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Abstract

In certain circumstances, the integration
routines used by computer algebra systems
return expressions whose domains of valid-
ity are unnecessarily restricted by the pres-
ence of discontinuities. It is argued that
this is undesirable and that integration rou-
tines should meet an additional requirement:
they should return expressions that are valid
on domains of maximum extent. The con-
tention is supported by general mathemati-
cal arguments, by an examination of exist-
ing practises and by a demonstration that
two standard algorithms can be modified to
meet the requirement.

1 Introduction

This paper identifies and discusses a general design goal
for integration packages, with a view to establishing
it as an implementation objective and as a research
topic. Several of the difficulties pointed out here are not
solved. We introduce the class of problems addressed
by discussing two examples that illustrate many gen-
eral points. First we consider how the following integral
is evaluated by two CAS.

/(cot:b—i—csc:e)da: . (1)
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The indefinite integration routines of Mathematica and
Maple evaluate this integral to the following expressions.

Mathematica;
Maple.

21In(sin %r) ,

Insinz + In(csc z — cot ) ,

Suppose, now, that a user were to attempt to evaluate
the definite integral

3n/2

/ (cotz + cscx)dx =In2 (2)
/3

by substituting 37/2 and 7/3 into one of the above in-
definite integrals and then subtracting the results. The
Mathematica expression would give the correct answer,
while the Maple expression would give In 2 4 277, an in-
correct result. The error i1s due to a discontinuity in the
Maple expression at @ = w. It is the presence of this
discontinuity that we shall be discussing.

As a second example, we define a function g(z) by
the integral

“ 3
= —dt
9() /0 5 —4cost

and consider the problem of plotting it using Mathemat-
ica (version 2.1). Within Mathematica, we can define
the function g in two apparently equivalent ways: using
numerical integration, and using symbolic integration.
The numerical definition is

gllx_ ] := NIntegrate[3/(5-4*Cos[t]),{t,0,x}],

while the symbolic one is

g2[x_ ] := Integrate[3/(5-4*Cos[t]),{t,0,x}].

Upon plotting these functions, however, we see that they
are not the same, because the function g1 is continuous
everywhere, while g2 is discontinuous at odd multiples



of m. Other CAS show similar behaviour. Specifically,
the following indefinite integral evaluates as shown, us-

ing the CAS indicated.

3
—d
/ 5—4cosz =
2 arctan(3 tan z/2) ;
2arctan(3sinz/(cosz + 1)) ;

—arctan(—3sinz/(5cosz — 4)) ;

(3)
Maple, Mathematica

Macsyma

Axiom.

None of these expressions is continuous everywhere.

The two examples show that CAS might return dif-
ferent expressions for an integral that differ from each
other with respect to their continuity properties, and
in addition those properties might be different from the
ones expected by the user. To explore this further, and
to define some notation, we recall the fundamental the-
orem of calculus (Rudin 1976). If f is continuous on an
interval [a, b], the function defined by

o) = [ sy
is continuous and differentiable on (a, b), and

f(z) . (5)

The interval [a,b] is an essential part of this theo-
rem, and yet indefinite integration is mostly performed
by CAS without reference to any interval. Moreover,
present users do not expect to have to specify an in-
terval when posing an indefinite integration problem to
a CAS. When the system returns an expression as an
answer to an integration problem, it may or may not
apply to the interval envisioned by the user. Thus the
Maple response to the first example is correct on the
interval (0, 7) and only incorrect if one accepts that the
interval should be (7/3,37/2).

Standard terminology often blurs the connection be-
tween the function defined by the fundamental theorem
of calculus and any apparently similar function defined
by an indefinite integral. In addition, because the in-
tegral g has a derivative equal to the integrand f, the
term anti-derivative of f is frequently used for g, and
this leads to the common assumption that the problem
of integrating f is solved by finding any function whose
derivative is equal to f. The shortcomings of this as-
sumption are the focus of this paper. To discuss them,
we introduce the following definitions.

(4)

g'(x) =

Definition. An anti-derivative of a function f(z) is any
function F(z) that satisfies F'(z) = f(z).

Comment. This definition requires further qualification
on the meaning of differentiation, and is not indepen-
dent of the CAS under consideration. We take the dif-
ferentiation to be the differentiation used by the CAS.
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Fateman (1992) pointed out that an anti-derivative of
f =0is F = arctan z +arctan(1/z) in most systems. In
contrast, systems differ significantly over the derivative
of the signum function. DIF( SIGN(x),x) isevaluated
as 0 by Derive, but Maple and Mathematica return a
formal derivative of signum.

