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Abstract

We give a uniform treatment of several series expansions for
the Lambert W function, leading to an infinite family of new
series. We also discuss standardization, complex branches, a
family of arbitrary-order iterative methods for computation
of W, and give a theorem showing how to correctly solve
another simple and frequently occurring nonlinear equation
in terms of W and the unwinding number.

1 Introduction

Investigations of the properties of the Lambert W func-
tion are good examples of nontrivial interactions between
computer algebra, mathematics, and applications. To begin
with, the standardization of the name W by computer alge-
bra (see section 1.2 below) has had several effects. First, this
standardization has exposed a great variety of applications;
second, it has uncovered a significant history, hitherto unno-
ticed because the lack of a standard name meant that most
researchers were unaware of previous work; and, third, it has
now stimulated current interest in this remarkable function.
Further, many of the recent investigations have been carried
out themselves using computer algebra, often forcing further
development in computer algebra. This process has not yet
reached its final state with regard to W.

Series expansions for W about various points play im-
portant roles in many studies and applications of W. Most
basically they give starting values for numerical computation
of W; further, they were one of the main factors in deciding
the branch cuts for W; and in combinatorial applications
series about the origin and about the branch point are im-
portant. Although several series for W have already been
published, it has not been realized that there are systematic
ways of developing them.

We here give a uniform treatment of several series expan-
sions for W (sections 2.3, 2.4, 4.4, 4.6, 4.8 and 4.11 in par-
ticular contain results not previously published). We believe
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these results to be of direct interest for computer algebra re-
searchers, partly because of their combinatorial applications
but also because of their intrinsic value. A further point of
interest to computer algebraists is that in order to repre-
sent these infinite series in Maple it is necessary to extend
its knowledge of several special families of numbers (specif-
ically Stirling cycle and subset numbers, associated Stirling
numbers, and second-order Eulerian numbers).

We also present some infinite products for W(z), some
sequences converging to W (z), the Laplace transform of
W (exp(1 + z)) and the Mellin transform of W (z).

1.1 Definitions

A review of the history, theory and applications of the Lam-
bert W function may be found in [5]. The many-valued
function W (z) is defined as the root of

W(2)e" ™ = 2. (1)
One may issue the Maple command
> plot( [ wxexp(w), w, w=-4..1] );

to see a graph of W (z) for real . For > 0 there is only one
real branch, but for —1/e < x < 0 there are two. Complex
branches are discussed briefly in section 1.3 of this paper.

In this paper we also discuss series for the Tree function
T(z) = —W (—z), which satisfies

T(z)e T® = 2. (2)

This form of the function often occurs in combinatorial ap-
plications.

1.2 A note on notation

The notation W (z) and the name ‘the Lambert W func-
tion’ have quickly become a standard, since the introduction
of W into Maple sometime in the 1980’s and the publica-
tion of [5] in its technical report form (January 1993). As
of Maple V Release 4 the name of the function in Maple is
LambertW. The reasons for naming the function after Lam-
bert are detailed in [5]. Briefly, they are, first, that Euler
clearly acknowledged Lambert in his paper “On a series of
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Figure 1: The ranges for the branches of the W function.
Closure information is not indicated on the figure. Branches
are closed on their top boundaries. This means in particu-
lar that only branch 0 and branch —1 take on real values.
The curves other than the semi-line (—oo, —1] are described
parametrically by —ncotn+1in, —oo < i < co. Incidentally,
they form a subset of the curves called ‘The Quadratrix of
Hippias’ which can be used both to square the circle and
trisect the angle.

Lambert’s and some of its significant properties” [9], where
Euler developed the Taylor series for —W (—z) and identi-
fied its radius of convergence, and, second, that naming yet
another function after Euler would not be useful.

The use of the letter W was more or less accidental
in Maple but turns out to have some significance in that
E. M. Wright was the first person to do significant work on
the complex branches of this function, and used it both in
dynamical and combinatorial applications.

In the interests of true standardization, we suggest that
any CAS implementing the function satisfying (1) use the
name LambertW (with arguments z or k,z) and the branch
cuts and closures of [5]. For documentation and for use in
papers we recommend the notations W(z) and Wy(z).

