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ABSTRACT
We consider algebraic numbers defined by univariate poly-
nomials over the rationals. In the syntax of Maple, such
numbers are expressed using the RootOf function. This pa-
per defines a canonical form for RootOf with respect to affine
transformations. The affine shifts of monic irreducible poly-
nomials form a group, and the orbits of the polynomials can
be used to define a canonical form. The canonical form of
the polynomials then defines a canonical form for the cor-
responding algebraic numbers. Reducing any RootOf to its
canonical form has the advantage that affine relations be-
tween algebraic numbers are readily identified. More gener-
ally, the reduction minimizes the number of algebraic num-
bers appearing in a computation, and also allows the Maple
indexed RootOf to be used more easily.

Categories and Subject Descriptors
G.1.5 [Numerical Analysis]: Roots of Nonlinear Equa-
tions—Polynomials, methods for

General Terms
Algorithms

Keywords
Algebraic numbers, RootOf, Affine Transformation

1. INTRODUCTION
We consider univariate polynomials over the field Q of

rational numbers. When Maple computes the roots of a
polynomial p(x) ∈ Q[x], it uses the RootOf function to repre-
sent any algebraic numbers required. Mathematica uses an
equivalent construction. RootOf has two forms: indexed and
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non-indexed. The non-indexed RootOf(p(x), x) represents
either one root or all of the roots of p(x), depending on the
context, while the newer indexed RootOf(p(x), x, index = n)
represents the nth root of p(x), as determined by the Maple
indexing scheme. Maple’s RootOf will accept any poly-
nomial p(x) ∈ Q[x] as an argument, whether p(x) is irre-
ducible or composite over Q, and indeed it will accept non-
polynomial functions. Here, however, the argument p(x) is
restricted to being irreducible, because then the indexing
scheme is cleaner, there being no repeated roots [4].

The original motivation for the current investigation came
from the calculation of series solutions for an ordinary dif-
ferential equation about a regular singular point, using the
method of Frobenius. Della Dora and Tournier [1] point out
that computing such solutions requires a test to determine
when two roots of the characteristic equation differ by an
integer, and comment that this is non-trivial. It is natural
to generalize this question to a general affine relationship.

The general question is the following. Given a root r of
a polynomial p(x) ∈ Q[x], and a root s of a polynomial
q(x) ∈ Q[x], which may or may not equal p(x), determine
whether an affine transformation exists between them, i.e.,
determine α, β ∈ Q such that s = αr + β. This is answered
here by expressing each algebraic number r /∈ Q in terms of a
uniquely defined algebraic number t such that if r = α1t+β1

for α1, β1 ∈ Q, then there is an affine transformation from
s /∈ Q to r only if s is also expressed in terms of t, i.e.,
s = α2t + β2 for α2, β2 ∈ Q.

Example 1. The aim of this paper is not simply to repair
some shortcomings in Maple’s current implementation, but
it is relevant to see what the situation is at present. We il-
lustrate the shortcomings of Maple’s current simplification
of the RootOf function with respect to the questions just
posed. Let

p(x) = x10 − 10x9 + 40x8 − 78x7 + 66x6 + 14x5 −
89x4 + 116x3 − 106x2 + 76x− 27 . (1)

The Maple 9.5 command solve(p(x)) returns the results
presented in table 1. (We have abbreviated RootOf to R
and omitted the underscore.) It is not obvious from these
results that the roots differ by an integer. As a consequence
of the properties of the indexing scheme, the indexes must
be selected differently for the two families of roots. Once
this is done, the following statement is true.

R(_Z^5-10*_Z^4+40*_Z^3-79*_Z^2+76*_Z-27,index=1)

- R(_Z^5+_Z^2+1,index=3) = 2



R(Z^5+Z^2+1,index = 1),

R(Z^5+Z^2+1,index = 2),

R(Z^5+Z^2+1,index = 3),

R(Z^5+Z^2+1,index = 4),

R(Z^5+Z^2+1,index = 5),

R(Z^5-10*Z^4+40*Z^3-79*Z^2+76*Z-27,index = 1),

R(Z^5-10*Z^4+40*Z^3-79*Z^2+76*Z-27,index = 2),

R(Z^5-10*Z^4+40*Z^3-79*Z^2+76*Z-27,index = 3),

R(Z^5-10*Z^4+40*Z^3-79*Z^2+76*Z-27,index = 4),

R(Z^5-10*Z^4+40*Z^3-79*Z^2+76*Z-27,index = 5)

Table 1: The roots of the polynomial p(x) defined in
equation 1 as expressed in RootOf notation by Maple
9.5. The function name RootOf has been abbreviated
to R to save space.

