
RESEARCH ARTICLE

Fraction-free matrix factors: new forms for LU and QR factors

Wenqin ZHOU (*), David J. JEFFREY

Applied Mathematics Department, University of Western Ontario, London, Ontario, Canada

E Higher Education Press and Springer-Verlag 2008

Abstract Gaussian elimination and LU factoring have

been greatly studied from the algorithmic point of view,

but much less from the point view of the best output

format. In this paper, we give new output formats for

fraction free LU factoring and for QR factoring. The

formats and the algorithms used to obtain them are

valid for any matrix system in which the entries are

taken from an integral domain, not just for integer

matrix systems. After discussing the new output format

of LU factoring, the complexity analysis for the fraction

free algorithm and fraction free output is given. Our new

output format contains smaller entries than previously

suggested forms, and it avoids the gcd computations

required by some other partially fraction free computa-

tions. As applications of our fraction free algorithm and

format, we demonstrate how to construct a fraction free

QR factorization and how to solve linear systems within

a given domain.

Keywords fraction free LU factoring, fraction free

Gaussian elimination, fraction free QR factoring, com-

plexity analysis

1 Introduction

Various applications including robot control and threat

analysis have resulted in developing efficient algorithms

for the solution of systems of polynomial and differ-

ential equations. This involves significant linear algebra

sub-problems, which are not standard numerical linear

algebra problems. The ‘‘arithmetic’’ that is needed is

usually algebraic in nature and must be handled exactly

[1]. In the standard numerical linear algebra approach,

the cost of each operation during the standard Gaussian

elimination is regarded as being the same, and the cost

of numerical Gaussian elimination is obtained by count-

ing the number of operations. For a n6 n matrix with

floating point numbers as entries, the cost of standard

Gaussian elimination is O(n3).

However, in exact linear algebra problems, the cost of

each operation during the standard Gaussian elimination

may vary because of the growth of the entries [2]. For

instance, in a polynomial ring over the integers, the pro-

blem of range growth manifests itself both in increased

polynomial degrees and in the size of the coefficients. It

is easy to modify the standard Gaussian elimination to

avoid all division operations, but this leads to a very rapid

growth [3–6].

One way to reduce this intermediate expression swell

problem is the use of fraction free algorithms. Perhaps

the first description of such an algorithm was due to

Bareiss [7]. Afterwards, efficient methods for alleviating

the expression swell problems from Gaussian elimination

are given in Refs. [3,8–13].

Let us shift from Gaussian elimination to LU factor-

ing. Turing’s description of Gaussian elimination as a

matrix factoring is well established in linear algebra

[14]. The factoring takes different forms under the

names Cholesky, Doolittle-LU, Crout-LU or Turing

factoring. Only relatively recently has there been an

attempt to combine LU factoring with fraction free

Gaussian elimination [1,15]. One approach was given

by Corless and Jeffrey in Ref. [15], see Theorem 2. In

this paper, we use the standard fraction free Gaussian

elimination algorithm given by Bareiss [7] and give a

new fraction free LU factoring and a new fraction free

QR factoring.

A procedure called fraction free LU decomposition

already exists in MAPLE. Here is an example of its use.

Example 1 Let A be a 36 3 matrix with polynomials as

entries,

A : ~

x 1 3

3 4 7

8 1 9

2
64

3
75:

If we use MAPLE to compute the fraction free LU factor-

ing, we have

Frontiers of Computer Science in China FCS-0190-WenqinZHOU.3d 4/2/08 21:10:09
The Charlesworth Group, Wakefield +44(0)1924 369598 - Rev 8.07p/W Unicode (Mar 3 2005)

Received September 4, 2007; accepted December 10, 2007

E-mail: wzhou25@uwo.ca

Front. Comput. Sci. China
DOI 10.1007/s11704-008-0005-z

.LUDecomposition(A, method5FractionFree);

1

1

1

2
664

3
775:A~

1

3=x 1=x

8=x
x{8

x(4x{3)

1

4x{3

2
66664

3
77775

:

x 1 3

4x{3 7x{9

29x{58

2
664

3
775:

ð1Þ

The upper triangular matrix has polynomial entries.

However, there are still fractions in the lower triangular

matrix. In this paper, we call this factoring a partially

fraction free LU factoring. We recall the corresponding
algorithm below.

In addition, there are symbolicmethods based onmodular

methods for solving systemswith integer or polynomial coef-

ficients exactly, such as p–adic lifting [16,17], computation

modulo many different primes and using Chinese remainder

theorem, or the recent high order lifting techniques [18,19],

etc. However, the fraction free algorithms we introduce in

this paper enable our computations over arbitrary integral
domains.Moreover, at the complexity level, the new fraction

free LU factoring algorithm can save a logarithmic factor

over existing fraction free LU factoring algorithms.

Section 2 presents a format for LU factoring that is

completely fraction free. In Section 3, we give a comple-

tely fraction free LU factoring algorithm and its time

complexity, compared with the time complexity of a par-
tially fraction free LU factoring. We show that partially

fraction free LU factoring costs more than the completely

fraction free LU factoring except for some special cases.

Benchmarks follow in Section 4 and illustrate the com-

plexity results from Section 3. The last part of the paper,

Section 5, introduces the application of the completely

fraction free LU factoring to obtain a similar structure

for a fraction free QR factoring. In addition, it introduces
the fraction free forward and backward substitutions to

keep the whole computation in one domain for solving a

linear system. Section 6 gives our conclusions.

2 Fraction free LU factoring

In 1968, Bareiss [7] pointed out that his integer-preserving

Gaussian elimination (or fraction free Gaussian elimina-

tion) could reduce themagnitudes of the entries in the trans-

formed matrices and increase the computational efficiency

considerably in comparison with the corresponding stand-

ard Gaussian elimination. We also know that the conven-

tional LU decomposition is used for solving several linear

systems with the same coefficient matrix without the need to
recompute the full Gaussian elimination. Here we combine

these two ideas and give a new fraction free LU factoring.

In 1997, Nakos, Turner and Williams [1] gave an

incompletely fraction free LU factorization. In the same

year, Corless and Jeffrey [15] gave the following result on

fraction free LU factoring.

Theorem 1 [Corless-Jeffrey] Any rectangular matrix

A [Zn|m may be written

F1PA~LF2U , ð2Þ

where F15 diag(1, p1, p1p2, …, p1p2…pn2 1), P is a per-

mutation matrix, L [Zn|n is a unit lower triangular,

F25 diag(1,1,p1,p1p2,…, p1p2…pn2 2), and U [Zn|m are

upper triangular matrices. The pivots pi that arise are inZ.

This factoring is modeled on other fraction free defini-

tions, such as pseudo-division, and the idea is to inflate the

given object or matrix so that subsequent divisions are

guaranteed to be exact. However, although this model is

satisfactory for pseudo-division, the above matrix factor-

ing has two unsatisfactory features: firstly, two inflating

matrices are required; and secondly, the matrices are

clumsy, containing entries that increase rapidly in size. If

the model of pseudo-division is abandoned, a tidier factor-

ing is possible. This is the first contribution of this paper.