We recognize that some designers may wish instead (or in
addition) to implement the function satisfying (2), because
the minus signs in the series (6) below are a distraction
in combinatorial applications. Use of a different name and
notation is perhaps justified in this case; we suggest T'(2),
Tkx(z) (with the branches defined by Ty(z) = —Wi(—2)),
TreeT(z), and TreeT(k,z). Note that DEK has suggested
that Maple implement this function in addition to LambertW
but this has not happened yet.

1.3 Complex branches of W

A detailed discussion of the complex branches of W can
be found in [5]. The branches are denoted Wj(z) (the
exact Maple V Release 4 syntax is LambertW(k,z)) with
Wo(z) being the principal branch, satisfying Wy(0) = 0 and
Wo(z) > 0 for z > 0. The only other branch to have real
values is W_1(z) which takes on values in (—oo,—1] for
z € [—1/e,0). The ranges of the branches are indicated
in Figure 1.

We will usually deal with the principal branch in this
paper, except where otherwise noted, and will write W (z)
for Wo(z) when there is no possibility for confusion.

2 Taylor series

The Taylor series for W(z) about z = 0 has been known
since Euler’s paper [9]. The series can be derived very simply
using the Lagrange Inversion Formula (see e.g. [3]). How-
ever, it is of historical interest to note that Lambert’s deriva-
tion of his series pre-dates the Lagrange Inversion Formula.
We here use more modern tools, as expounded in the very
elegant paper [17]. But before we give the full derivation,
note that the first several terms may be computed very sim-
ply in a computer algebra system by the commands (here
written in Maple for convenience)

> series(w¥exp(w)-z, w);

2,1 5 1 4 1 5 6
z+w—+w +2w +6'u) +24w +O0w”).

> solve(", w);

2 33 84 1255 6
2oz t+gz 3z+24z+0(z)

To get the complete series, we note that if f(w) =
wo(w) = wexpw then ¢(w) = expw and

s sw __ i k
o(w)’ =e —Zk!w. (3)

k>0

This means that the suite of polynomials of binomial
type [17] associated with f(w) is just

o
Py(s) = e (4)
The formal series for f~1(2) is in general [17]
-1 _ Pn(—l — n) n
i =2) g (5)

n>0
so in our case, by using our known Py(s) we get
)n—l

W)= e (6)

n!
n>1

The ratio test establishes that this series converges if
|z] < 1/e.

‘We might instead try to derive the Taylor series directly,
since a formula for the n-th derivative of W for n > 1 is
known [5, p. 340]. The formula is

d"W(z) _ exp(—nW (2))pn(W(z)) s

dxm (]_ + W($))2n71 )
where the polynomials p,(w) satisfy the recurrence relation
Prt1(w) = —(nw +3n — 1pn(w) + (1 + w)pn(w) . (8)

However, finding p,(0) from this recurrence is more dif-
ficult than the previous derivation. The initial polyno-
mial is p1(w) = 1. The next few polynomials are, by
Maple, pa(w) = —2 — w, p3(w) = 9 + 8w + 2w?, pa(w) =
—64 — 36w? — 79w — 6w, and ps(w) = 974w + 625 +
622 w? + 192 w® + 24 w*. A simple consequence of the re-
currence is that if W(a) = w is rational, then the Taylor
series of W about z = a has rational coefficients, apart from
the factor a™ which occurs if a # 0. This uses the fact that
exp(nw) = a” /w".

It is clear that W (a) will be rational if and only if a =
r exp(r) for some rational . But W can take on other simple
values, and this will be the subject of an upcoming paper
by David Jeffrey and co-workers.




2.1 Some series for T'(z) = —W(—=2)
We have immediately that

T()=3 ©)

but Lagrange inversion (or the suite of polynomials treat-
ment) gives more:

T(2)® = Z M (10)
n>0

(cf. [14, exercise 2.3.4.4-29]). In particular, for integer k we
have

T(z)k:kznn_k(n_l)"'(n—k-i-l)zn. (11)

n!
n>1

This gives a connection with ‘Q series’ (see [14]): if

g(n) = Q(a15a2,a3,"';n)
n—1 n—1n—-2
= a1+ta2 + a3 +---, (12)
n n n
then
g(n)nn—lzn
(llT(z) + %a2T(z)2 + %0,3T(z)3 +---= Z T .
n>1
(13)
This follows on substitution of equation (11) and rearrang-
ing. Since Q(1,2,3,...;n) = n, an immediate consequence
is
1 n"z"
e —— . 14
1-T(z) Z n! (14)
n>0
Similarly, Q(2-12,3-2%,4-3%,...;n) = 2n® and hence
T(z) phtln
— = . 15
1-T(2))3 Z n! (15)