Maple’s simplify, evala, evalb commands cannot verify
this. However, finding the limitations of particular Maple
commands is not the point (a sufficiently expert user will
be able to guide Maple to this simplification). The point
is that working with algebraic numbers is more convenient
if they are expressed in a canonical form. Notice that two
things must be recognized in the above statement: the rela-
tion between the polynomials and the indexing of the roots.

2. AFFINE TRANSFORMATIONS OF AL-
GEBRAIC NUMBERS

Let P ⊂ Q[x] be the set of monic irreducible polynomi-
als over Q. Further, let Pn be the set of monic irreducible
polynomials of degree n. We consider the algebraic numbers
defined by the roots of the elements of P. From the point of
view of Maple, this corresponds to using the output of the
factors command, rather than the solve command.

Definition 1. For x ∈ C and α, β ∈ Q, an affine transfor-
mation T (α, β) of x is defined by

T (α, β)x = αx + β .

Definition 2. For p(x) ∈ P, α ∈ Q\{0}, β ∈ Q, a monic
affine shift M(α, β) of p(x) is defined by

M(α, β)p(x) = α− deg pp(T (α, β)x) = α− deg pp(αx + β) .

The inverse transformations are

T (α, β)−1x = α−1x− α−1β , (2)

M(α, β)−1p(x) = αdeg pp
�
T (α, β)−1x

�
. (3)

We must show that the transformations M(α, β) form a
group. This is obvious if M is applied to Q[x], but we apply
it only to P. Therefore we first prove that M is closed on P.

Theorem 1. Given p(x) ∈ P, α ∈ Q\{0}, β ∈ Q, then
M(α, β)p(x) ∈ P.

Proof. First, observe that

M(α, β)p(x) = α− deg(p)p(αx + β)

is monic. Second, suppose M(α, β)p(x) = a(x)b(x), where
a(x) ∈ Q[x] and b(x) ∈ Q[x]. Then

p(x) = αdeg(p)a(α−1x− α−1β)b(α−1x− α−1β) ,

where we must have that a(α−1x − α−1β) ∈ Q[x] and also
that b(α−1x−α−1β) ∈ Q[x]. If neither a(x) nor b(x) is a unit
of Q[x] (an element of Q), then neither a

�
α−1x− α−1β

�
nor

b
�
α−1x− α−1β

�
is a unit of Q[x].

We can in fact make the stronger statement that if p ∈ Pn

then M(α, β)p ∈ Pn.

Theorem 2. The set of monic affine shifts M(α, β) with
α ∈ Q\{0}, β ∈ Q is a group action on P.

Proof. The action is well defined because of theorem 1,
and the verification of the group laws is straightforward.

Now we establish the correspondence between affine shifts
of the polynomials and affine transformations of algebraic
numbers.

Definition 3. Let p(x) ∈ P, then the set R(p(x), x) ⊂ C
is defined by

x ∈ R(p(x), x) ⇐⇒ p(x) = 0 . (4)

This corresponds to the non-indexed Maple RootOf. The
number of elements in R is deg p.

An affine shift does not change the degree of the polyno-
mial, so we must establish that an affine relation between
algebraic numbers can only exist between numbers of the
same degree. We note that an affine shift of the defining
polynomial corresponds to an affine transformation of every
root in the set of roots, and the set remains the same size.

Lemma 1. Let p ∈ P have roots ri /∈ Q. If q ∈ P has a
root s /∈ Q such that s = αrj +β for some j and α ∈ Q\{0},
β ∈ Q, then the roots of q are precisely αri + β for all i.

Proof. Assume r /∈ Q and s /∈ Q are roots of irre-
ducible polynomials p and q such that s = αr + β, α ∈ Q,
and β ∈ Q. Then s /∈ Q implies α 6= 0 and r is a root
of α− deg(q)q(αx + β) ∈ Q[x]. Since q(x) is irreducible,

α− deg(q)q(αx + β) must also be irreducible by theorem 1.
But r must be a root of a unique irreducible polynomial.
Hence, p(x) = α− deg(q)q(αx + β) which shows that if the
roots of p are ri, then the roots of q are αri + β.

