + /1 — z2)) .

For |z| < 1, the real part of the input to the logarithm is positive and hence has
argument in (—m/2,7/2); therefore K = 0. For |z| > 1, we solve for the critical
case in which the input to K is —im and find only z = rexp(iw), with » > 1.
Therefore

+2mik (log(l +1

K(2log(iz + V1 — 22)) = K(—log(1 + 2)) .
Repeating the procedure with

(log 1+zz/m — log(l—zz/M)
shows that K # 0 only for z > 1. Therefore
(log 1+ zz/m —log(1 — zz/m) —log(1 —2))
and so finally we get

arctan

\/lz——zQ = arcsin(z) — 7K(—log(1 + 2)) + 7K (=log(1 — 2)) , (15)

and this cannot be simplified further.

5 The Unwinding Number: Insertion

We have seen that the systematic insertion of unwinding numbers while applying
many “simplification” rules is necessary for mathematical correctness.

Unwinding numbers are normally inserted by use of equation (9) and its
converse:

log (?) = log z1 —logze — 27K (log z1 — log 22) . (16)
2

Equation (10) may also be used, as may its close relative (also a special case
of (16))

log (%) = —logz — 27K (—logz). (17)

In practice, results such as lemma 1 would also be built in to a simplifier.
The definition of K gives us

log(e®) = z — 2miK(z), (18)

which is another mechanism for inserting unwinding numbers while “simplify-
ing”. The formulae for other inverse functions are given in appendix B.

Many other “identities” among inverse functions require unwinding numbers.
For example,

+y

—zy

x
arctan z 4 arctany = arctan (1) + 7K (2i(arctanz + arctany)) .

6 The Unwinding Number: Removal

It is clearly easier to insert unwinding numbers than to remove them. There are
various possibilities for the values of unwinding numbers.

— An unwinding number may be identically zero. This is the case in lemma 2
and theorem 1. The aim is then to prove this.

— An unwinding number may be zero everywhere except on certain branch
cuts in the complex plane. This is the case in equation (10), and its relative
log(1/z) = —log z — 2miK(—log 2z). A less trivial case of this can be seen in
equation (14). Derive has a different definition of arctan to eliminate this, so

that, for Derive, arcsin(z) = arctan 7= This definition can be related to

Derive
ours either via unwinding numbers or via arctan (z) = arctanz. It is often

Derive
possible to disguise this sort of unwinding number, which is often of the

form K(—log(...)) or K(logz), by resorting to such a “double conjugate”
expression, though as yet we have no algorithm for this. Equally, we have no
algorithm as yet for the sort of simplification we see in section 4.3.

— An unwinding number may divide the complex plane into two regions, one
where it is non-zero and one where it is zero. A typical case of this is given
in section 4.2. Here the proof methodology consists in examining the critical
case, i.e. when the input to K has imaginary part +7, and examining when
the functions contained in the input to K themselves have discontinuities.

— An unwinding number may correspond to the usual +nm: n € Z of many
trigonometric identities: examples of this are given in appendix B.

7 Conclusion

Unwinding number insertion permits the manipulation of logarithms, square
roots etc., as well as the cancellation of functions and their inverses, while re-
taining mathematical correctness. This can be done completely algorithmically,
and we claim this is one way, the only way we have seen, of guaranteeing math-
ematical correctness while “simplifying”.

Unwinding number removal, where it is possible, then simplifies these results
to the expected form. This is not a process that can currently be done algorith-
mically, but it is much better suited to current artificial intelligence techniques
than the general problems of complex analysis.

When the unwinding numbers cannot be eliminated, they can often be con-
verted into a case analysis that, while not ideal, is at least comprehensible while
being mathematically correct.

More generally, we have reduced the analytic difficulties of simplifying these
functions to more algebraic ones, in areas where we hope that artificial intelli-
gence and theorem proving stand a better chance of contributing to the problem.

References

1. Abramowitz,M. & Stegun,I., Handbook of Mathematical Functions with Formulas,
Graphs, and Mathematical Tables. US Government Printing Office, 1964. 10th
Printing December 1972.

2. Bradford,R.J., Algebraic Simplification of Multiple-Valued Functions. Proc.
DISCO ’92 (Springer Lecture Notes in Computer Science 721, ed. J.P. Fitch),
Springer, 1993, pp. 13-21.

3. Carathéodory,C., Theory of functions of a complex variable (trans. F. Steinhardt),
2nd. ed., Chelsea Publ., New York, 1958.