Definition. An indefinite integral of a function f(z)
on an interval [a,b] is any function G(z) that satisfies
G(z) = f; f(t)dt+ K, where K is constant on the inter-
val. Since most CAS are willing to consider functions f
that are integrable but not continuous on [a, b], we shall
suppose that the integral is interpreted as a Lebegue
integral (Rudin 1976) or at least as the generalized Rie-
mann integral defined by Botsko (1991). So f need only
be Riemann integrable rather than continuous, and G
is differentiable almost everywhere on (a, b) rather than
everywhere.

In terms of these definitions, the central question
that this paper raises is whether it is sufficient for an
integration routine to return an anti-derivative of the
function passed to it, or whether it should strive to re-
turn an indefinite integral, and if so, on what interval.
With regard to the question of what interval, we intro-
duce the following definitions.

Definition. Given a function f(z) that is integrable on
an interval [a, )], and an anti-derivative F' of f that has
a discontinuity somewhere on [a, b], we shall call the dis-
continuity in F' spurious, because the fundamental the-
orem of calculus asserts that another function g exists
that does not contain this discontinuity.

Definition. Given a function f that is integrable on one
or more intervals of the real line, a function g will be
called an integral on the domain of maximum extent if
it can serve as an indefinite integral of f on all of the
intervals on which f is integrable.

As an example, the expression arctan(tanz) is an
integral of f = 1 on the interval (—m/2,7/2), but the
expression z is the integral on the domain of maximum
extent, namely the real line. Both 2z and arctan(tan z)
are antiderivatives of 1, but arctan(tan ) contains spu-
rious discontinuities at odd half multiples of .

This paper contends that routines should return in-
definite integrals valid on domains of maximum extent,
and that 1t is important to develop and implement such
routines. The first argument in favour of this is the
expectation held by most users. A user who wishes to
derive the result

4m
3
—dl =
/0 5 —4cost



expects to be able to do so using the indefinite integral
returned by the system, because it is obvious that the in-
tegral exists everywhere. Designers of CAS might reply
that if the above definite integral is posed as a definite
integral, then Maple V release 2, Macsyma and Mathe-
matica get the correct answer. Clearly these systems are
using something more than their own anti-derivatives
to evaluate the definite integral, and they make it the
users’ responsibility to know this. Users must convert
the statement of their problem into a particular form
in order to get the correct answer. Surely users would
prefer an indefinite integral that made this unnecessary.

Supporters of separate definite-integration routines
might argue that there is no point in correcting the
indefinite integrator because a good definite integrator
must exist separately anyway. The system must check
not only for cases such as (6), for which a finite solution
exists, but also for integrals across singularities, where
the integral may or may not be finite. Thus Mathemat-
ica returns —2 for the integral

Lde
/_1 z?
and this error can only be corrected inside a definite
integration routine. This indeed shows the need for a
definite-integration routine, but it in no way lessens the
desirability of correcting the indefinite integrator, be-
cause a continuous indefinite integral will reduce the
load on the definite integration code.

As a second argument, let us recall that indefinite
integration is used for more things than definite integra-
tion. The solution of differential equations usually re-
quires repeated integration. For an example, the reader
is referred to Marion & Thornton (1988, section 7.53)
where the equations of planetary motion are incorrectly
integrated because the authors used expressions derived
from those in (3).

Another argument can be based on the emerging
practises of CAS. Several systems have recently mod-
ified their indefinite integration routines to replace dis-
continuous expressions with continuous ones. Derive
has consistently adopted the policies advocated here for
several years, and both Maple and Axiom have imple-
mented Rioboo’s algorithm (Rioboo 1991). Release 1 of
Maple V, for example, evaluated the integral below to
a discontinuous expression. In release 2, however, the
result is a continuous expression, showing that systems
have already changed some routines in order to give
preference to a continuous integral over a discontinuous
one.