Theorem 2 Let I be an integral domain and

A5 [ai,j]i(n,j(m be a matrix in In|m with n(m and such

that the submatrix [ai,j]i,j(n has full rank. Then, A may

be written

PA~LD{1U ,

where

L~

p1

L2, 1 p2

..

. ..
. P

Ln{1, 1 Ln{1, 2 � � � pn{1

Ln, 1 Ln, 2 � � � Ln, n{1 1

2
6666666664

3
7777777775
,

D~

p1

p1p2

P
pn{2pn{1

pn{1

2
666666664

3
777777775
,

U~

p1 U1, 2 � � � U1, n{1 U1, n � � � U1,m

p2 � � � U2, n{1 U2, n � � � U2,m

P ..
. ..

. ..
. ..

.

pn{1 Un{1, n � � � Un{1,m

pn � � � Un,m

2
6666666664

3
7777777775
,

Frontiers of Computer Science in China FCS-0190-WenqinZHOU.3d 4/2/08 21:10:42
The Charlesworth Group, Wakefield +44(0)1924 369598 - Rev 8.07p/W Unicode (Mar 3 2005)

2 Wenqin ZHOU, et al., Fraction-free matrix factors: new forms for LU and QR factors

P is a permutation matrix, L and U are triangular as

shown, and the pivots pi that arise are in I. The pivot pn
is also the determinant of the matrix [ai,j]i,j(n.

Proof For a full-rank matrix, there always exists a

permutation matrix such that the diagonal pivots are

non-zero during Gaussian elimination. Let P be such a

permutation matrix for the full-rank matrix A (We will

give details in the algorithm for finding this permutation

matrix). Classical Gaussian elimination shows that PA

admits the following factorization.

PA~

a1, 1 a1, 2 a1, 3 � � � a1, n � � � a1,m

a2, 1 a2, 2 a2, 3 � � � a2, n � � � a2,m

a3, 1 a3, 2 a3, 3 � � � a3, n � � � a3,m

..

. ..
. ..

. � � � ..
. � � � ..

.

an, 1 an, 2 an, 3 � � � an, n � � � an,m

2
6666666664

3
7777777775

~

1
a2, 1

a1, 1
1

a3, 1

a1, 1

a
(1)
3, 2

a
(1)
2, 2

1

..

. ..
. ..

. P
an, 1

a1, 1

a
(1)
n, 2

a
(1)
2, 2

a
(2)
n, 3

a
(2)
3, 3

� � � 1

2
66666666666666664

3
77777777777777775

a1, 1 a1, 2 a1, 3 � � � a1, n � � � a1,m

a
(1)
2, 2 a

(1)
2, 3 � � � a

(1)
2, n � � � a

(1)
2,m

a
(2)
3, 3 � � � a

(2)
3, n � � � a

(2)
3,m

P ..
. � � � ..

.

a(n{1)
n, n � � � a(n{1)

n,m

2
66666666664

3
77777777775

~

1
a2, 1

a1, 1
1

a3, 1

a1, 1

a
(1)
3, 2

a
(1)
2, 2

1

..

. ..
. ..

. P
an, 1

a1, 1

a
(1)
n, 2

a
(1)
2, 2

a
(2)
n, 3

a
(2)
3, 3

� � � 1

2
66666666666666664

3
77777777777777775

a1, 1

a
(1)
2, 2

a
(2)
3, 3

P
a(n{1)
n, n

2
6666666664

3
7777777775

1
a1, 2

a1, 1

a1, 3

a1, 1
� � � a1, n

a1, 1
� � � a1,m

a1, 1

1
a
(1)
2, 3

a
(1)
2, 2

� � � a
(1)
2, n

a
(1)
2, 2

� � � a
(1)
2,m

a
(1)
2, 2

1 � � � a
(2)
3, n

a
(2)
3, 3

� � � a
(2)
3,m

a
(2)
3, 3

P ..
. � � � ..

.

1 � � � a(n{1)
n,m

a
(n{1)
n, n

2
666666666666666666664

3
777777777777777777775

~‘:d:u:

The coefficients a
(k)
i,j are related by the following relations:

Frontiers of Computer Science in China FCS-0190-WenqinZHOU.3d 4/2/08 21:10:42
The Charlesworth Group, Wakefield +44(0)1924 369598 - Rev 8.07p/W Unicode (Mar 3 2005)

Front. Comput. Sci. China, 2008, 2(1) 3

i~1, a
(0)
i,j ~ai,j;

2fifjfm, a
(i{1)
i,j ~

a
(i{2)
i{1, i{1 a

(i{2)
i{1, j

a
(i{2)
i, i{1

a
(i{2)
i{1, i{1

a
(i{2)
i, j

a
(i{2)
i{1, i{1

���������

���������
;

noiojo2, a
(j{1)
i,j ~

a
(j{2)
j{1, j{1 a

(j{2)
j{1, j

a
(j{2)
i, j{1

a
(j{2)
j{1, j{1

a
(j{2)
i, j

a
(j{2)
j{1, j{1

���������

���������
:

Let us define A
(k)
i,j by A

(k)
i,j ~

a1,1 a1,2 � � � a1,k a1,j
a2,1 a2,2 � � � a2,k a2,j
� � � � � � � � � � � � � � �
ak,1 ak,2 � � � ak,k ak,j
ai,1 ai,2 � � � ai,k ai,j

����������

����������
.

Hence, these are in I.

We have the relationsA
(k)
i,j ~

1

A
(k{2)
k{1,k{1

A
(k{1)
k,k A

(k{1)
k,j

A
(k{1)
i,k A

(k{1)
i,j

�����
�����,

which was proved in Ref. [7]. From the definitions, we

have

mojoio1, a
(i{1)
i,j ~

1

A
(i{2)
i{1,i{1

A
(i{1)
i,j ,

nojoio1, a
(i{1)
j,i ~

1

A
(i{2)
i{1,i{1

A
(i{1)
j,i :

So

‘i, k~
1

a
(k{1)
k, k

:a(k{1)
i, k

~
A

(k{2)
k{1, k{1

A
(k{1)
k, k

:
A

(k{1)
i, k

A
(k{2)
k{1, k{1

~
A

(k{1)
i, k

A
(k{1)
k, k

; ‘k, k~1;

uk, j~
1

a
(k{1)
k, k

:a(k{1)
k, j

~
A

(k{2)
k{1, k{1

A
(k{1)
k, k

:
A

(k{1)
k, j

A
(k{2)
k{1, k{1

~
A

(k{1)
k, j

A
(k{1)
k, k

; uk, k~1;

dk, k~a
(k{1)
k, k ~

A
(k{1)
k, k

A
(k{2)
k{1, k{1

:

Then, the fraction free LU form PA5LD21U can be

written as:

Li, k~A
(k{1)
i, k , noioko1,

Uk, j~A
(k{1)
k, j , mojoko1,

Dk, k~
A

(k{2)
k{1, k{1

A
(k{1)
k, k

:A(k{1)
k, k

:A(k{1)
k, k

~A
(k{2)
k{1, k{1A

(k{1)
k, k ,noko1,

which is also equivalent to PA5LD21U, where

L~

A
(0)
1, 1

A
(0)
2, 1 A

(1)
2, 2

..