Our aim is to relate algebraic numbers through their defin-
ing polynomials.

Definition 4. If r and s be algebraic numbers, then r and
s are affinely related over Q, written r ≡Q s, if there exist
α ∈ Q\{0}, and β ∈ Q such that s = T (α, β)r.

Lemma 2. Affinely related over Q is an equivalence rela-
tion.

Proof. Since the affine transformations define a group,
they define a set of orbits of the algebraic numbers. Two
algebraic numbers are affinely related if they are members
of the same orbit. It is standard theory that orbits define
equivalence classes.

Theorem 3. For p(x) ∈ P, α ∈ Q\{0} and β ∈ Q,

M(α, β)p(x) = 0 ⇐⇒ T (α, β)−1R(p(x)) .

Proof. By definition 2 and lemma 1.



Theorem 3 shows that algebraic numbers are affinely re-
lated if their defining polynomials are related by correspond-
ing affine shifts. Consequently it seems that all affine rela-
tions can be deduced by considering the orbits of the defin-
ing polynomials. There is a difficulty, however. It is possible
for affine relations to exist within a RootOf set. This corre-
sponds to an affine polynomial shift mapping a polynomial
nontrivially onto itself. It is therefore important to decide
when this can occur.

Theorem 4. Two different roots r /∈ Q and s /∈ Q of
an irreducible polynomial cannot be linearly related over Q
unless r = T (−1, β)s for some β ∈ Q.

Proof. Assume r and s are different roots of an irre-
ducible polynomial p(x) such that s = T (α, β)r, α ∈ Q, and
β ∈ Q. Let

rn = αn + β

n−1X
i=0

αi

for n ∈ N. Then r0 = r is a root of p. By lemma 1, if rn

is a root of p, then rn+1 = α rn + β is a root of p. So, by
induction, rn is a root of p for all n ∈ N. Consider the cases
α = 1 and α 6= 1 separately.

If α = 1, then rn = r+nβ is a root of p for all n ∈ N. The
Fundamental Theorem of Algebra requires {rn |n ∈ N} be
a finite set. Since α ∈ Q, α 6= 0, and α 6= 1, this implies
β = 0 and s = r, a contradiction.

If α 6= 1, then

rn = αn

�
r +

β

α− 1

�
− β

α− 1

is a root of p for all n ∈ N. The Fundamental Theorem of
Algebra requires {rn|n ∈ N} be a finite set. This implies
α = −1 and s = −r + β.

Example. The irreducible polynomial x2−2x−1 has roots
r = 1 +

√
2 and s = 1−√2 = −r + 2.

To summarize this section, we have shown that affine re-
lations between algebraic numbers can be studied by consid-
ering the orbits of the defining polynomials under the group
action of T (α, β). We now must define an invariant for each
orbit, and this will be the number t referred to in the in-
troduction. The set of numbers t will define a cross section
in the sense of [2, 3], or in equivalent terminology a canon-
ical form. The selection of the cross-section element is the
subject of the next section.

3. DEFINITION OF A CANONICAL FORM

Definition 5. Let p(x) = xn +pn−1 xn−1 + . . .+p0, where
p(x) ∈ P, be an irreducible polynomial. Define p+(x) ∈ P

p+(x) = M(1,−pn−1/n)p(x) .

If r = R(p(x), x), then r+ ≡Q r is defined by

r+ = R(p+(x), x) = T (1, pn−1/n)r .

The properties of the + operator are summarized in the
following theorem.

Theorem 5. If α ∈ Q\{0}, β ∈ Q, p(x) ∈ P is an irre-
ducible polynomial, r an algebraic number, and n = deg(p),
then

(a) (M(α, β)p(x))+ = M(α, 0)p+(x).

(b) (T (α, β)r)+ = T (α, 0)r+.

(c) p++ = p+.

(d) r++ = r+.

Proof. For (a), since

M(α, β)p(x) = α−n(αx + β)n

+α−npn−1(αx + β)n−1 + . . .