/

z*— 32246
dzx
x6 — 5zt 4+ 5Hx2+4
= (i/2) In(2® + iz? — 32 — 2i)
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—(i/2) In(z® — iz? — 32 4 2i) ,

release 1

= arctan(—32%/2 + 2°/2 + 2/2) + arctan z

+ arctan(z?) release 2

The first expression is discontinuous at x = \/5, and
hence is an indefinite integral only on the intervals
(—00,v/2) and (v/2,00). In contrast, the second expres-
sion is an indefinite integral on the domain of maximum
extent. Some comments on the Rioboo algorithm will
be made later.

There 1s only one example, that I am aware of,
in which a system has preferred a discontinuous anti-
derivative to a continuous one. At some point, Re-
duce changed to an expression equivalent to (3) from
one that was continuous, although the developers have
commented (private communication) that this change
did not imply a conscious policy.

2 The rectification of anti-deriv-
atives

If, for a particular integrand, an integration method
gives an anti-derivative containing spurious discontinu-
ities, there are two strategies that might be used to
obtain an integral on the domain of maximum extent.
The first way is to change the integration method to
one that gives the desired integral, and the other is to
accept the anti-derivative and look for a way of remov-
ing the discontinuity. The latter approach regards any
expression returned by an integration procedure as pro-
visional until it has been checked somehow for discon-
tinuities. We can call this approach the rectification of
anti-derivatives; it has been used in several contexts.
The algorithm of Rioboo (1991) is such a rectifying al-
gorithm. Here we give another one.

The problem can be illustrated by Maple’s answer
to the first example:

/cot z + csc zdx = Insinz + In(csc z — cot z) .

The discontinuity at 7 is the result of two effects. First,
the formula

/ [ (2)/f(2))dz = In f(2)

contains a discontinuity, in that the imaginary part
of the logarithm is discontinuous whenever f passes
through 0. Usually this is of no consequence, because
it is masked by the singularity in the real part of the
logarithm. In the case above, however, the singularities
in the real parts of the two logarithms cancel, but the



discontinuities in the imaginary parts do not. In the
neighbourhood of # = m, the anti-derivative behaves

like

Insinz + In(csc ¢ — cot ) ~ In(m — z) + In
Tz
To leading order, the right-hand side i1s asymptotically
equal to In2 + 2misgn(z — ).
In general, given two functions f; and f5 that behave
near a point z; asymptotically according to

fi~(z—2)" and  fa~(xz—2)7",
then : :
I
fi  fo
will be integrable, but the expression
In f1 +1n fo

will be discontinuous.
To remove this behaviour, we note that although the
transformation

In fi(2) + In fa(x) = In[f1(2) f2(2)]

is usually valid only if f; and f, are real and at least
one of them is positive, for anti-derivatives it is always
permissible. This is because

(Infi+1nfo) = fi/fr + fo/ f2 = (In[f1f2])",

and hence both expressions are anti-derivatives of the
same function. We are therefore free to choose either
form to express an anti-derivative, or integral. We can
see that the collected form In(f1 f2) is always preferable
by the following argument. If z; is a singular point of
the expression In(f1f2), then it will also be a singular
point of In f1 +1n f3, but the converse is not true. There
can be singular points of In f; + In f5 that are not sin-
gular points of In(f1 f2). The proof is an obvious gener-
alization of the example above, and will not be written
out.

Applied to the example above, the transformation
gives

Insinz + In(csc z — cot ) = In(1 —cos z)

which is equivalent to the expression returned by Math-
ematica, and equal to the one returned by Axiom.

A more general transformation is needed to handle
some cases, such as Axiom’s evaluation of the following
integral.

G5

%ln(cos r+1)— %IH(COSCL‘ — 1)+ In(z? — 7z) ,

— csc l‘) dr =
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which has a spurious discontinuity at 0. The transfor-
mation needed is for

alnfi+pnfs,

where a and @ are rational coefficients.
transformation to ln(ff‘f:;@) i1s unsatisfactory because
fractional powers will again introduce discontinuities.
Instead we find integers m,n,p,q such that &« = mp/n
and # = mq/n and p and q are mutually prime. Then
the transformation is

alnfi +fBIn fa = %lﬂ(fffg) .

Applied to the above, it gives

The obvious

%ln(cos z+1)— %ln(cosa: -1+ hq(;r2 —7z)

1 cosz+1, , 9

Once an integral has been reduced to a single logarith-
mic term, a ‘tidy-up’ transformation In K f¥ = ~In f,
for K,y constants, can be used, justified as above by
differentiating both forms. This turns the last result
into

1 [cos r+1

2

P 1(1‘2 - 71'1‘)2] = In[(z* — mz)cot La] .