. ..
. P

A
(0)
n{1, 1 A

(1)
n{1, 2 � � � A

(n{2)
n{1, n{1

A
(0)
n, 1 A

(1)
n, 2 � � � A

(n{2)
n, n{1 1

2
666666666664

3
777777777775
,

D~

A
(0)
1, 1

A
(0)
1, 1A

(1)
2, 2

P
A

(n{3)
n{2, n{2A

(n{2)
n{1, n{1

A
(n{2)
n{1, n{1

2
6666666664

3
7777777775
,

U~

A
(0)
1, 1 A

(0)
1, 2 � � � A

(0)
1, n{1 A

(0)
1, n � � � A

(0)
1,m

A
(1)
2, 2 � � � A

(1)
2, n{1 A

(1)
2, n � � � A

(1)
2,m

P ..
. ..

. ..
. ..

.

A
(n{2)
n{1, n{1 A

(n{2)
n{1, n � � � A

(n{2)
n{1,m

A(n{1)
n, n � � � A(n{1)

n,m

2
66666666664

3
77777777775
:

%

Example 2 Let us compute the fraction free LU factor-

ing of the same matrix A as in Example 1 (here, we take P

to be the identity matrix).

A : ~

x 1 3

3 4 7

8 1 9

2
64

3
75; P~

1

1

1

2
64

3
75:

In Example 1, we found that there were still fractions in

the fraction free LU factoring from the MAPLE computa-

tion. When using our new LU factoring, there is no frac-

tion appearing in the upper or lower triangular matrix.

Frontiers of Computer Science in China FCS-0190-WenqinZHOU.3d 4/2/08 21:10:43
The Charlesworth Group, Wakefield +44(0)1924 369598 - Rev 8.07p/W Unicode (Mar 3 2005)

4 Wenqin ZHOU, et al., Fraction-free matrix factors: new forms for LU and QR factors

P:A~

x

3 4x{3

8 x{8 1

2
64

3
75:

x

x(4x{3)

4x{3

2
64

3
75
{1

:
x 1 3

4x{3 7x{9

29x{58

2
64

3
75

This new output is better than the old one for the fol-

lowing two aspects: first, this new LU factoring form

keeps the computation in the same domain; second, the

division used in the new factoring is an exact division,

while in Example 1 fraction free LU factoring the division

needs gcd computations for the lower triangular matrix as
in Eq. 1. We give a more general comparison of these two

forms on their time complexity in Theorems 5 of Section 3.

3 Completely fraction free algorithm and
time complexity analysis

Here we give an algorithm for computing a completely

fraction free LU factoring (CFFLU). This is generic code;

an actual MAPLE implementation would make additional

optimizations with respect to different input domains.

Algorithm 1 Completely Fraction free LU factoring

(CFFLU)

Input: A n6m matrix A, with m> n.

Output: Four matrices P, L, D, U, where P is a n6 n

permutation matrix, L is a n6 n lower triangular matrix,

D is a n6 n diagonal matrix, U is a n6m upper triangu-

lar matrix and PA5LD21U.

U :5 Copy(A); (n,m) :5 Dimension(U): oldpivot :5 1;
L:5IdentityMatrix(n,n, ‘compact’5false);
DD:5ZeroVector(n, ‘compact’5false);
P :5 IdentityMatrix(n, n, ‘compact’5false);
for k from 1 to n21 do

if U[k,k] 5 0 then
kpivot :5 k+1;
Notfound :5 true;
while kpivot , (n+1) and Notfound do

if U[kpivot, k] ,. 0 then
Notfound :5 false;

else
kpivot :5 kpivot +1;

end if;
end do:
if kpivot 5 n+1 then

error ‘‘Matrix is rank deficient’’;
else

swap :5 U[k, k..n];
U[k,k..n] :5 U[kpivot, k..n];
U[kpivot, k..n] :5 swap;
swap :5 P[k, k..n];
P[k, k..n] :5 P[kpivot, k..n];
P[kpivot, k..n] :5 swap;

end if:
end if:
L[k,k]:5U[k,k];

DD[k] :5 oldpivot * U[k, k];
Ukk :5 U[k,k];
for i from k+1 to n do

L[i,k] :5 U[i,k];
Uik :5 U[i,k];
for j from k+1 to m do

U[i,j]:5normal((Ukk*U[i,j]2U[k,j]*Uik)/oldpivot);
end do;
U[i,k] :5 0;

end do;
oldpivot:5 U[k,k];

end do;
DD[n]:5 oldpivot; %
For comparison, we also recall a partially fraction free

LU factoring (PFFLU).

Algorithm 2 Partially Fraction free LU factoring

(PFFLU)
Input: A n6m matrix A.

Output: Three matrices P, L and U, where P is a n6 n

permutation matrix, L is a n6 n lower triangular matrix,

U is a n6m fraction free upper triangular matrix and

PA5LU.

U :5 Copy(A); (n,m) :5 Dimension(U): oldpivot :5 1;
L:5IdentityMatrix(n,n, ‘compact’5false);
P :5 IdentityMatrix(n, n, ‘compact’5false);
for k from 1 to n21 do

if U[k,k] 5 0 then
kpivot :5 k+1;
Notfound :5 true;
while kpivot , (n+1) and Notfound do

if U[kpivot, k] ,. 0 then
Notfound :5 false;

else
kpivot :5 kpivot +1;

end if;
end do:
if kpivot 5 n+1 then

error ‘‘Matrix is rank deficient’’;
else

swap :5 U[k, k..n];
U[k,k..n] :5 U[kpivot, k..n];
U[kpivot, k..n] :5 swap;
swap :5 P[k, k..n];
P[k, k..n] :5 P[kpivot, k..n];
P[kpivot, k..n] :5 swap;

end if:
end if:
L[k,k]:51/oldpivot;
Ukk :5 U[k,k];
for i from k+1 to n do

L[i,k] :5 normal(U[i,k]/(oldpivot * U[k, k]));
Uik :5 U[i,k];
for j from k+1 to m do

U[i,j]:5normal((Ukk*U[i,j]2U[k,j]*Uik)/oldpivot);
end do;

Frontiers of Computer Science in China FCS-0190-WenqinZHOU.3d 4/2/08 21:10:43
The Charlesworth Group, Wakefield +44(0)1924 369598 - Rev 8.07p/W Unicode (Mar 3 2005)

Front. Comput. Sci. China, 2008, 2(1) 5

U[i,k] :5 0;
end do;
oldpivot:5 U[k,k];

end do;
L[n,n]:5 1/oldpivot; %
Themain difference between Algorithm 1 andAlgorithm

2 is that Algorithm 2 uses non-exact divisions when com-

puting the L matrix. The reason we give these two algo-

rithms is that we want to show the advantage of a fraction

free output format.

Theorem 3 Let A be a n6m matrix of full rank with

entries in a domain I and n(m. On input A, Algorithm 1

outputs four matrices P,L,D,U with entries in I such that

PA5LD21U, P is a n6 n permutation matrix, L is a

n6 n lower triangular matrix, D is a n6 n diagonal

matrix, U is a n6m upper triangular matrix.