n>1

Note also that (1+z/n)" " = Q(1,z/1!,2/2!,...;n), which
yields the identity

n—1_n
) Z z(n+z)" "2 . (16)

n!
n>0
We have essentially seen this before (in equation (10)), since
exp(zT'(z)) = (T'(2)/#)". In its new form it makes sense for
complex x.
Let Q(n) = Q(1,1,1,...;n) be Ramanujan’s function

n—1 n—1n-—2

Qn)=1+ Sttt (17)
Then

1 " 1Q(n)z"

hirm = X a0
n>1
T(z) _ n"Q(n)z"

(1-T(2)2 nzzl n! (19)

T(z)+T(2)°> n"t1Q(n)2"
1-T(2)* — nZZI n! ) (20)

The number of mappings from {1,2,...,n} into itself
having exactly k component cycles is the coefficient of y* in
tn(y) where t,(y) is the tree polynomial of order n (see [16])
and is generated by

1 2"
A=TG)y Zt"(y)ﬁ . (21)
n>0
Comparison with (18) gives for n > 1
.ty Q(n)n™1!
3135 % =t,(0) = % : (22)

These series and others may be found in [16], where they
are used to analyze a recurrence related to trees.
Finally, note that using equation (13) with

g(n) = Q(1:2Q,3a2a---;n)
(L) e

where the hypergeometric function F' is written using the
notation of [10], allows us to write series expansions for any
rational function of T'(z), by first expanding in partial frac-
tions.

2.2 Taylor series for W (expz)

The equation

y+lny==z (24)
often occurs in applications. Its solution in terms of W is
(ignoring branches for the moment) y = W (exp z), which in
some ways is a nicer function than W (z). For one thing, its
derivatives are slightly simpler, and without much difficulty
one can establish by induction that for n > 1

IW(E) _ gu(W(e)
dzm (1+W(€z))2n_1 )

(25)

where the polynomials ¢,(w) are given by

w) = (") e

k=0

These polynomials have coefficients expressed in terms of
second-order Eulerian numbers [10]. See section 4.1 for re-
currence relations for these numbers. The ¢,(w) may be
computed from the recurrence relation [5]

gns1(w) = —(2n — Dwgn (w) + (w +w’)gn (w) . (27)

Discovering formulas (25-26) in the first place is another
matter, of course, and it is here that computation of the first
several derivatives can point the way.

> alias( w = LambertW( exp(z) ) );
> seq( normal(diff( w, z$n)), n=1..5);

w(—1+42w)
(14+w)s

w w
T+w 1+w)
w(l—8w+6w?)
(1+w)” ’
w(—14 22w — 58 w? + 24 w?®)

B 1+ w)° ]

[




As before, when w = W (expa) is rational the Taylor
series for W(exp z) about z = a has rational coefficients.
For example, this occurs when a = 1, giving

1 1

W(e")=1+%(z—1)+E(z—1)2—@(
1

= (z—1)* -1 -1)°%. (28
5 =D s (=)0 =1 (28)

This series has radius of convergence /4 + 72, which is
the distance to the nearest singularity at z = —1 + ¢w. This
gives the asymptotics of ¢, (1).

z—1)%—

2.3 Branches in equation (24)
Theorem: The unique solution of y +lny = z is

y=W_x(e) (29)

where K(z) is the unwinding number of z (see [6]), unless
z =t+im for —oo <t < —1, in which case there are exactly
two solutions, y = W_1(exp z) and y = Wo(exp z).

Proof. Taking exponentials of both sides of y +Iny = z
we see that if y is a solution, then y = Wi (exp 2) for some k.
To go in the other direction, we use the relation

Wi(2) + In Wg(2) = In 2z + 27wik (30)

unless £k = —1 and z € [-1/e,0), when W_;(z) +
InW_1(2) = Inz. For a proof of this relation see [12]. We
replace z in the above by exp z, and since

Ine* = z+ 2mik(z) (31)

(indeed this defines the unwinding number K(z), see [6]), we
have that

Wi(e®) + InWi(e®) = 2z + 2mi (K(2) + k) (32)

unless £ = —1 and expz € [—1/e,0), in which case we
replace k by 0 on the right hand side of (32). Thus we
have that Wi(expz) + In Wi (expz) = z if and only if
k = —K(z), unless k = —1, as claimed. It is easy to see
that both £ = —1 and k£ = 0 work if z = ¢ + ¢7 for some
t € (—o0, —1] as claimed, and because the unwinding num-
bers for z =t +4(2m + 1)« are all different from 0 if m # 0,
this half-line is the only set of exceptions.