4. Corless,R.M., Davenport,J.H., Jeffrey,D.J. & Watt,S.M., “According to
Abramowitz and Stegun”. To appear in SIGSAM Bulletin. OpenMath Project
(Esprit 24969) deliverable 1.4.6.

5. Corless,R.M. & Jeffrey,D.J., The Unwinding Number. SIGSAM Bulletin 30 (1996)
2, pp. 28-35.

6. Davenport,J.H. & Fischer,H.-C., Manipulation of Expressions. Improving Floating-
Point Programming (ed. P.J.L. Wallis), Wiley, 1990, pp. 149-167.

7. Encyclopedia Britannica, 15th. edition. Encyclopedia Britannica Inc., Chicago etc.,
15th ed., 1995 printing.

8. IEEE Standard Pascal Computer Programming Language. IEEE Inc., 1983.

9. IEEE Standard 754 for Binary Floating-Point Arithmetic. IEEE Inc., 1985.

10. Kahan,W., Branch Cuts for Complex Elementary Functions. The State of Art in
Numerical Analysis (ed. A. Iserles & M.J.D. Powell), Clarendon Press, Oxford,
1987, pp. 165-211.

11. Litt,G., Unwinding numbers for the Logarithmic, Inverse Trigonometric and In-
verse Hyperbolic Functions. M.Sc. project, Department of Applied Mathematics,
University of Western Ontario, December 1999.

12. Steele,G.L.,Jr., Common LISP: The Language, 2nd. edition. Digital Press, 1990.

A Definition of the Elementary Inverse Functions

These definitions are taken from [4]. They agree with [1, ninth printing], but are
more precise on the branch cuts, and agree with Maple with the exception of
arccot, for the reasons explained in [4].

arcsinz = —ilog (1-—22+ zz) . (19)
™ . _ 2 1+z . [/1—=2
arccos(z) = 5 arcsin(z) = 7 log (\/ 5 + z\/ 5 > . (20)
1
arctan(z) = % (log(1 + iz) —log(1 —iz2)). (21)
arccotz = i log (z + z) = arctan (l> . (22)
24 z—1 z
arcsec(z) = arccos(1/z) = —ilog(1/z +iy/1 —1/22), (23)
with arcsec(0) = 7.
arcesc(z) = arcsin(1/2) = —ilog(i/z + /1 — 1/22), (24)
with arcesc(0) = 0.
arcsinh(z) = log <z +v1+ z2) . (25)
1 -1
arccosh(z) = 210g< z-;— +4/2 2 > . (26)
1
arctanh(z) = 3 (log(1 + 2) —log(1 — 2)). (27)
1
arccoth(z) = 2 (log(—1 — 2) — log(1 — 2)) - (28)

1—
arcsech(z) = 2log (V z) . (29)

1 1\?
arccsch(z) = log 2 +4/1+ (;) , (30)

B Formulae for inverse functions

These formulae are taken from [11]. They make use of the secondary function
csgn, which we define below in terms of X and was first defined by Dr. D. E. G. Hare
as the piecewise function on the right hand side®:

+1 R(z) >0 or R(z) = 0;

— (_1\K(2log(z)) _
csgn(z) = (—1) B = { —1 R(2) <0or R(z) = 0;

arcsin(sin(z)) = { L k- ey 21 OD
ooy = { TG a1

arctan(tan z) = z + 7 (K(—zi — log cos z) — K(zi — log cos z)) (33)
provided z # £ +nm: n € Z.

. . | z=27miK(2) csgn(coshz) =1
arcsinh(sinh(2)) = { im —z — 2miK(im — 2z)) csgn(coshz) = —1"° (34)
| z=27K(2) csgn(sinh z) cos(nm) =1
arccosh(cosh z) = { —z —2mwik(—z) csgn(sinh z) cos(nw) = —1 (35)

where n = K (log(cosh(z) — 1) + log(cosh(z) + 1)).
arctanh(tanh z) = z + i (K(z — log cosh z) — K(z —logcosh z)) (36)

provided z # $i +inm: n € Z.

8 This function simplifies V22 to zcsgn(z). Dr. J. Carette observed that if we put
w = exp(2mi/n), then the function defined by w*("1°8#) and sometimes abbreviated
by Cn(z), that generalizes csgn, is useful in simplifying (2")"/" (private communi-
cation).