Furthermore, all divisions are exact.

Proof In Algorithm 1, each pass through the main loop

starts by finding a non-zero pivot, and reorders the row

accordingly. For the sake of proof, we can suppose that
the rows have been permuted from the start, so that no

permutation is necessary.

Then we prove by induction that at the end of step k,

for k5 1,…,n2 1, we have

N QD½1�~A
(0)
1,1 and D½i�~A

(i{2)
i{1,i{1A

(i{1)
i,i for i5 1,…,k,

N L½i, j�~A
(j{1)
i, j for j5 1,…,k and i5 1,…,n,

N U ½i, j�~A
(i{1)
i, j for i5 1,…,k and j5 i,…,m,

N U ½i, j�~A
(k)
i, j for i5 k + 1,…,n and j5 k + 1,…,m,

N all other entries are 0.

These equalities are easily checked for k5 1. Suppose

that this holds at step k, and let us prove it at step k + 1.
Then,

N for i5 k + 1,…,n, L[i,k + 1] gets the value U ½i, kz1�
~A

(k)
i, kz1,

N D[k + 1] gets the value A(k{1)
k, k A

(k)
kz1, kz1,

N for i,j5 k + 2,…,m, U[i,j] gets the value

A
(k{1)
k, k A

(k{1)
i, j {A

(k{1)
k, j A

(k{1)
i, k

A
(k{2)
k{1, k{1

~A
(k)
i, j ,

N U[i,k + 1] gets the value 0 for i5 k + 2,…,n.

This proves our statement by induction. In particular,

as claimed, all divisions are exact. %
In the following part of this section, we discuss the

advantages of the completely fraction free LU factoring

and give the time complexity analysis for the fraction free

algorithms and fraction free outputs in matrices with uni-
variate polynomial entries and with integer entries. First,

let us introduce two definitions about a length of an inte-

ger and a multiplication time (Ref. [20, 12.1, 18.3]).

Definition 1 For a nonzero integer a [Z, we define the
length l(a) of a as

l að Þ~tlog aj jz1s,

where t:s denotes rounding down to the nearest integer.

Definition 2 Let I be a ring (commutative, with 1). We

call a function M : Nw0?Rw0 a multiplication time for

I½x� if polynomials in I½x� of degree less than n can be

multiplied using at most M(n) operations in I, and if M

is such that M(n) +M(m)(M(n +m) holds for all n, m.

Similarly, a functionM as above is called a multiplication

time for Z if two integers of length n can be multiplied

using at most M(n) word operations, and if the super-

linearity condition given above holds.

All known multiplication algorithm lead to a mul-

tiplication time. Table 1 summarizes the multiplication

times for some general algorithms.

The cost of dividing two integers of length ‘ is O(M(‘))
word operations, and the cost of a gcd computation is

O(M(‘) log ‘) word operations. For two polynomials

a; b [K½x�, where K is an arbitrary field, of degrees less

than d, the cost of division is O(M(d)), and the cost of

gcd computation isO(M(d)log d). For two univariate poly-

nomials a, b [Z½x� of degree less than d and coefficient’s

length bounded by ‘, if a divides b and if the quotient has

coefficients of length bounded by ‘0, the cost of division is

O M d max (‘,‘0)z log dð Þð Þð Þ. If the division is non-exact, i.

e., we need to compute the gcd of a and b, the cost is [20].

Lemma 1 From Ref. [21], for a k6 k matrix A5 [ai,j],

with ai, j [Z x1, . . . ,xm½ � with degree and length bounded

by d and ‘ respectively, the degree and length of det(A)

are bounded by kd and k(‘z log kzd log (mz1))

respectively.

Based on the completely fraction free LU factoring

Algorithm 1, at each kth step of fraction free Gaussian

elimination, we have to compute

Uk,j~A
(k{1)
k,j ,

where

A
(k{1)
k,j ~

det

a1, 1 a1, 2 � � � a1, k{1 a1, j

a2, 1 a2, 2 � � � a2, k{1 a2, j

� � � � � � � � � � � � � � �
ak{1, 1 ak{1, 2 � � � ak{1, k{1 ak{1, j

ak, 1 ak, 2 � � � ak, k{1 ak, j

0
BBBBBBBB@

1
CCCCCCCCA

k|k

,
ð3Þ

Frontiers of Computer Science in China FCS-0190-WenqinZHOU.3d 4/2/08 21:10:44
The Charlesworth Group, Wakefield +44(0)1924 369598 - Rev 8.07p/W Unicode (Mar 3 2005)

Table 1 Various polynomial multiplication algorithms and their
running times

algorithm M(n)

classical O(n2)

Karatsuba(Karatsuba & Ofman 1962) O(n1.59)

FFT multiplication (provided that I supports the FFT) O(n log n)

Schönhage & Strassen (1971), Schönhage (1977)

Cantor & Kaltofen (1991); FFT based O(n log

n log log n)

6 Wenqin ZHOU, et al., Fraction-free matrix factors: new forms for LU and QR factors

and

Li,k~A
(k{1)
i,k , Dk,k~A

(k{2)
k{1,k{1A

(k{1)
k,k :

Lemma 2 If every entry ai,j of the matrix A5 [ai,j]n6 n is

a univariate polynomial over a field K with degree less

than d, we have deg A
(k)
i,j

� �
fkd.

If every entry ai,j of the matrix A5 [ai,j]n6 n is in Z and

has length bounded by ‘, we have l A
(k)
i,j

� �
fk(‘z log k).

If every entry of the matrix A5 [ai,j]n6 n is a univari-

ate polynomial over Z½x� with degree less than d and coef-

ficient’s length bounded by ‘, we have deg A
(k)
i,j

� �
fkd and

l A
(k)
i,j

� �
fk(‘z log kzd log 2).

Proof If ai,j [Z½x� has degree less than d, from Lemma

1, we have deg A
(k)
i,j

� �
fkd. If ai,j [Z has length bounded

by ‘, from Eq. 3 and Lemma 1 with m5 0, we have

l A
(k)
i,j

� �
fk(‘z log k). If ai,j [Z½x� has degree less than d

and coefficient’s length bounded by ‘, from Eq. 3 and

Lemma 1 with m5 1, we have deg A
(k)
i,j

� �
fkd and

l A
(k)
i,j

� �
fk(‘z log kzd log 2). %

In the following part of this section, we want to dem-

onstrate that the difference between fraction free LU fac-

toring and our completely fraction free LU factoring is

the divisions used in computing their lower triangular

matrices L. We discuss here only three cases. In case 1,

we will analyze the cost of two algorithms with A [K½x�,
where K is a field, i.e., we only consider the growth of

degree during the factoring. In case 2, we will analyze the

cost of two algorithms withA [Z, i.e. we only consider the
growth of length during the factoring. In case 3, we will

analyze the cost of both algorithms with A [Z½x�. For
more cases, such as A [Z x1,:::,xm½ �, the basic idea will

be the same as these three basic cases.

Theorem 4 For a matrix A5 [ai,j]n6 n with entries in

K½x�, if every ai,j has degree less than d, the time complex-

ity of completely fraction free LU factoring for A is

bounded by O(n3M(nd)) operations in K.