For the two examples above, Mathematica obtains
integrals on domains of maximum extent without using
this approach, and it might seem that Mathematica’s
methods are better than these. However, Mathematica
fails to obtain a continuous integral for

sec? x
l+tanz ++/T+tanz
It gives 2arctanh+/1 + tan z + Intan z which has spu-

rious discontinuities at integer multiples of m, whereas

2In(1 + +/1 + tan z) does not.

3 Discontinuity from substitu-
tion

The technique of integration by substitution is a stan-
dard topic in calculus textbooks and is one that is used
by some integration routines, in particular, by those in
Derive. An aspect of the technique that is rarely em-
phasised is the fact that spurious discontinuities can be
introduced if a substitution is singular in the domain of
the integrand.

Derive uses substitution to evaluate the following in-
tegral. Given the integrand

exp(1/z)
0+ exp(1 /)

z#£0,

x =0,

flz) =



which satisfies the conditions of the fundamental theo-
rem, we make the substitution s = 1/ to get

/ etlr dr / e’ds

(I+e/m222 " | (1+¢)?

Integrating the last expression and substituting for s in
the usual way, we obtain

1
1+ell

)

which contains a spurious discontinuity at z = 0. In
order to develop an algorithm that will remove this dis-
continuity, we must decide first where it comes from.
The method of integration will influence, to some ex-
tent, how we assign the cause. Since our focus here
is the method of substitution, we turn to the following

theorem (Jeffrey & Rich 1993)

Theorem. Given a function f that is continuous on an
interval [a, b] and a function ¢ that is differentiable and
monotonic on the interval [¢~1(a), $~1(b)], the function

¢~ () e
o) = [ sews@a= [ ) ds

is continuous for z € [a, b].

The relevance of this theorem comes about as fol-
lows. We suppose that we wish to obtain an integral
of f(x) that is valid on the domain of maximum ex-
tent. We further suppose that our integration system
can already return an indefinite integral on a domain
of maximum extent for the function f(é(¢))¢’(¢). The
theorem states that the second integral might be discon-
tinuous at points where ¢ is singular. For our example,
it follows that the point = 0 might be (and is) a point
of discontinuity. We could at this point jump immedi-
ately to introducing a rectifying transformation, but we
can place it on a more formal footing as follows.

Suppose f is integrable on an interval [a, ¢], and ¢ is
differentiable and monotonically increasing at all points
in [a, ] except the isolated point b. On such an interval,
the function we wish to find is g, defined by

:/jf(s) ds

and 1t will be continuous by the fundamental theorem;
the function we actually find, however, is g.

= [ 16y @ dr

So long as & < b, the function g can be expressed, by
the above theorem, in terms of g.

For x > b, the connection between g and ¢ is obtained

as follows.
/ f(s ds—/ f(s) ds

) ds — ) "(t) d
/f ./ﬂmfwMW@)t
= (0~ 9(e) +4(z) .

g9(z)

To eliminate g(¢) from this equation, we calculate
= lim (g(e) +3(a) — Jim (9() — g(c) + ()

where the limits have been evaluated using the continu-
ity of ¢ at b. We can combine the expressions for g in
the intervals [a, b] and [b, ¢] into a single equation using
the Heaviside, or step, function H.

g(z)=g(z)—g(a)+ H(z—0b) | im g(z) — lim §(z)

r—b— r—b+

This gives a continuous expression for the desired func-
tion ¢ in terms of the computable function g.

Applying this theory to our example, we see that an
indefinite integral valid on the real line, the domain of
maximum extent, is

/ ellw dzx _
(1 +61/x)2 22

There remains a removable singularity at 0 in this ex-
pression for the integral, so the user would have to use
a limit to evaluate a definite integral for which 0 was
an endpoint; CAS definite-integation routines would
mostly do this automatically. Other ways of remov-
ing the discontinuity are possible: Derive adds %sgnm
instead of H(z).

The example used in this section is tackled by many
systems using Risch integration instead of substitution.
The algorithm given here could not be used by such sys-
tems, and the development of procedures for obtaining
continuous expressions from that method of integrating
i1s an important topic. In this connection, the ‘cause’ of
the discontinuity must be decided, since clearly we can
no longer blame the substitution ¢ = 1/z.