Remark. It is very interesting that we may write the
simple formula (29) for a (nearly) single-valued function y(z)
in terms of a (very) multi-valued function Wy, using another
simple function of z to deftly switch branches as required.
This clean formulation, valid except on a single half-line in
the z-plane, confirms that the branch choices made in [5]
(which were done so some asymptotic series worked out
nicely) were convenient ones.

2.4 Laplace and Mellin transforms

The series (28) is quite remarkably connected with the
asymptotic expansion for ‘Airey’s convergence factor’ (which
was used in [20] to improve convergence of the asymptotic
series for the exponential integral. See [2] for details). This
is essentially because the Laplace transform of W (exp z) can
be evaluated in terms of the incomplete Gamma function as
follows:

L (W(eH'Z)) / e W(e'T?)dz
0

1
S+ e*s* ’T(1—s,s).  (33)

Getting Maple to evaluate this integral requires explicit use
of changevar and assumptions on s. The requisite substi-
tution is w = W(exp(l + z)) so dz = (1 + w)dw/w and
expz = wexp(w — 1).

The effect of the Laplace transform, as can be verified
with Watson’s lemma [1], is to convert an exponential gen-
erating function into an ordinary generating function (in
1/s; one can keep the same form of the power series by us-
ing the Borel transform fooo exp(—t) f(st) dt, but this is only
trivially different).

Since we can evaluate the Laplace transform of W (exp z)
it is no surprise that we can evaluate the Mellin transform
of W(z). The result is

MW (z)) / 27 W (z) d
0
— (_S) P(S) , (34)
s
for —1 < R(s) < 0. Again explicit use of changevar and as-

sumptions are necessary to get Maple to evaluate this trans-
form.

3 Series about the branch point

If we put p = \/2(ez+ 1) in WexpW = z, and expand in
powers of 1 + W and revert, we obtain

Wo(z) =Y pep' =—1+p—3p"+ Hp’+--- . (35)
£>0

This series is well-known and has many combinatorial ap-
plications (see for example [16]). It converges for |p| < 2/2.
The coefficients may be computed by the following recur-
rence relations, which were communicated to us by Don
Coppersmith.

k—1

pe = Er1 (%,Uzk—2 + iak—2) - %Oék - %Hllk—l
k—1

a = Zﬂjﬂk+l—j , Qg = 2, a1 = -1 , (36)
j=2

where po = —1 and p; = 1.

If 3(z) > 0 we may take p = —1/2(ez + 1) in this series
to get a good approximation to W_1(z). If instead $(z) < 0,
then the series (with the negative sign on p) gives a good
approximation to Wi(z). This ‘branch splitting’ is a result
of the branch choices for W, and is the price we pay for
convenient asymptotic expansions at 0 and oco.

3.1 Branch point series for W (exp z)

The paper [19] makes a delightful connection between Stir-
ling’s approximation for n! and W. That there is a connec-
tion was pointed out to RMC and DJJ some years ago by
Bruno Salvy, who said in an e-mail:

It is possible to use this to prove Stirling’s formula.
One first computes the local expansion of W at its
singularity by



> op({solve(series(subs(w=-1+u, z=-exp(-1)
+ t72% exp(-1) ,wxexp(w)-2z),u),u)}) ;

x/it—gt2+ \/_t—ﬁt+%\/§t5
—%t+0( ),

—x/it——t— x/_t—ﬁt“—%\/ﬁﬁ
éggi 5+ 0(t")

where ¢t = (1 + ez)'/2. Now, since the singularity
is isolated, it is possible to use Darboux’s theorem
which says that the asymptotic expansion of the
n-th Taylor coefficient of W at the origin is ob-
tained by taking the coefficients term by term in
the above equation. In other words (considering
only the first order term):

(_n)n _ (_e)n (37)

n! 2mn

which is Stirling’s formula. [...] I heard it a few
years ago from Philippe Flajolet.