= xn + α−1(pn−1 + nβ) xn−1 + . . . ,

we have

(M(α, β)p(x))+ = α−n p
�
αx− pn−1

n
− β

�

= α−np+(αx) .

For (b), since αr + β has irreducible polynomial

αnp(α−1x− α−1β) = αn �α−1x− α−1β
�n

+αnpn−1

�
α−1x− α−1β

�n−1

+ . . .

= xn + α(pn−1 − nβ)xn−1 + . . .

we get

(αr + β)+ = (αr + β) +
α(pn−1 − n β)

n

= α
�
r +

pn−1

n

�
= αr+ .

Parts (c) and (d) follow from definition 5 and parts (a) and
(b).

Definition 6. Suppose ρ ∈ Q\{0}, and n is a positive in-
teger. Let ρ = a/b where a ∈ Z and b ∈ N. Let a bn−1 = kn c
where k is a positive integer, c is a nonzero integer that is
not divisible by any nontrivial nth power of an integer (i.e.
other than ±1). Then [ρ]n is defined by [ρ]n = k/b.

Remark. The a and b do not need to be relatively prime.
To check that [ρ]n is well defined, observe that if ρ = a1/b1 =
a2/b2, and

a1b
n−1
1 = kn

1 c1 and a2b
n−1
2 = kn

2 c2

then

b1k
n
2 c2 = bn

1 a2b
n−1
2 = a1b

n−1
1 bn

2 = bn
2 kn

1 c1 ,

but b1, b2, k1, k2 are positive integers; c1 and c2 are nonzero
integers; and neither c1 nor c2 is divisible by a nontrivial
nth power of an integer. Therefore, by the Fundamental
Theorem of Arithmetic, we must have c1 = c2 and k1/b1 =
k2/b2.

Lemma 3. Suppose ρ1 ∈ Q, ρ1 6= 0, ρ2 ∈ Q, ρ2 6= 0, and
n is a positive integer. Then sgn([ρ1]n) = 1 and [ρn

1 ρ2]n =
|ρ1| [ρ2]n.

Proof. First, sgn([ρ1]n) = 1 is easily seen from definition
6. Second, let ρi = ai/bi where ai ∈ Z and bi ∈ N. Let
a2 bn−1

2 = kn
2 c2 where k2 is a positive integer; c2 is a nonzero

integer; and c2 is not divisible by any nontrivial nth power
of an integer. Then

ρn
1 ρ2 =

an
1 a2

bn
1 b2



and

an
1 a2(b

n
1 b2)

n−1 = an
1 b

n(n−1)
1 kn

2 c2

=
�
a1b

n−1
1 k2

�n
c2

implying

[ρn
1 ρ2]n =

| a1 | bn−1
1 k2

bn
1 b2

=
| a1 | k2

b1 b2
= | ρ1 | [ρ2]n .

Definition 7. If p(x) ∈ Pn, n > 1 is a nonlinear irreducible
polynomial and p+(x) = xn + an−2x

n−2 + . . . + a0, define
irreducible polynomial p×(x) ∈ P by

p×(x) = [a0]
−n
n p+

�
[a0]n x

�

Suppose r /∈ Q is a root of p(x). Define root r× ≡Q r of
p×(x) by r× = [a0]

−1
n r+.

Theorem 6. If α ∈ Q\{0}, β ∈ Q, p(x) ∈ Pn, n > 1
is a nonlinear irreducible polynomial, r /∈ Q is an algebraic
number, and n = deg(p), then, with sα = sgn α,

(a) (M(α, β)p(x))× = (sα)np×(sαx).

(b) (T (α, β)r)× = sαr×

(c) p×+ = p×× = p×

(d) r×+ = r×× = r×

Proof. (a) Let p+(x) = xn + an−2x
n−2 + . . . + a0. By

theorem 5,
�
α−np(αx + β)

�
+

= α−np+(αx) = xn + . . . + α−na0 .