A limitation of the present method is the fact that
the singularities of ¢ must be ascertainable by the sys-
tem. Although this will be possible for most functions
arising in practise, it is in general an outstanding prob-
lem in its own right.

1+ ell +H(z) .



4 Complex-valued integrands

We now consider some problems associated with the in-
tegration of a complex-valued function f(z) of a real
variable x. The emphasis here will be less on estab-
lishing algorithms, and more on discussing the prob-
lems that exist and ways of tackling them. There are
two reasons for considering integration problems of this
type. First, because of the way in which many algo-
rithms work, an integration problem posed by a user
entirely in real terms might be evaluated symbolically
by converting the integral into one taking complex val-
ues. Second, a contour integration in the complex plane
is typically converted into a complex integral over a real
variable by describing the contour of integration para-
metrically. In this latter case, many textbooks of com-
plex analysis give the impression that all such integrals
can be reduced to real integrals. Thus they write that

the contour integral
/ f(z)dz
c

can be evaluated by describing the contour parametri-
cally as z = ¢(s) and then separating the integrand into
real and imaginary parts f(z) = f(¢(s)) = u(s) +iv(s).
In practice, however, this last step is purely formal. In
many cases the decomposition into u + v is impracti-
cal and, even if it were successful, would only lead to
real integrals too difficult for the CAS to evaluate. For

example, the integral
2
1 140212 de = —2 11 14521372
/[-1—( +i)z] T 3(1—|—i)[+( +i)z]

is simple as a complex function, but the separation into
Cartesian form makes it too difficult for Maple or Derive
(although not Axiom):

[14 (1+14)2]"/? =

1 Vo
— 202+ 22+ 1+ +1
=V

L VN rear e I
V2
The main aim of this section is to discuss some un-
satisfactory aspects of the formula

/ f'(s)

705 "
and to discuss ways of improving it. To focus the dis-
cussion, we consider a specific example. Different CAS
give different expressions for the following integral, two
such expressions being

/

ds = log f(s) ,

d ,
i = iln(ae™ +1),

(8)
)

a+ exp(iz)

= iln(a—}—e”)—i—m .
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This is just the contour integral of 1/z around the path
z = 1 4+ aexp(—iz), which is a circle of radius a with
centre at z = 1. If z increases by an amount greater
than 27, and a > 1, the circle encloses the origin, but if
0 < a < 11t does not. Using residues, we see that

27 B 0
0 T 27,

If we wish to evaluate the same integral using the anti-
derivatives above, we see that we must use (8) for the
case 0 < a < 1 and (9) for a > 1.

Expression (8) is an application of (7), but we see
that it would give a wrong answer for @ > 1. There
are two general approaches one might take to correct-
ing this error. The first way is to reinterpret (7) by
saying that the logarithm appearing there is a multi-
valued logarithm, not the principal-branch logarithm.
This is only a formal solution of the problem, however,
and from the point of view of evaluation (especially nu-
merical evaluation) it merely postpones having to face
the problem. To evaluate a definite integral, one must
know on which branch of the logarithm each endpoint
lies. The escape to multivalued logarithms is often seen
in textbooks of complex analysis, where it is feasible be-
cause definite integrals are never actually evaluated; for
a CAS, however, it is not a possibility, at least not if the
system hopes to transcend the purely formal success of
a textbook. The alternative is to fix the logarithm as
the principal branch and replace (7) with an expression
valid on a wider domain. The logarithm will be discon-
tinuous whenever f(s), regarded as a contour, crosses
the negative real axis, at which time $(f) = 0. We
shall put aside the difficulties of solving this equation in
practice. To ascertain whether the contour has crossed
the negative real axis, we can use a limiting procedure.
Let {an,n = 1,2,...} be the roots of I(f) = 0. We

evaluate

dx
a+ exp(iz)

for0<a<1,
a>1.

lim 1In f(s) —

S—0p—

lim In f(s) .

S0+

K, =

If this is non-zero, then there was a crossing. Using
arguments similar to those in the last section, we can
write a corrected integral in the form

!
/’;((;) ds = log f(s) + Zﬂ:KnH(s —an) . (10)

This last equation is a purely formal replacement for
(7) until the computability of the quantities K,, and «,
is known. Also the expressions produced by this last
equation are unlikely to be pleasing, unless the sum-
mation can be simplified to something attractive. For
example, let us apply this to the integral just given. The
solution of

S(ae™™ +1)=0



for real a 1s £ = n7. Hence

/ adx _
a+exp(iz)
If |a| < 1, then K, = 0 for all n, as several systems can
obtain correctly. If @ > 1, then

iln(ae‘” +1)+ Z KpH(z —nm) .