The connection between series at the branch point for W
and Stirling’s formula for n! is made explicit in [19], who use
elementary arguments, and we paraphrase their results be-
low. Starting from n! = f z" exp(—z)dz, changing vari-
ables to y = x/n and splitting the range of integration into
[0,1] and [1, c0], they get

nl=n"Tle™" [/l(uel_“)" du + /oo(vel_")" dv] . (38)
0 1

They then make ad hoc substitutions; here we use our
knowledge of W and its branches to repeat their work.
Putting

u = Tp (e_l_z2/2) and (39)

v = T (e_l_z2/2) , (40)

we arrive at

nl=n"Tle ™ mz67"z2/2 1 dz . (41)
‘ . -1, 1-1|“

Note that z = 0 corresponds to the branch point of 7. We
use the T notation to keep minus signs to a minimum. We
now expand the expression in brackets about z = 0 (it is
more convenient to use the series for du and dv directly, as
was done in [19], than to rearrange the geometric series for
1/(1—T) in (41)), integrate term by term, and arrive at the
asymptotic expansion for n! in the form

2 k+1/2
: " ! 2 < )

k>0

D(k+1/2) (42)

where

T_l(e—l—z2/2) — Zanzn , (43)

n>0

and the series for Tp is the same but with alternating signs.
This gives at last that

B 1-3-5---(2k 4+ 1
n! =vV2mnn"e "z 3-5 n’“( b+ )a2k+1- (44)
k>0

The following Maple procedure implements the recur-
rence relation derived in [19] for the ag.

a := proc(n) option remember;
local k;
1/(n+1)/a()*(a(n-1) -
add( k*a(k)*a(n+1-k), k=2..n-1))

end:
a(0) := 1;
a(1l) :=1;

The choice a(1l) = 1 gives the series for v, whilst a(1) = —1
gives the series for . In more mathematical notation, their
recurrence relation is

ap = 1 (45)
a1 = =+1 (46)

an, = m%( Zkaka,H_l k) (47)

The first few terms are v = T71(671722/2) =

1 Lo 1 4

n 1 L 1 6 139 o7
4320 17010 5443200

Ll e 5L g

204120 2351462400

. 281 10 163879 sl
1515591000 2172751257600

+0("). (48)

Since the nearest other singularity is at z = oo, this series
converges for all finite z.
3.2 Other branch point series

The relation between W_; and Wy near the branch point
was studied by Karamata in [13], who studied the coeffi-

cients in the power series
= Z cno”, (49)

n>1

s T

1 being the solution to
(1+pe ™ =(1-0)e". (50)
In terms of T', the solutions are
To ((1 — 0')67(170))

1+p= (51)
T 4 ((1 — 0')67(170-))

where if ¢ > 0 then Tp simplifies to 1 — o and gives p = —0o
but T_1 does not simplify, whilst if ¢ < 0 then T_; simplifies
to 1 — o but Ty does not. Karamata has developed a series



for the root that does not simplify. Using the differential
equation

du ( 1 )
1-— ) , 52
P o) te) (52)
it is easy to derive the recurrence relation
1 n—1
Cn = lQ + chj(l - J'an+1)] ; (53)
e

which is valid for n > 2 if the sum is taken to be 0 if empty.
An interesting parametric description of the real
branches of W is contained in [18]. If we put

p=75Wo(z) - W-1(2)) , (54)
then [18] gives
z = —pe PP cosechp (55)
Wo(z) = —pePcosechp (56)
W_1(z) = —pe Pcosechp (57)

and expands these in series containing Bernoulli numbers.
The connection with Karamata’s work is that

p=(0c+p)/2, (58)

though it is not clear at this writing if this gives us any new
information.

4 Series about Infinity

We collect and present the previously known series for
W (z) about infinity, which go back to de Bruijn [8] and
to Comtet [4]. We then show that these known series are
members of an infinite family of series (some of these were
exhibited in [5, 11]), and show that they are valid as z — 0
as well as for z = oco. Finally we exhibit some new se-
ries, including an expansion for W (pexp(it)) in terms of
W(p) and it which separates the real and imaginary parts
of W(pexp(it)).

4.1 Stirling and Eulerian numbers

To fix notation, we summarize with generating functions.
Stirling cycle numbers [SL] are generated (for example)
by [10]

wemmye 25w

n>0

The numbers (—1)"+™ [Z] are also called Stirling numbers
of the first kind. See [15] for a discussion of the advantages
of the notation used here.