For a matrix A5 [ai,j]n6 n with entries in Z, if every ai,j
has length bounded by ‘, the time complexity of comple-

tely fraction free LU factoring for A is bounded by

O n3M n log nzn‘ð Þ� �
word operations.

For a matrix A5 [ai,j]n6 n with univariate polynomial

entries in Z½x�, if every ai,j has degree less than d and has

length bounded by ‘, the time complexity of completely

fraction free LU factoring for A is bounded by

O n3M n2d‘znd2
� �� �

word operations.

Proof Let case 1 be the case ai;j [K½x� with d5maxi,j
deg(ai,j) + 1, case 2 be the case ai;j [K with ‘~maxli,j ai,j

� �
and case 3 be the case ai,j [Z½x� with d5maxi,j deg(ai,j) + 1
and ‘~maxli,j ai,j

� �
. From Lemma 2, at each step k,

deg A
(k)
i,j

� �
fkd in case 1 and l A

(k)
i,j

� �
fk(‘z log k) in case

2, and l A
(k)
i,j

� �
fk(‘z log kzd log 2) and deg A

(k)
i,j

� �
fkd

in case 3.

When we do completely fraction free LU factoring, at

the kth step, we have (n2 k)2 entries to compute. For each

new entry from step k2 1 to step k, we need to do at most

two multiplication, one subtraction and one division. The

cost will be bounded by O(M(kd)) for case 1, by

O(M(k(‘z log k))) for case 2 and by O(M(kd(((2k)‘z
log (2k)zd log 2)z log (kd)))) for case 3.

Let c1, c2 and c3 be constants, such that the previous

estimates are bounded by

c1|M(kd),

c2|M(k(‘z log k)),

and

c3|M k2d‘zkd log kzkd2 log 2zkd log (kd)
� �

:

For case 1, the total cost for the completely fraction free

LU factoring will be bounded by

Xn{1

k~1

c1(n{k)2M(kd)~O n3M(nd)
� �

:

For case 2, the total cost for the completely fraction free

LU factoring will be bounded by

Xn{1

k~1

c2(n{k)2M(k(‘z log k))~O n3M(n log nzn‘)
� �

:

For case 3, the total cost for the completely fraction free

LU factoring will be bounded by

Xn{1

k~1

c3(n{k)2M 2k2d‘zkd log (2k)
�

zkd2 log 2zkd log (kd)
�
~O n3M n2d‘znd2

� �� �
:

%
The extra gcd computation in Algorithm 2 when com-

puting L[i, k]:5U[i, k]/(oldpivot*U[k, k]) makes the frac-

tion free LU factoring more expensive, as shown in the

following theorem.

Theorem 5 For a matrix A5 [ai,j]n6 n, if every ai;j [K½x�
has degree less than d, the time complexity of the partially

fraction free LU factoring for A is bounded by O((n2 log

(nd) + n3)M(nd)).

For a matrix A5 [ai,j]n6n, if every ai,j [Z has length

bounded by ‘, the time complexity of partially fraction free

LU factoring for A is bounded by O n2 log (n log nzn‘
� ��

zn3ÞM(n log nzn‘)).

For a matrix A5 [ai,j]n6 n, if every ai,j [Z½x� has degree
less than d and coefficient length bounded by ‘, the time

complexity of the partially fraction free LU factoring for

A is bounded by O n3M n2d‘znd2
� �

zn2dM
� �

, where

dM~M(nd) log (nd)(n(‘z log nzd))M(log (nd(‘zd)))

Frontiers of Computer Science in China FCS-0190-WenqinZHOU.3d 4/2/08 21:10:44
The Charlesworth Group, Wakefield +44(0)1924 369598 - Rev 8.07p/W Unicode (Mar 3 2005)

Front. Comput. Sci. China, 2008, 2(1) 7

log log (nd(‘zd))zndM(n(‘z log nzd) log (nd(‘zd)))

log (n(‘zd)).

Proof As above, case 1 is ai;j [K½x� with d5maxi,j deg

(ai,j) + 1, case 2 is ai,j [Z with ‘~maxli,j ai,j
� �

and case 3 is

ai,j [Z½x� with d5maxi,j deg(ai,j) + 1 and ‘~maxli,j ai,j
� �

.

From Lemma 2, at each step kth, deg A
(k)
i,j

� �
fkd in case 1,

l A
(k)
i,j

� �
fk(‘z log k) in case 2, and l A

(k)
i,j

� �
f

k(‘z log kzd log 2) and deg A
(k)
i,j

� �
fkd in case 3.

When we do fraction free LU factoring, at the kth step,

we need to do the same computation for U matrix as in

Algorithm 1. In addition, we have n2 k entries, which are

the entries of kth column of Lmatrix, containing gcd com-

putation for its division in order to get the common fac-

tors out of division.

For case 1, the total cost for the partially fraction free

LU factoring will be bounded by

Xn{1

k~1

c1(n{k)2M(kd)zc2(n{k)M(kd) log (kd)
� �

~O n2 log (nd)zn3
� �

M(nd)
� �

,

where c1 and c2 are constants.

For case 2, the total cost for the partially fraction free

LU factoring will be bounded by

Xn{1

k~1

c3(n{k)2M(k(‘z log k)
� �

zc4(n{k)M(k(‘z log k)) log (k(‘z log k)))

~O((n2 log (n log nzn‘)zn3)M(n log nzn‘)),

where c3 and c4 are constants.

For case 3, after a few simplification the total cost for

the partially fraction free LU factoring will be bounded

by

O n3M n2d‘znd2
� �

zn2dM
� �

,

where

dM~(n(‘z log nzd)) log (nd) log log (nd(‘zd))

M(nd)M(log (nd(‘zd)))znd log (n(‘zd))

M(n(‘z log nzd) log (nd(‘zd))):

%
Comparing Theorem 4 with Theorem 5, we see that

partially fraction free LU factoring costs a little more

than our completely fraction free LU. More precisely,

consider for instance the case of polynomial matrices,

for fixed degree d, both algorithms have complexity O

(n3M(n)). However, when n is fixed, the partially fraction

free LU factoring algorithm has complexity O(M(d)log

(d)), where ours features a better bound O(M(d)). The

behavior is the same for the other classes of matrices

and will be confirmed by our benchmarks.

4 Benchmarks

We compare Algorithm 1 and Algorithm 2 on matrices

with integer entries and univariate polynomial entries. We

do not give a benchmark for matrices with multivariate

polynomial entries because the running time is too long

for the matrix whose size is larger than 10. We also give

measure the time of theMAPLE command for fraction free

LU. Because the implementation details are not published

for theMaple command we use, we will only use it for our

references.

As we know, the main difference in Algorithm 1 and

Algorithm 2 is in their divisions. In our codes, we use the

divide command for exact division in univariate poly-

nomial case and the iquo command for integer case

instead of the normal command. All results are obtained

using the TTY version of MAPLE 10, running on an

2.8 Ghz Intel P4 with 1024 Megs of memory running

Linux, and with time limit set to 2000 seconds for each

fraction-free factoring operation, and garbage collection

‘‘frequency’’ (gcfreq) set to 26 107 bytes.