Therefore,
�

p(αx + β)

αn

�

×
=

h a0

αn

i−n

n
α−np+

�
α
�
α−na0

�
n

x
�

= |α|n[a0]
−n
n α−np+

�
α|α|−1[a0]nx

�

= sn
α [a0]

−n
n p+

�
[a0]n sαx

�

= sn
αp×(sαx)

(b) Let r have irreducible polynomial p(x) and let p+(x) =
xn + an−2x

n−2 + . . . + a0. Then αr + β has irreducible
polynomial αnp(α−1x− α−1β). By theorem 5,

�
αnp(α−1x− α−1β)

�
+

= αnp+(α−1x)

and (αr + β)+ = αr+. Therefore by definition 7,

(αr + β)× = [αna0]
−1
n αr+ = |α|−1[a0]

−1
n αr+

= sαr× .

(c) By construction, p× = [a0]
−n
n p ([a0]nx− pn−1/n). By

theorem 5 and definition 7,

p×+ =
�
[a0]

−n
n p

�
[a0]nx− pn−1

n

��
+

= [a0]
−n
n p+ ([a0]nx) = p×(x)

Also, by (a) and lemma 3,

p×× =
�
[a0]

−n
n p

�
[a0]nx− pn−1

n

��
×

= p×(x)

(d) By construction, r× = [a0]
−1r + pn−1/n. By theorem 5

and definition 7,

r×+ =
�
[a0]

−1r + pn−1/n
�
+

= [a0]
−1r+ = r×

Also, by (b) and lemma 3

r×× =
�
[a0]

−1r + pn−1/n
�
× = r×

Definition 8. If p(x) ∈ Q[x] and p(−x) = p(x), then p(x)
is an even polynomial.

Definition 9. The complex signum of a complex number
z is

csgn(z) =

8
><
>:

0 , z = 0,

1 , −π/2 < arg z ≤ π/2,

−1 otherwise.

Definition 10. Let p(x) ∈ P be a nonlinear irreducible
polynomial, p×(x) = xn + an−2x

n−2 + . . . + a0. If p× is
even, define σ(p) to be 1. If p× is not even, define σ(p) to
be the sign of the first nonzero coefficient in the sequence
an−3, an−5, . . .. Suppose r /∈ Q is a root of p(x). If p× is
even, define σ(r) to be csgn(r×). If p× is not even, define
σ(r) to be σ(p).

Lemma 4. If α ∈ Q, α 6= 0, β ∈ Q, and r /∈ Q is an
algebraic number, then σ(αr + β) = sασ(r), and sα = sgn α
as before.

Proof. Let r have irreducible polynomial p(x) ∈ P and
p× = xn + an−2x

n−2 + . . . + a0. Then αr + β has ir-
reducible polynomial αnp(α−1x − α−1β). By theorem 6,�
αnp(α−1x− α−1β)

�
× = sn

αp×(sαx) and this equals xn +

sαan−1x
n−1 + . . . + sn

αa0.
Therefore,

�
αnp(α−1x− α−1β)

�
× is an even polynomial if

and only if p×(x) is an even polynomial. By theorem 6, we
know (αr + β)× = sαr×. Hence, if

�
αnp(α−1x− α−1β)

�
×

is even, we get

σ(αr + β) = csgn ((αr + β)×) = csgn (sαr×)

= sα csgn(r×) = sασ(r)

If
�
αnp(α−1x− α−1β)

�
× is not an even polynomial, we get

σ(αr + β) = sgn
�
sgn(α)2l+1an−2l−1

�

= sgn(α) sgn(an−2l−1) = sασ(r)

where an−2l−1 is the first nonzero coefficient in the sequence
an−1, an−3, an−5, . . ..

Definition 11. Suppose p(x) ∈ Pn, n > 1 is a nonlin-
ear irreducible polynomial. Define irreducible polynomial
pσ(x) ∈ P by

pσ(x) = M(σ(p), 0)p×(x)

Suppose r /∈ Q is a root of p(x). Define root rσ ≡Q r of
pσ(x) by rσ = T (σ(r), 0)r×.