The Stirling subset numbers {::L }, which are also called

Stirling numbers of the second kind, are generated (for ex-
ample) by
nY 2"
epr=m > {12
(e ) m \m ] (60)

Recurrence relations (and much more) for these numbers
may be found in [10].

We also make use of r-associated Stirling subset numbers
(we use only the case r = 2), which are generated by

O RIS S

Finally, we need the second-order Eulerian numbers. As
before we follow [10]. The numbers are defined as follows.

<<Z>> - {é osharmise (62
)
()

r—1

<e2—2

k=0

1 (63)

o)
(=

4.2 The fundamental relation

If we start with W (z)exp(W(z)) = z, then by putting
W(z) = Inz —Inlnz + u (which defines u for any z # 0,
but which makes particularly good sense if z is large) we get

Z u
(lnz—lnlnz+u)me =z (65)

and since z # 0 we may divide both sides by z, and put
oc=1/Inzand 71 =Inlnz/Inz to get

l-74+ou=e". (66)

This is what we call the fundamental relation, and we will
see some of its consequences in what follows. Note that this
same equation, mutatis mutandis, arises if we replace W (2)
by Ing z — Inlng z + u™®), where In(z) = In(2) + 2mik is the
notation introduced in [12] for the k-th logarithm branch.

4.3 de Bruijn and Comtet’s expansion

de Bruijn solved the fundamental equation (66) in series to
show that the asymptotic expansion of W (x) for large z is
in fact convergent [8]. Comtet later identified the coeffi-
cients explicitly as Stirling numbers [4]. The result is (ex-
plicitly adding branch information which Comtet did not
use, and specifically excluding the case where £ = —1 and
z € [-1/e,0) where another expansion holds)

Wi(2) = Ing(z) — Inlng(2)
155 SN

£>20 m>1

where ¢im = 25 (—1)° [ﬁ_’ﬂ is expressed in terms of Stir-
ling cycle numbers. This (absolutely convergent for large
enough z) doubly infinite series can then be rearranged to

get
Wi (2) =

1) < m Inlng 2)™
+§(l(nk,g)” 2(_1) [n—:z—f—l]( nf!)

Ing z — Inlng 2z (68)




These series were further developed and rearranged
in [11] using the new variable { =1/(1 + &) to get

Wie(2) =Ing z — Inlng 2 (69)
m m—1 n 1
T ptm—1,p+m J P T M —
+ D DT { » } !
m>1 p=0 >2

and a further series which we will discuss below.

4.4 A new series

The fundamental equation (66) may be solved for u, for any
o and 7, not just the values used here, in terms of W. The
solution is 1 1
=W(=et oy T 70

w=W (et - 2 (70)

Ifo=1/Inz and 7 =Inlnz/Inz as we started with, then
this equation gives no new information—apparently. Indeed,

when simplified, equation (70) becomes
1
W(z) =W (Ee(l‘f)/") (71)

which really only rewrites z using the new variables.

After some thought, we find that if, instead of follow-
ing de Bruijn and using the variables o and 7, we use the
variables v = 1/0 and p = —7 /0, giving

W(z)=W (ln zel”e_lnlnz) =W (ve'e?) , (72)

then our formulas become simpler and more comprehensible.
We will also need the unwinding number for W, namely the
function U (v) given by

Wi (ve’) = v + 2mildy (v) . (73)

One can show that Uy(v) = K(v + Inv) + £+ O(1/v) is
asymptotically an integer. Moreover, if v is in the range of
Wp, then Up(v) = 0.

Finally, we must extend the formula for the n-th deriva-
tive of W (exp z) to the following:

d"W (ae®e’) b" gn (W (ae®))
— = =T - (74)
z oo (1 +W(ae®))
This gives us the series expansion
. qn(v +2miU(v))  p"
W(z) = Z (14 v+ 2mil(v))?n=1 nl -’ (75)

n>0

Remark. This series provides a foundation for an infi-
nite number of series for W (z). We first observe the remark-
able fact that if v = Inz and p = —Inln z, then this series
is asymptotic as z — oo (and also convergent for large z),
and also asymptotic as z — 0 for all branches except the
principal branch. That is, the same series works for small z
and for large! Further, if v = In(—z) and p = In(— In(—=z)),
then (75) also works for the exceptional case W_i(z) as
x — 0. Finally, we may fix z and consider the asymptotics
of Wi(z) as |k| gets large. Using relation (30) as a guide,
we put v = Ing 2z and p = —Inlng 2. We can show that the
unwinding numbers Uy (v) are zero for large enough v, and
that the terms in this series form an asymptotic sequence as
z — oo (essentially since the denominator is degree 2n — 1

in v while the numerator is degree n — 1, and because the
p"™ terms grow more slowly). Thus this series again gives
the correct asymptotics. These observations were used in
section 4.3 to extend Comtet’s series to arbitrary branches
of W.