In the following tables, we label the time used by

Algorithm 1 as CFFLU, the time used by Algorithm 2

as PFFLU and the time used by the Maple com-

mand LUDecomposition(A, method5FractionFree) as

MapleLU.We also denote the size of a matrix as n and the

length of an integer entry of a matrix as ,.
Table 2 gives the times of three algorithms on different

sizes of matrices with integer entries of fixed length

(Fig. 1). It also gives the relations between the logarithm

Frontiers of Computer Science in China FCS-0190-WenqinZHOU.3d 4/2/08 21:10:45
The Charlesworth Group, Wakefield +44(0)1924 369598 - Rev 8.07p/W Unicode (Mar 3 2005)

Table 2 Timings for fraction free LU factoring of random integer
matrices generated by RandomMatrix(n,n, generator5210100

…10100)

n CFFLU PFFLU MapleLU

10 1.00E-02 1.40E-02 2.80E-02

20 0.133 0.188 0.263

30 0.735 0.959 1.375

40 2.617 4.127 4.831

50 6.94 8.622 13.182

60 15.672 19.574 31.342

70 32.003 35.938 61.974

80 56.598 65.553 117.111

90 97.881 110.931 208.665

100 155.757 171.989 335.407

110 237.916 264.304 531.193

120 351.737 396.445 803.898

130 512.428 562.352 1184.575

140 709.42 775.139 1684.698

150 975.429 1060.02 . 2000

160 1298.419 1410.204 . 2000

170 1714.003 1868.879 . 2000

8 Wenqin ZHOU, et al., Fraction-free matrix factors: new forms for LU and QR factors

of the time of completely fraction free LU factoring with

the logarithm of the size of matrix (Fig. 2). If we use the

Maple command Fit(a + b?t,x,y,t) to fit it, we find a slope

equal to 4.335. This tells us that the relation between the

time used by completely fraction free LU factoring

and the size of the matrix is t5O(n4.335). In the view

of Theorem 4, this suggest that M(n log n) behaves like

O(n1.335) for integer multiplication in our range. This sub-

quadratic behavior is consistent with the fact that MAPLE

uses the GMP library for long integers multiplication. We

also could use block operations instead of explicit loops in

our codes: this is an efficient method in MATLAB, but it

will be 10 times slower in MAPLE.

For fixed-size matrices with integer entries, we have the

following two tables. Table 3 gives the times of three algo-

rithms on matrices with different length of integer entries

(Fig. 3). It gives us the relations between the logarithm of

the time of completely fraction free LU factoring with the

logarithm of the length of integer entry (Fig. 4). If we use

the MAPLE command Fit(a+ b?t,x,y,t) to fit it, we find a

slope equal to 1.265. This tells us that the relation between

the time used by completely fraction free LU factoring and

the length of integer entry is t5O(,1.265). This suggests (by
Theorem 4) that M(,)5O(,1.265) in the considered range.

For matrices with univariate polynomial entries, we

have the following two tables. Table 4 gives Fig. 5. We

can see that completely fraction free LU factoring is a

little bit faster than the fraction free LU factoring given

in Algorithm 2. It has a similar speed as the Maple com-

mand. It also gives the logarithms of the times used by

completely fraction free LU factoring and the sizes of

matrices (Fig. 6). If we use the MAPLE command Fit

(a + b?t,x,y,t) to fit it, we find a slope equal to 5.187, i.e.,

we have O(n2.187) in our implementation.

Frontiers of Computer Science in China FCS-0190-WenqinZHOU.3d 4/2/08 21:10:45
The Charlesworth Group, Wakefield +44(0)1924 369598 - Rev 8.07p/W Unicode (Mar 3 2005)

Fig. 2 Logarithms of completely fraction free LU time and
integer matrix size, slope5 4.335

Fig. 1 Times for random integer matrices

Table 3 Timings for completely fraction free LU factoring of ran-
dom integer matrices with length ,, A :5 LinearAlgebra
[RandomMatrix](5,5, generator5210,...10,)

, CFFLU PFFLU MapleLU

400 4.00E-03 6.00E-03 9.00E-03

800 7.00E-03 1.30E-02 1.80E-02

1200 1.00E-02 2.30E-02 3.10E-02

1600 1.40E-02 3.30E-02 4.80E-02

2000 2.20E-02 5.20E-02 6.90E-02

2400 2.80E-02 6.90E-02 9.30E-02

2800 3.60E-02 9.10E-02 0.121

3200 4.40E-02 0.114 0.155

3600 4.90E-02 0.137 0.19

4000 6.30E-02 0.17 0.231

4400 7.10E-02 0.195 0.272

4800 7.90E-02 0.235 0.334

5200 7.50E-02 0.249 0.37

5600 9.40E-02 0.29 0.425

6000 9.90E-02 0.324 0.485
Fig. 3 Time of random integer matrices

Front. Comput. Sci. China, 2008, 2(1) 9

5 Application of completely fraction free LU
factoring

In this section, we give applications of our completely

fraction free LU factoring. Our first application is to solve

a symbolic linear system of equations in a domain. We

will introduce fraction-free forward and backward sub-
stitutions from Ref. [1]. Our second application is to get a

new completely fraction free QR factoring, using the rela-

tion between LU factoring and QR factoring given in

Ref. [22].

5.1 Fraction free forward and backward substitutions

In order to solve a linear system of equations in one

domain, we need not only fraction free LU factoring of

the coefficient matrix but also fraction free forward sub-

stitution (FFFS) and fraction free backward substitution

(FFBS) algorithms.

Let A be a n6 n matrix, and let P,L,D,U, be as in

Theorem 3 with m5 n.

Definition 3 Given a vector b in I, fraction free forward

substitution consists in finding a vector Y, such that

LD21Y5Pb holds.

Theorem 6 The vectorY fromDefinition 3 has entries in

I.

Proof From the proof of Theorem 2, if PA5LD21U,

for i5 1,…n, we have

Li,i~A
(i{1)
i,i ,

and

Di,i~A
(i{2)
i{1,i{1A

(i{1)
i,i :

For

LD{1Y~Pb,

i.e.,

Frontiers of Computer Science in China FCS-0190-WenqinZHOU.3d 4/2/08 21:10:53
The Charlesworth Group, Wakefield +44(0)1924 369598 - Rev 8.07p/W Unicode (Mar 3 2005)

Fig. 4 Logarithms of completely fraction free LU time and
integer length, slope5 1.265

Table 4 Timings for fraction free LU factoring of random mat-
rices with univariate entries, generated by RandomMatrix(n,n, gen-
erator5 (() -. randpoly([x], degree5 4)))

n CFFLU PFFLU MapleLU

5 8.00E-03 1.20E-02 2.50E-02

10 0.242 0.335 0.305

15 2.322 2.77 3.098

20 10.028 11.873 10.598

25 31.971 35.124 33.316

30 86.361 92.146 86.01

35 179.937 189.297 181.42

40 354.22 373.181 354.728

45 664.608 686.26 667.406

50 1178.374 1210.766 1179.499

Fig. 5 Time of random matrices with univariate entries

Fig. 6 Logarithms of completely fraction free LU time and
random univariate polynomial matrix size, slope5 5.187

10 Wenqin ZHOU, et al., Fraction-free matrix factors: new forms for LU and QR factors

Yi~
Di,i

Li,i
bPi

{
Xi{1

k~1

Li,kYk

" #
,

where bPi
~

Pn
j~1 Pi,jbj, it is obvious that

Di,i

Li,i
is an exact

division. So the solution Yi is fraction free for any

i5 1…n. %
Definition 4Given the vector Y from Definition 3, frac-

tion free backward substitution consists in finding a vec-

tor X, such that UX5Un,nY holds.