Theorem 7. If α ∈ Q, α 6= 0, β ∈ Q, p(x) ∈ P is a
nonlinear irreducible polynomial, and r /∈ Q is an algebraic
number, then

(a) (M(α, β)p(x))σ = pσ(x)

(b) (T (α, β)r)σ = rσ

(c) pσ+ = pσ× = pσσ = pσ



(d) rσ+ = rσ× = rσσ = rσ

(e) σ(pσ) = 1

(f) σ(rσ) = 1

Proof. (a) Let p×(x) = xn+an−1x
n−1+. . .+a0. By the-

orem 6,
�
α−np(αx + β)

�
× = sgn(α)np×(sgn(α)x) and this

equals xn + sgn(α)an−1x
n−1 + . . . + sgn(α)na0. Therefore,�

α−np(αx + β)
�
× is an even polynomial if and only if p×(x)

is an even polynomial, and if
�
α−np(αx + β)

�
× is an even

polynomial, then

σ
�
α−np(αx + β)

�
= σ(p) = 1

and n is even, which makes
�
α−np(αx + β)

�
σ

=
�
α−np(αx + β)

�
×

= p×(x) = pσ(x)

If
�
α−np(αx + β)

�
× is not even, then by lemma 4, it must

be that σ
�
α−np(αx + β)

�
= sgn(α)σ(p). For convenient

notation, let σ1 = σ
�
α−np(αx + β)

�
= sgn(α)σ(p). Then

�
α−np(αx + β)

�
σ

= σn
1

�
α−n p(ασ1x + β)

�
×

= σn
1 sgn(α)np× (sgn(α)σ1x)

= σ(p)np×(σ(p)x) = pσ(x)

(b) By lemma 4, σ(αr +β) = sgn(α)σ(r) and by theorem 6,
(αr + β)× = sgn(α)r×. Therefore,

(αr + β)σ = σ(αr + β)(αr + β)×
= sgn(α)σ(r) sgn(α)r× = σ(r)r× = rσ

(c) By construction,

pσ = σ(p)n[a0]
−n
n p (σ(p)[a0]nx− pn−1/n)

By theorem 5, definition 7, and definition 11,

pσ+ =
�
σ(p)n[a0]

−n
n p (σ(p)[a0]nx− pn−1/n)

�
+

= σ(p)n[a0]
−n
n p+ (σ(p)[a0]nx)

= σ(p)np×(σ(p)x) = pσ(x)

By theorem 6, lemma 3, and definition 11,

pσ× =
�
σ(p)n[a0]

−n
n p (σ(p)[a0]nx− pn−1/n)

�
×

= σ(p)np×(σ(p)x) = pσ(x)

By (a), pσσ =
�
σ(p)n[a0]

−n
n p (σ(p)[a0]nx− pn−1/n)

�
σ
, and

this equals pσ.
(d) By construction,

rσ = σ(r)[a0]
−1
n r + σ(r)[a0]

−1
n pn−1/n

By theorem 5, definition 7, and definition 11,

rσ+ =
�
σ(r)[a0]

−1
n r + σ(r)[a0]

−1
n pn−1/n

�
+

= σ(r)[a0]
−1
n r+ = σ(r)r× = rσ

By theorem 6, lemma 3, and 11,

rσ× =
�
σ(r)[a0]

−1
n r + σ(r)[a0]

−1
n pn−1/n

�
×

= σ(r)r× = rσ

By (b), rσσ =
�
σ(r)[a0]

−1
n r + σ(r)[a0]

−1
n pn−1/n

�
σ

= rσ (e)

Suppose p× = xn + an−1x
n−1 + . . . + a0. Then

pσ = σ(p)np× (σ(p)x)

= xn + σ(p)an−1x
n−1 + . . . + σ(p)na0

We see that pσ is even if and only if p× is even. If pσ is
even, then σ(pσ) = 1 by definition 10. If pσ is not even,
then pσ× = pσ by (c), so

σ(pσ) = sgn
�
σ(p)2l+1an−2l−1

�

= σ(p) sgn(an−2l−1) = σ(p)2 = 1

where an−2l−1 is the first nonzero coefficient in the sequence
an−1, an−3, an−5, . . ..
(f) Suppose r is a root of p. Then rσ is a root of pσ. If pσ

is even, then by (d) and 11,

σ(rσ) = csgn(rσ×) = csgn(rσ) = csgn(σ(r)r×)

= σ(r) csgn(r×) = σ(r)2 = 1

If pσ is not even, then σ(rσ) = σ(pσ) = 1 by (e).

Theorem 8. Let r and s be algebraic numbers. Then
r ≡Q s if and only if rσ = sσ.