The following Maple session shows the first few terms of
this new series (75).

> basic := 1 - tau + sigma*u - exp(-u)

basic:=1—7+ou—e ™%

> subs(sigma=1/v,tau=-p/v,");
1+24 2
v

> series(",u);

p 1 1 5, 1 3 1 4 1 5

(24—~ Sl = _

y PGt Du—guidgu’ =t vt
O(ue)

> solve(",u):
> series(v + p + ",p):

> W(z) = map(normal,");

_ v 1 v s lo(-1+4+2v) ;3
WE =v+ 9 PH 3 G5 op? ~ 6 (Ator
+lv(61)2—81)+1) 4
24 (1+0)
1 v(240® — 5802 +22v—1) 4 6
120 1 +v)° P+ 00

This is a truncation of (75) and as predicted it contains
second-order Eulerian numbers.

4.5 Convergence

The series (75) converges, as a series in p, for all |p| less
than the distance to the singularity at vexp(v+p) = —1/e.
Because exp(27ik) = 1, we have to find the nearest such
singularity. The logarithmic singularity at z = 0 has been
moved to p = oo.

4.6 An infinite sequence of series

Experimentation with the series (75) suggested many rear-
rangements (some of which are given in section 4.9). But
our experiments also suggested that equations (72) and (75)
are invariant under the transformations

Unt+l = Un+Pn
—In(1 + pn/vn) . (76)

Pn+1

We take vg and po to be the v and p already defined. This
invariance was already observed in [11] (in terms of an itera-
tion for o and 7) but the full significance was not then com-
pletely understood. It is now clear that this iteration may
be run forward, for n — oo, and backward, for n —» —oo.
Running the iteration backward gives

Upn—1 = vpel™

Pn—1 = vn(1—e€P). (77)



In the case n — oo, one can show that v, — W(z) if
|W(z)| > 1, while v, = W(z) in |W(2)| <1if n = —oc.

In fact this iteration turns out to be completely equiva-
lent to the well-studied exponential iteration defining

2

2* (78)

and this connection is discussed in detail elsewhere [7]. For
our purposes we note that this gives us an infinite number
of series for W (z), since

z = vpe’mel™ (79)

as can easily be established by induction. This gives us a
family of bi-infinite sequences of series

W) = Y et 2l i

14 vn + 2mildy (v5)) 251 k!
£>0

for W(z). We may add a further infinity of series by us-
ing different branches for In, by putting v(m) = In,,(2) and

ém) = —Inln,,(2). It is this sequence of series that gives
the title of this paper.

If [W(z)| > 1 then p, /v, — 0 and v, = W(z) asn — oo,
and hence these series converge faster for larger n. If instead
[W(z)| <1 then p,/v, — 0 and v, = W(z) as n = —o0,
and hence these series converge faster for more negative n.

Remark. If vo =Ilnz and po = —Inln 2, then v_1 =1
and p_; = In(z/e). This makes (80) particularly simple,
being a series of polynomials in In(z/e). This gives

_ 1 z 1 Z.\3
W(z)—1+21n(e)+161 ( )? 192ln(e) (81)
which is really just (75) with z =1 exp(1) exp(In(z) — 1).
A more interesting series comes from v_y = z/e and

p—2 = 1—z/e. This new series contains only terms rational
in 2z, and is quite accurate for small and moderate z. The
first few terms are

PR RN E
W(z)_g_e2(1+z)+5 s(1+2)3

L=t 2f 4 )

-z TR + (82)

4.7 A completely different series

Using v, = ZZ:O Dn, We may let n — oo and obtain the
completely different series

W(z):lnz—lnlnz—ZIn(l—l-pk/Uk), (83)

k>0

which converges if |W(z)| > 1.