. {27r , nodd,
K, =
0, n even.
If a < —1, then
K — —27 , n even,
=0, n odd.

Thus, using also the result that

iH(r—np—q)z [I;QJ :

n=1

where | | is the floor function, we obtain

/ adz _
a+exp(iz)

iln(ae™® 4+ 1), la] <1,
iln(ae™® + 1) 4+ 27| (z —7)/27] , a>1.
iln(ae™® + 1) — 27|z /27 | a<—1.

Further, since for a > 1,
iln(ae™ 4+ 1) + 27| (x — ) /27| =z + iln(a + €7) |

with a similar identity when a < —1, we obtain

a da z:ln(ae_”'—l— 1), la] < 1,
/7.: iln(a+e*)+ 2, a>1,
a+ exp(iz) itln(—a—€")+2, a<-—1.

The conclusion to be drawn from this exercise is
that (10) does indeed improve on (7) as an integration
formula, but the implementation of (10) would entail
significant computation; and the range of problems for
which it could be completed successfully is an open ques-
tion.

5 Other sources of discontinuity

In the previous sections, the discontinuities considered
arose because of the way in which the integral was eval-
uated, and the behaviour of the integrand itself did not
contribute to the difficulties. There are integrals, how-
ever, in which the behaviour of the integrand must be
understood in order to obtain a correct indefinite inte-
gral. Consider the integral

—1/2

Va3 4 243 dr v 0.0712 — 0.12613 .

—-3/2
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The numerical evaluation used principal branch defini-
tions for all quantities. In this example, it is now the
wntegrand that crosses the branch cut along the nega-
tive real axis. It does so at £ = —1. The integral is still
well-defined, and the result of numerical evaluation is
shown. An anti-derivative for this integral is known. It
is

% sgn®3(z) (1 + 22/3)(322/3 — 2)\/ (1 4 22/3) sgn2/3(z) .

This expression is discontinuous at = —1 because of
the discontinuity in the integrand. As with the previous
cases, once the location of a discontinuity is established,
there is no difficulty in removing it. The point of the
example, however, is that the location of the discontinu-
ity requires a more elaborate analysis of the behaviour
of the integrand in the complex plane than any current
system could manage automatically.

6 Concluding remarks

Fateman (1992) has remarked that the Risch algorithm
is commonly misunderstood. He distinguishes between
anti-derivatives and indefinite integrals in a way simi-
lar to the way it was done here, and points out that
the Risch algorithm only guarantees to return an anti-
derivative of a function, not an indefinite integral. In
particular there is no reason to suppose that the anti-
derivative of 0 will be a constant; it might be a func-
tion such as arctan z 4 arctan(1/z) which is piecewise
constant only. This paper has offered a number of ar-
guments which complement Fateman’s remarks, in the
hope of establishing that the goal of integration rou-
tines should be to return indefinite integrals. Most of
the time they already do, of course, which is why the
issue has never been considered in detail. Exceptions,
such as the examples presented here, have been treated
off-handedly.

A second purpose of this paper has been to estab-
lish that the goal of returning indefinite integrals can be
embraced by CAS without degrading their functional-
ity; rather they improve it. Two common sources of dis-
continuous anti-derivatives have been examined, namely
the handling of logarithms of real arguments and the
method of substitution, and the modest improvements
that correct their results in many practically occurring
cases have been presented. Several other sources of dis-
continuous behaviour have been pointed out without a
well-defined correction being given. It is to be hoped
that such areas will be the subjects of further research.
There will be times when the application of the im-
proved algorithms to particular cases will involve sub-
stantial computation, but that is no reason to postpone
implementing them: a wrong answer 1is still wrong no



matter how quickly and efficiently it is obtained. A final
comment concerns the interaction between the standard
textbooks and CAS. The fact that equation (10) is never
seen in a book on complex analysis does not mean that
it does not have to be taken into account. These books
are written assuming a high level of abstraction and
generality, and this is a luxury the CAS cannot share, if
they hope to return correct and explicit results to their
users.
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