Theorem 7 The vectorX fromDefinition 4 has entries in

I, and satisfies AX5 det(A)b.

Proof As we have proved in Theorem 2, Un,n is actually

the determinant of A. From the relations

UX~Un,nY ,

and

LD{1Y~Pb,

we get

PAX~LD{1UX~det(A)LD{1Y~Pb:

So

AX~det(A)b:

Let B be the adjoint matrix of A, so that BA5 det(A)I,

where I is an identity matrix. We deduce that X5Bb.

Since B has coefficients in I, the result follows. %
If we have a list of linear systems with the same coef-

ficient n by nmatrix A, i.e., Ax5 b1, Ax5 b2, Ax5 b3, …,

after completely fraction free LU decomposition of

matrix PA5LD21U, the number of operations for solv-

ing a second linear system can be reduced fromO(n3) toO

(n2) for a matrix with floating point entries. Furthermore,

for a matrix with symbolic entries, such as an integer

matrix entry length bounded by ,, the time complexity
can be reduced from O(n3M(n log n + n,)) to O(n2M(n

log n + n,)).
Here we give our fraction free forward and backward

substitution algorithms using the same notation as before.

Algorithm 3 Fraction free forward substitution

Input: Matrices L, D, P and a vector b

Output: A n6 1 vector Y, such that LD21Y5Pb

For i from 1 to n, do

bPi
~

Xn

j~1
Pi,jbj ,

Yi~
Di,i

Li,i
bPi

{
Xi{1

k~1
Li,kYk

h i
,

end loops;

Algorithm 4 Fraction free backward substitution

Input: A matrix U, a vector Y from LD21Y5Pb.

Output: A scaled solution X

For i from n by 21 to 1, do

Xi~
1

Ui,i
Un,nYi{

Xn

k~iz1
Ui,kXk

h i
,

end loops;

5.2 Fraction free QR factoring

In a numerical context, the QR factoring of a matrix is

well-known. We recall that this accounts to find Q and

R such that A5QR, withQ being an orthonormal matrix

(i.e., having the property QTQ5QQT5 I).

Pursell and Trimble [22] have given an algorithm for

computing QR factoring using LU factoring which is sim-

ple and has some surprisingly happy side effects although it

is not numerically preferable to existing algorithms.We use

their idea to obtain fraction free QR factoring using left

orthogonal matrices and based on our completely fraction-

free LU factoring. In Theorem 8, we prove the existence of

fraction free QR factoring and give an algorithm using

completely fraction-free LU factoring to get fraction free

QR factoring of a givenmatrix, i.e., how to orthogonalize a

given set of vectors which are the columns of the matrix.

Theorem 8 Let I is an integral domain and A be a n6m

matrix whose columns are linearly independent vectors in

In. There exist a m6m lower triangular matrix L [In, a
m6m diagonal matrix D [In, a m6m upper triangular

matrix U [In and a n6m left orthogonal matrix H [In,
such that

ATAjAT
� �

~LD{1 U jHT
� �

: ð4Þ
Definition 5 In the condition of Theorem 8, the fraction

free QR factoring of A is

A~HD{1R, ð5Þ

where R5LT.

Proof The linear independence of the columns of A

implies that AT A is a full rank matrix. Hence, there are

m6m fraction free matrices,L,D andU as in Theorem 2,

such that

ATA~LD{1U : ð6Þ

Applying the same row operations to the matrix AT, we

have a fraction free m6 nmatrix. Let us call this fraction

free m6 n matrix as HT, which is

HT~DL{1AT , ð7Þ

then

HTH~ DL{1AT :A DL{1
� �T� �

~DL{1 LD{1U
� �

DL{1
� �T

~U DL{1
� �T

:

Frontiers of Computer Science in China FCS-0190-WenqinZHOU.3d 4/2/08 21:11:01
The Charlesworth Group, Wakefield +44(0)1924 369598 - Rev 8.07p/W Unicode (Mar 3 2005)

Front. Comput. Sci. China, 2008, 2(1) 11

Because HT H is symmetric and both U and (DL21)T are

upper triangular matrices, HT H must be a diagonal

matrix. So the columns of H are left orthogonal and in

In based on Theorem 6.

Based on Eq. 7, we have AT5LD21HT, i.e., A5H
(LD21)T5H(DT)21LT5HD21LT. Set R5LT, then R is a

fraction free upper triangular matrix. %
In the following Algorithm 5, we assume the existence

of a function CFFLU implementing Algorithm 1.

Algorithm 5 Fraction free QR factoring

Input: A n6m matrix A

Output: Three matricesH,D, R,whereH is a n6m left

orthogonal matrix, D is a m6m diagonal matrix, R is a

m6m upper triangular matrix and A5HD21R

1) compute B :5 [AT A|AT];

2) L, D, U :5CFFLU(B);

3) for i5 1,…,m, j5 1,…,n Hj,i :5Ui,m + j, end loops;

4) for i5 1,…,m, j5 1,…,m Rj,i :5Li,j, end loops. %
Example 3 We revisit the example in Pursell and

Trimble [22].

a1 : ~

0

1

0

1

2
6664

3
7775, a2 : ~

{2

3

0

1

2
6664

3
7775, a3 : ~

1

1

1

5

2
6664

3
7775:

Let A be the 46 3 matrix containing ak as its k
th column.

Then

ATA~

2 4 6

4 14 6

6 6 28

2
64

3
75:

Applying the fraction free row operation matrices L

and D to the augmented matrix [AT A|AT], we have the

fraction free matrix U, where

L~

2

4 12

6 {12 1

2
664

3
775, D~

2

24

12

2
664

3
775,

U~

2 4 6 0 1 0 1

12 {12 {4 2 0 {2

48 {12 {12 12 12

2
664

3
775:

Notice that the matrix U differs from that given in

Pursell and Trimble [22], which is as follows:

2 4 6 j 0 1 0 1

6 {6 j {2 1 0 {1

4 j {1 {1 1 1

2
64

3
75:

This is because they implicitly divided each row by the

GCD of the row. They also observed for this example that

cross-multiplication is not needed during Gaussian elim-

ination and the squares of the each row on the right side

equal the diagonal of the left side of the matrix. However,

these observations are specific to their particular numer-

ical example. Any change to these initial vectors will
invalidate their observation, as Example 4 will show.