4.8 A continuous family of series and arbitrary-
order iterative formulae

For any v # 0 we can put

zv) + 2mik (84)

and we will have W(z) = W(vexp(v + p)) so we may
use (75). This gives us many interesting new series for W,
but it also gives us a family of iterative formulas for W,
which can be of arbitrary order, as follows. We choose k =0
because we want p — 0.

Choose vg to be an approximation to W (z). Then for any
vn, define p, by equation (84), and compute an improved
estimate v,+1 by

qnN (U‘n) Iﬁ (85)

v
'Un+1='Un+—npn+---+WN' -
n !

14+ v,

If N =1, then the iteration is quadratically convergent (like
Newton’s Method). If N = 2, the iteration is cubically
convergent. In general if v, exp(vs,) = 2(1 + €) then p =
In(1/(1 + €)) = O(e) and so the error in v,41 is O(eV 1),
provided we are not too near the branch point z = —1/e.

We do not pursue here the issues of appropriate initial
guesses vo and optimal efficiency by choice of N and the
number of digits used.

4.9 Rearrangements

Some rearrangements include the series from [11] below,
which use L =In(l1 —7) and n =0o/(1 — 7).

Wi(z) =Ing z —Inlng z — L,

e e[ s e

n>1
and
Wi (z )zlnkz—lnlnkz—L
m m p+m_1 (_1)p+m—1
—L” —_—
+ Z>1 Z { }>2 a4y

(87)

The series converge for large enough real z, though the
detailed regions of convergence are not yet settled. Curi-
ously enough (87) is exact at z = e and at z = oo, and
moreover if we truncate it to N terms it agrees with the N
term Taylor series expansion at z = e as well, making one
think of ‘Hermite’ interpolation at e and at co. Convergence
is rapid.

4.10 Some Other Asymptotic Series
The following are special cases of Theorem 2 in [21].

nW(z) =nlnz+y B "hin 1: ?) (88)
n>0

where the polynomials B, are computable by By = 0,
B, .:(xz) = nB,(x) — B;,(z) and B,(0) = 0.
Secondly, for any b and c,

ebW(z)W(z)c — Pty Z Cr(Inln 2) (89)

In"™ z
n>0

where the polynomials C, are computable by Co = 1,
Crii(z) = (b—c+ n)Ch(z) — Cy(x) and C,(0) = 0 for
n > 0.



More generally, for any b and ¢ and any power series

G(z) = Zami (90)

i>0

with ao # 0, the following expansion holds:

ebW(Z)W(z)CG <—W1(z)) =2t zz 714"1(11121: ?) (91)
n>0

where the polynomials A, are computable by Ay = ao,
ni1(x) = (b—c+n)A,(z) — AL (z) and A,(0) = an.

4.11 Series for W (pexp(it))

If y = W(pexp(it)) for p > 0 and —7 < ¢t < 7, then define
v by
W(pe't) =W(p)+it+v. (92)

Then Wexp W = pexp(it) implies
(W (p) +it + U)ew(p)+it+” = peit (93)

or, using W (p) exp(W (p)) = p,

it 1 _
I+ ——+——v=¢" (94)
W)  W(p)
But this is just (70) with o = 1/W (p) and 7 = —it/W (p),
and thus all of our fundamental series solutions to (70) ap-
ply! The nicest one is (75), which splits into separate series
for the real and imaginary parts of W (pexp(it)). We have

o) @)
Ve = L wp o w

and clearly all the odd terms are purely imaginary and the
even terms are real.

5 Infinite Products

From the relation W (z) = zexp(—W|(z)) it is easy to see
that any series for W(z) may be trivially transformed into
an infinite product. For example, from the series (6) we have

W(z)==z2 H exp(%zn) (96)

n>1

but this of course gives us no essentially new information.
However, the series (83) gives us

W(2) =1n(2) [] (1 +pa/va) (97)

n=0

in terms of the iterates of (76), and this is a simpler and
more natural representation if nothing else.

6 A Final Pair of Expansions

The iterations (76-77) may be used to show that W (z) can
be written as

W) =—"> (98)

or

(99)

according as |W(z)] < 1 or |W(z)] > 1. These curi-
ous formulae are just the iterated exponential in disguise,
and indeed are naturally discovered from rewriting W(z) =
z/ expW(z) and W (z) = In(z/W (z)) as iterations.
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