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It is shown that the Lambert W function cannot be expressed in terms of the elementary, Liouvillian,
functions. The proof is based on a theorem due to Rosenlicht. A related function, the Wright ω function,
is similarly shown to be not Liouvillian.
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The Lambert W function [5,9] is a multi-valued function defined as the solution of

W(x)eW(x) = x, (1)

one of the simplest possible non-algebraic equations. The Wright ω function [4] also satisfies a
simple transcendental equation (away from its discontinuities):

ω(x) + ln ω(x) = x. (2)

Both of these functions are implicitly elementary, in the sense discussed by Risch in [7]. One
can ask whether there are explicit formulations of those functions in terms of known functions
or whether they are genuinely new functions. A common class of ‘well-known’ functions are the
Liouvillian functions.

DEFINITION 1 Let (k,′ ) be a differential field of characteristic 0. A differential extension (K,′ )
of k is called Liouvillian over k if there are θ1, . . . , θn ∈ K such that K = C(x, θ1, . . . , θn) and
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for all i, at least one of the following holds:
(1) θi is algebraic over k(θ1, . . . , θi−1);
(2) θ ′

i = η for some η ∈ k(θ1, . . . , θi−1);
(3) θ ′

i /θi = η for some η ∈ k(θ1, . . . , θi−1).

We say that f (x) is a Liouvillian function if it lies in some Liouvillian extension of (C(x), d/dx)

for some constant field C.

It turns out that the possible closed-form expressions for solutions of equations of the form (1)
and 2) were already studied by Liouville [6], who was certainly able to prove already that W(x) is
not a Liouvillian function. In any event, this result was known to Rosenlicht, who published in [8]
a proposition that can be applied to prove easily that W(x) and ω(x) (or many functions defined
by similar transcendental equations) are not Liouvillian. Yet, questions about whether W(x) is
elementary or Liouvillian appear in the literature [3], possibly because Rosenlicht’s paper is not
as well-read as it deserves to be, so we illustrate in this note how Rosenlicht’s theorem can prove
that neither W(x) nor ω(x) is Liouvillian.

We start by recalling Rosenlicht’s result.

PROPOSITION 1 [8, Proposition, p. 21] Let k be a differential field of characteristic 0 and let
y1, . . . , yn, z1, . . . , zn be elements of a Liouvillian extension of k having the same subfield of
constants as k. Suppose that

y ′
i

yi

= z′
i , i = 1, . . . , n,

and that k(y1, . . . , yn, z1, . . . , zn) is algebraic over each of its subfields k(y1, . . . , yn) and
k(z1, . . . , zn). Then, y1, . . . , yn,z1, . . . , zn are all algebraic over k.

An immediate consequence of the case n = 1 of that proposition is that if W(x) and ω(x)

are Liouvillian functions, then they must be algebraic functions: suppose that W belongs to a
Liouvillian extension K of C(x). Take k = C(x) where C is the constant subfield of K , then
K is Liouvillian over k and both fields have the same subfield of constants. Taking logarithmic
derivatives on both sides of Equation (1) yields

W ′

W
+ W ′ = 1

x
, (3)

whence y ′/y = W ′ where y = x/W ∈ K . Since k(y, W) = k(y) = k(W), Rosenlicht’s theorem
implies that W is algebraic over k = C(x). The proof is similar for ω(x): differentiating both
sides of Equation (2) yields ω′ + ω′/ω = 1, whence ω′/ω = z′ where z = x − ω. Since k(ω, z) =
k(ω) = k(z), Rosenlicht’s theorem implies that ω is algebraic over k = C(x).

There are obvious analytic arguments why W(x) and ω(x) cannot be algebraic functions, so
they cannot be Liouvillian functions: if W(x) has a pole of finite order, then eW(x), and therefore
W(x)eW(x), has an essential singularity, so W(x)eW(x) cannot equal x. Similarly, if ω(x) has a
zero, then ln ω(x), and therefore ω(x) + ln ω(x), has a logarithmic singularity, so ω(x) + ln ω(x)

cannot equal x. Since algebraic functions with either no pole or no zero must be constants, and
W(x) and ω(x) cannot be constant, they cannot be algebraic.

The above argument can be cast in algebraic terms. Since Rosenlicht proved his result
algebraically, we outline the algebraic proof that W(x) and ω(x) cannot be algebraic functions.
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Note that Equation (3) implies that y = W(x) is a solution of the differential equation

xy ′(1 + y) = y. (4)

We first recall some notations and results from [2]: we say that a field E is an algebraic function
field of one variable over a subfield F ⊂ E if

• E is of transcendence degree 1 over F ,
• for any t ∈ E transcendental over F , [E : F(t)] is finite.

By an F -place of E, we then mean the maximal ideal of a valuation ring of E containing F . For
such a place p, we write νp : E∗ → Z for its order function. It has, in particular, the following
properties:

• νp(c) = 0 for any c ∈ F ∩ E∗.
• νp(ab) = νp(a) + νp(b) and νp(a + b) ≥ min(νp(a), νp(b)) for any a, b ∈ E∗.
• νp(a + b) = min(νp(a), νp(b)) for any a, b ∈ E∗ such that νp(a) 	= νp(b).
• For any a ∈ E∗, if νp(a) ≥ 0 at all the F -places of E, then a is algebraic over F .

Let now t ∈ E be transcendental over F and p be any F -place of E. We write rt (p) ∈ Z>0 for
the ramification index of p over F(t). In addition, we call the place p infinite (w.r.t. t) if t−1 ∈ p,
finite (w.r.t. t) otherwise. A finite place p contains a unique monic irreducible P ∈ F [t], called
the center of p (w.r.t. t).

PROPOSITION 2 Let (F,′ ) be a differential field containing an element x such that x ′ = 1. If F has
transcendence degree 1 over its constant subfield, then the only solution y ∈ F of Equation (4)

is y = 0.

Proof Let C be the constant subfield of F and suppose that F has transcendence degree 1 over
C. Since x ′ = 1, x is transcendental over C, so F is algebraic over C(x). Let y ∈ F be a non-zero
solution of Equation (4) and E = C̄(x, y), which is an algebraic function field of one variable
over C̄. Let p be any C̄-place of E. Applying νp on both sides of Equation (4), we get

νp(x) + νp(y ′) + νp(1 + y) = νp(y). (5)

Suppose that νp(y) < 0. Then, νp(1 + y) = min(0, νp(y)) = νp(y) and Equation (5) becomes

νp(x) + νp(y ′) = 0. (6)

If p is finite w.r.t. x, then νp(x) ≥ rx(p). But Lemma 1.7 of [1] implies that νp(y ′) = νp(y) −
rx(p) < −rx(p), in contradiction with Equation (6). If p is infinite, then νp(x) = −rx(p).
But Lemma 1.8 of [1] implies that νp(y ′) ≤ νp(y) + rx(p) < rx(p), in contradiction with
Equation (6). Therefore, νp(y) ≥ 0 at all the C̄-places of E, which implies that y ∈ C̄, hence
that y ′ = 0, and Equation (4) becomes 0 = y. �

Since the only algebraic solution of Equation (4) is 0, which is not a solution of Equation (1),
W(x) cannot be algebraic, hence it cannot be a Liouvillian function.

The proof that ω(x) is not an algebraic function is similar, since y = ω(x) is a solution of
the differential equation y ′(1 + y) = y. The equalities (5) and (6) become, respectively, νp(y ′) +
νp(1 + y) = νp(y) and νp(y ′) = 0, and the proof of Proposition 2 remains valid.
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