Now from our fraction free QR Theorem 8, we have

R~LT~

2 4 6

12 {12

1

2
664

3
775,

HT~

0 1 0 1

{4 2 0 {2

{12 {12 12 12

2
664

3
775 or

H~

0 {4 {12

1 2 {12

0 0 12

1 {2 12

2
666664

3
777775:

So the fraction free QR factoring of matrixA is as follows:

HD{1R~

0 {4 {12

1 2 {12

0 0 12

1 {2 12

2
666664

3
777775

2

24

12

2
664

3
775
{1

2 4 6

12 {12

1

2
664

3
775

~

0 {2 1

1 3 1

0 0 1

1 1 5

2
666664

3
777775

~A:

Example 4 We slightly change the vector a1 and keep
the other vectors the same as in Example 3.

a1 : ~

0

2

0

1

2
6664

3
7775, a2 : ~

{2

3

0

1

2
6664

3
7775, a3 : ~

1

1

1

5

2
6664

3
7775:

Let C be the 46 3 matrix containing ak as its k
th column.

Then

CTC~

5 7 7

7 14 6

7 6 28

2
64

3
75:

Applying the fraction free row operation matrices L

and D to the augmented matrix [CT C|CT], we have the

fraction free matrix U, where

Frontiers of Computer Science in China FCS-0190-WenqinZHOU.3d 4/2/08 21:11:02
The Charlesworth Group, Wakefield +44(0)1924 369598 - Rev 8.07p/W Unicode (Mar 3 2005)

12 Wenqin ZHOU, et al., Fraction-free matrix factors: new forms for LU and QR factors

L~

5

7 21

7 {19 1

2
664

3
775, D~

5

105

21

2
664

3
775,

U~

5 7 7 0 2 0 1

21 {19 {10 1 0 {2

310 {17 {34 21 68

2
664

3
775:

We can verify that the square of the second row on the

right side of matrix U is not equal to the diagonal of the

left side of the matrix U. It means the observation of

Pursell and Trimble is not valid in this example.

The fraction free QR factoring of matrixC is as follows:

HD{1R~

0 {10 {17

2 1 {34

0 0 21

1 {2 68

2
666664

3
777775

5

105

21

2
664

3
775
{1

5 7 7

21 {19

1

2
664

3
775

~

0 {2 1

2 3 1

0 0 1

1 1 5

2
666664

3
777775

~C:

6 Conclusions

The main contributions of this paper are firstly the def-

inition of a new fraction free format for matrix LU factor-

ing, with a proof of the existence; then from the proof, a

general way for computing the new format and complex-

ity analysis on the two main algorithms.

One of the difficulties constantly faced by computer

algebra systems is the perception of new users that numer-

ical techniques carry over unchanged into symbolic con-

texts. This can force inefficiencies on the system. For

example, if a system tries to satisfy user preconceptions

that Gram-Schmidt factoring should still lead to QR fac-

tors with Q orthonormal, then the system must struggle

with square-roots and fractions. By defining alternative

forms for the factors, the system can take advantage of

alternative schemes of computation.

In this paper, the application of the completely fraction

free LU factoring format gives a new fraction-free QR

factoring format which avoid the square-roots and frac-

tions problems for QR factoring. On the other hand,

together with the fraction-free forward and backward

substitutions, fraction-free LU factoring gives one way

to solve linear systems in their own input domains.

References

1. Nakos G C, Turner P R, Williams R M. Fraction-free algo-
rithms for linear and polynomial equations. SIGSAM Bull,
ACM Press, 1997, 31(3): 11–19

2. Zhou W, Carette J, Jeffrey D J, et al. Hierarchical representa-
tions with signatures for large expression management. AISC,
Springer-Verlag, LNAI 4120, 2006, 254–268

3. Sasaki T, Nurao H. Efficient Gaussian elimination method for
symbolic determinants and linear systems. ACMTransactions
on Mathematical Software, 1982, 8(3): 277–289

4. Kirsch B J, Turner P R. Modified Gaussian elimination for
adaptive beamforming using complex RNS arithmetic.
NAWC-AD Tech Rep, NAWCADWAR, 1994, 941112-50

5. Kirsch B J, Turner P R. Adaptive beamforming using RNS
arithmetic. In: Proceedings of ARTH. Washington DC: IEEE
Computer Society, 1993, 36–43

6. Turner P R. Gauss elimination: workhorse of linear algebra.
NAWC-AD Tech Rep, NAWCAD-PAX 96-194-TR, 1996

7. Bareiss E H. Sylvester’s identity and multistep integer-preserv-
ing Gaussian elimination. Mathematics of Computation,
1968, 22(103): 565–578

8. Bareiss E H. Computational solutions of matrix problems
over an integral domain. J. Inst. Maths Applics, 1972, 10:
68–104

9. Gentleman WM, Johnson S C. Analysis of algorithms, a case
study: determinants of polynomials. In: Proceedings of 5th
Annual ACM Symp on Theory of Computing. Austin:
ACM Press, 1973, 135–142

10. Griss M L. An efficient sparse minor expansion algorithm.
Houston: ACM, 1976, 429–434

11. McClellan M T. The exact solution of systems of linear equa-
tions with polynomial coefficients. J ACM, 1973, 20(4): 563–
588

12. Smit J. The efficient calculation of symbolic determinants.
In: Proceedings of SYMSAC. New York: ACM, 1976, 105–
113

13. Smit J. A cancellation free algorithm, with factoring capabil-
ities, for the efficient solution of large sparse sets of equations.
In: Proceedings of ISSAC. New York: ACM, 1981, 146–154

14. Turing A M. Rounding-off errors in matrix processes. Quart.
J. Mech. Appl. Math, 1948, 1: 287–308

15. Corless R M, Jeffrey D J. The Turing factorization of a rect-
angular matrix. SIGSAM Bull, ACM Press, 1997, 31(3): 20–
30

16. Dixon J D. Exact solution of linear equations using p–adic
expansion. Numer. Math, 1982, 137–141

17. Moenck R T, Carter J H. Approximate algorithms to derive
exact solutions to systems of linear equations. In: Proceedings
of the International Symposium on Symbolic and Algebraic
Computation. Berlin: Springer-Verlag, 1979, 65–73

18. Storjohann A. High-order lifting and integrality certification.
Journal of Symbolic Computation, 2003, 36(3–4): 613–648

19. Storjohann A. The shifted number system for fast linear alge-
bra on integer matrices. Journal of Complexity, 2005, 21(4):
609–650

20. von zur Gathen J, Gerhard J. Modern computer algebra.
London: Cambridge University Press, 1999

21. Krick T, Pardo L M, Sombra, M. Sharp estimates for the
arithmetic Nullstellensatz. Duke Mathematical Journal,
2001, 109(3): 521–598

22. Pursell L, Trimble S Y. Gram-Schmidt orthogonalization by
Gaussian elimination. American Math. Monthly, 1991, 98(6):
544–549

Frontiers of Computer Science in China FCS-0190-WenqinZHOU.3d 4/2/08 21:11:03
The Charlesworth Group, Wakefield +44(0)1924 369598 - Rev 8.07p/W Unicode (Mar 3 2005)

Front. Comput. Sci. China, 2008, 2(1) 13

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002d00730062006d002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