Proof. If r ≡Q s, then there exist α ∈ Q\{0}, β ∈ Q
such that r = αs + β. So r ∈ Q if and only if s ∈ Q. If
r ∈ Q and s ∈ Q, then rσ = sσ = 0. If r /∈ Q and s /∈ Q,
then rσ = (αs + β)σ = sσ by theorem 7.

If rσ = sσ, then r ≡Q rσ = sσ ≡Q s implies r ≡Q s.

Definition 12. If p(x) ∈ P is an irreducible polynomial,
then pσ(x) is called a canonical polynomial. If r is an
algebraic number, rσ is a canonical root.

Lemma 5. Suppose p(x) ∈ Q[x] is an irreducible polyno-
mial and r is a root of pσ(x). If pσ is even, then rσ =
csgn(r)r. If pσ is not even, then rσ = r.

Proof. By construction

pσ(x) = σ(p)n[a0]
−n
n p (σ(p)[a0]nx− pn−1/n)

and this is xn + 0xn−1 + . . ., which makes r+ = r. Next,
pσ(x) = σ(p)n[a0]

−n
n p+ (σ(p)[a0]nx), which equals

xn + σ(p)[a0]
−1
n an−1x

n−1 + . . . + σ(p)n[a0]
−n
n a0

Therefore, by lemma 3,

r× =
�
σ(p)n[a0]

−n
n a0

�−1

n
r+ = [a0]n[a0]

−1
n r+ = r

If pσ is even, then pσ× = pσ is even and the relation σ(r) =
csgn(r×) = csgn(r) gives us

rσ = σ(r)r× = csgn(r)r .

If pσ is not even, then pσ× = pσ and σ(r) = σ(pσ) = 1 by
theorem 7, implying rσ = σ(r)r× = 1 · r = r.

Theorem 9. Suppose p(x) ∈ P is an irreducible polyno-
mial. If pσ is even, then exactly half of the roots of pσ are
canonical, and the other half are the negatives of the first
half. The roots of pσ expressed in canonical form are

±√s1, . . . ,±√sn/2

where the s1, . . . , sn/2 are the roots of pσ(
√

x) and the roots
of p(x) corresponding to

√
s1, . . . ,

√
sn/2 are canonical and

distinct. If pσ is not even, then all of the roots of pσ are
canonical and distinct.

Proof. If pσ is even, then pσ(
√

x) is a polynomial. If
s1, . . . , sn/2 are the roots of pσ(

√
x) then the roots of pσ

must be

±√s1, . . . ,±√sn/2



Since csgn(
√

si) = 1 for the principal branch of the square
root, we see

√
s1, . . . ,

√
sn/2 are canonical by lemma 5. They

are distinct because of irreducibility.
If pσ is not even, then all of the roots of pσ are canonical

by lemma 5, and again they are distinct.

4. AN ALGORITHM
The input for the algorithm is p(x) ∈ Q[x], a univariate

polynomial over the rationals. The output is a list of the
roots of p(x) expressed in the canonical form just described.

1. Factor p(x) over Q. (The Maple factors command
can do this.)

p(x) = c
Y

i

pi(x)ei

2. Solve the linear pi(x) to obtain the rational roots of
p(x).

3. For each nonlinear pi(x), obtain the canonical polyno-
mial. If n = deg(pi), the steps are

pi+(x) = M(1, pn−1/n)pi(x)

pi× = M([a0]n, 0)pi+(x)

piσ = M(σ(p), 0)pi×(x)

Each pi(x) can therefore be expressed canonically as
the polynomial M(αi, βi)piσ(x) for computed αi, βi.

Let B be the set of distinct piσ that appear.

4. Each piσ ∈ B that is not an even polynomial has
deg(pi) distinct roots, which in Maple RootOf nota-
tion are written R(pi(x)).

5. Each piσ ∈ B that is an even polynomial has deg(pi)
distinct roots, which can be written in RootOf notation
as ±

p
R(pi(

√
x).

6. Collect the R canonical forms from steps (2), (4) and
(5) according to multiplicities ei to form the final an-
swer.

5. EXAMPLES
Example 1 can now be solved as follows. The roots be-

come

x1 = R(z5 + z2 + 1, z, index = 1),

x2 = R(z5 + z2 + 1, z, index = 2),

x3 = R(z5 + z2 + 1, z, index = 3),

x4 = R(z5 + z2 + 1, z, index = 4),

x5 = R(z5 + z2 + 1, z, index = 5),

x6 = 2 + R(z5 + z2 + 1, z, index = 1),

x7 = 2 + R(z5 + z2 + 1, z, index = 2),

x8 = 2 + R(z5 + z2 + 1, z, index = 3),

x9 = 2 + R(z5 + z2 + 1, z, index = 4),

x10 = 2 + R(z5 + z2 + 1, z, index = 5).

The statement x8 − x3 = 2, now becomes obvious, as does
the statement x1 − xj 6∈ Z, j > 6.

Example 2. Let p(x) be the polynomial

p(x) = 20736x18 + 179712x17 + 457920x16 − 94656x15

−2769344x14 − 3990464x13 + 4663468x12 + 13336348x11

+1419041x10 − 11999454x9 − 12064413x8 − 11691713x7

+2228047x6 + 20917493x5 + 14885343x4 − 1856968x3

−8277728x2 − 4558616x− 804752.

The factored form of p(x) is (having been obtained, for ex-
ample, from Maple factors)

20736(x− 1)2a(x)b(x)c(x)d(x)

where

a(x) = x4 − 4
3
x3 + 2

3
x2 − 31

27
x− 53

81

b(x) = x4 + 8x3 + 24x2 + 40x + 16

c(x) = x4 + 6x3 + 53
4

x2 + 51
4

x + 73
16

d(x) = x4 − 2x3 + 1
2
x2 + 1

2
x + 13

16

Solving the linear factor of p(x) produces the rational root
1 with multiplicity 2. Computing a+, b+, c+, and d+ gives

a+(x) = a
�
x + 1

3

�
= x4 − x− 1

b+(x) = b(x− 2) = x4 + 8x− 16

c+(x) = c
�
x− 3

2

�
= x4 − 1

4
x2 + 1

16

d+(x) = d
�
x + 1

2

�
= x4 − x2 + 1

Computing a×, b×, c×, and d× gives

a×(x) = a+(x) = x4 − x− 1

b×(x) = 1
16

b+(2x) = x4 + x− 1

c×(x) = 16c+

�
1
2
x
�

= x4 − x2 + 1

d×(x) = d+(x) = x4 − x2 + 1

Computing aσ, bσ, cσ, and dσ gives

aσ(x) = a×(−x) = x4 + x− 1

bσ(x) = b×(x) = x4 + x− 1

cσ(x) = c×(x) = x4 − x2 + 1

dσ(x) = d×(x) = x4 − x2 + 1

The canonical forms for a, b, c, and d are given by

a(x) = aσ

�−x + 1
3

�

b(x) = 16aσ

�
1
2
x + 1

�

c(x) = 1
16

cσ(2x + 3)

d(x) = dσ

�
x− 1

2

�

and the basis B is

B = {aσ(x), cσ(x)} =
�
x4 + x− 1, x4 − x2 + 1

	

The polynomial aσ(x) is not even and therefore has 4 dis-
tinct algebraic roots, represented in Maple by R(aσ(x)).
They will contribute 8 of the roots of the p(x), specifi-
cally, 1

3
− R(x4 + x + 1) from the reduction of a(x) and

−2+2R(x4+x+1) from the reduction of b(x). The polyno-
mial cσ is even and contributes 4 roots in two pairs, namely
− 3

2
± 1

2

p
R(x2 − x + 1) and 1

2
±
p
R(x2 − x + 1).

All possible linear relations over Q between roots of p(x)
are now explicitly obvious. This concludes the example.



6. CONCLUDING REMARKS
There remain a number of implementation questions. It

should be recalled that Maple allows any polynomial to be
an argument of RootOf. For an indexed RootOf, the index
must be re-computed for the canonical polynomial. For a
non-indexed RootOf, there is a question of what to do with a
set that separates into several subsets. Even for the RootOf

an irreducible polynomial, there are other properties that
might be considered. If pσ is a canonical polynomial with
deg pσ = n, then we have

nX

k=1

R(pσ(x), x, index = k) = 0 . (5)

One way to ensure that this simplification is known to the
system would be to express the nth RootOf as the negative
of the sum of the first (n−1) RootOfs. For large n, however,
this would be cumbersome, and would not apply to a non-
indexed RootOf.
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