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The temperature field or electric potential around two equal, perfectly conducting
spheres which are almost touching is studied using the method of matched asymptotic
expansions. The dominant “outer” approximation of the calculational scheme
applies in the narrow gap between the spheres while the “inner” approximation
applies in the remaining volume outside the gap. The purpose of the calculation is to
investigate the properties of certain singularities whose existence has been indicated
by earlier solutions of the Laplace equation around two spheres. For example, the
electrostatic forces acting on the spheres or the heat flux between them can become
infinite when the spheres touch. The explicit forms of the singularities are found and
used to assess the accuracy of earlier solutions. In the appendix the corresponding
two-dimensional problems for almost touching cylinders are analysed.

1. Introduction

THE cALCULATIONS presented in this paper are relevant to several areas of research
which share the Laplace equation as their governing equation. For example, the
research interests of the authors whose papers are referred to below were rain droplets
{Davis, 1964), arcing phenomena between electrical contacts (Warren & Cuthrell,
1975), electrical meters (Smith & Rungis, 1975) and the properties of suspensions
(Jeffrey, 1973). Although there are in the literature many solutions of the Laplace
equation around two spheres (some solutions having been derived and published
independently several times), points of difficulty still exist. One such point of difficulty
is seen by comparing Davis (1964), Smith & Barakat (1975) and Warren & Cuthrell
(1975) who all calculate the electrostatic forces acting on each of two charged spheres. -
Whereas the numerical results of Davis (1964) and Warren & Cuthrell (1975) suggest
that the force becomes infinite when the spheres touch, Smith & Barakat (1975)
calculate a finite force for touching spheres. It is shown here that all three calculations
are in fact correct and the apparent disagreement is a result of the different ways the
authors formulated the problem. In addition, it is shown that a singularity in the force

337
0020-2932/78/070337+15 $02.00/0 © 1978 Academic Press Inc. (London) Limited



338 D. J. JEFFREY

can indeed exist when the spheres touch and its form is given explicitly. A similar
difficulty arises in calculations of the dipole strength of each sphere (this is defined
below) by Jeffrey (1973), Smith & Rungis (1975) and Love (1975): numerically it is
difficult to get the various results to agree. Again all calculations are correct and the
numerical difficulties come from singularities (which are calculated) in the derivativ&
with respect to the separation of the spheres, of the expression for dipole strength.
The difficulties just described reflect the fact that although general methods exist for
the solution of two-sphere problems, the most important being bispherical
coordinates (Jeffery, 1912; Davis 1964), twin multipole expansions (Ross, 1970;
Jeffrey, 1973), images or reflexions (Smith & Rungis, 1975), they are all numerically
inconvenient when the spheres are very close together. One purpose of the present
work is to provide a way of testing the rate of convergence of these schemes. In
particular it is interesting to investigate the rate of convergence of the solutions found
by Jeffrey (1973) which are in the form of infinite series, because if one truncates these
series one obtains expressions corresponding to solutions obtained by the still
popular method of reflexions. Except when the spheres are far apart, the method of
reflexions converges slowly. It is possible, however, to take a quite different view of
the present work and, rather than testing the accuracy of the general solution using
the asymptotic one, test the accuracy of the asymptotic solution using the general

one.
From this last point of view, the present calculations are relevant to papers by

Keller (1963) and Batchelor & O’Brien (1977). In these papers the thermal or
electrical conductivity of a granular medium is found through a study of the fields in
the small gaps separating adjacent (highly conducting) particles. In the
approximation to the conductivity so obtained, the O(l) term is apparently
dependent upon where one places the outer boundary of the gap. This can be
explained using the language of inner and outer expansions as set out in Van Dyke
(1975, Section 5.9). The solution within the gap corresponds to a dominant “outer”
approximation. (The terminology is unfortunate in that the gap is geometrically an
inner region, and yet an “outer” region for the approximation procedure; the
adjectives “inner” and ‘“‘outer” have been used in both senses in the past. To keep
confusion at bay, they will be used here only in the approximation sense and never in
the geometrical one.) The point made by Keller (1963) and Batchelor & O’Brien
(1977) is that useful results can be obtained knowing only this ‘“outer”
approximation, the “inner” approximation being very difficult to obtain, provided
that the apparent dependence upon the position of the outer boundary is not
regarded as a difficulty. Why it is not a difficulty can be understood from the
calculation in this paper. By taking a simpler situation in which the inner
approximation can be found, this paper shows that the dependence on the gap
boundary is removed when the formal matching of the two approximations is carried
through to completion. In addition one can comment on the accuracy of the
asymptotic analysis by comparing its results with those of the general theory.

For connoisseurs of matched asymptotic expansions the details of the calculation
contain an unusual feature in that, at first sight, the inner and outer approximations
appear to be unique. In fact, eigensolutions can be constructed for the inner problem
but not for the outer one, and it seems that the outer approximation is indeed unique
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to all orders. In the appendix by Van Dyke, two-dimensional problems which
correspond to the problems of the main paper are studied for almost touching
cylinders and the simple closed-form solutions which are found allow a discussion of
some of the details of the formal asymptotic procedure which are passed over in the
main paper because of algebraic complexity.

. 2. The Problems to be Solved

The linearity of the Laplace equation allows us to divide the main problem into
four subsidiary problems; these are now described as problems in heat conduction,
the conversion to the analogous electrostatic problems being obvious. Two spheres,
each of radius a, are placed in a temperature gradient which tends to a constant a™'G
far from the spheres (the a™' factor makes G take the dimensions of temperature,
which simplifies later equations). Each sphere, being a perfect conductor, is at a
uniform temperature. The four problems are (a) both spheres are at temperature T,
there 1s no applied field (G = 0) and the temperature tends to zero at infinity, (b) the
spheres are at equal and opposite temperatures + T, and again G = 0, (c) the spheres
are at zero temperature and the field G, is parallel to the line of centres, and (d) the
spheres are at zero temperature and G, is perpendicular to the line of centres. In
addition, problems (b) and (c) can be combined into a problem (bc) in which T, is
determined as a function of G, and the gap width by the requirement that the net heat
flux into a sphere 1s zero.

After solving these problems, we shall calculate three quantities. Letting ¢ be the
temperature field (or the electric potential), we require first the heat flux into a sphere,
non-dimensionalized to remove the sphere radius:

0 = (2ra)™! j'(acb/@n)d/l, @.1)

where the integral is over any surface enclosing one sphere and d¢/dn is a normal
derivative. For the electrostatic problem, @ is the charge on a sphere. We require next
the dipole strength of a sphere

S = f{x(@q&/én)—qﬁn} dA, (2.2)

where n is the unit normal out of the sphere and the origin for x will be specified later;
this definition is equivalent to Jeffrey (1973, equation (2.4)) and again the integration
is over any surface enclosing a sphere. Finally we require the electrostatic force on a

sphere ,
F= f(?_‘é) ndA. (2.3)
on

Our main interest will lie in the forms taken by these quantities for problems (b) and
(c), these being the ones containing the singularities mentioned in the introduction.

3. First-order Solutions Qutside the Gap

The solutions valid outside the gap between the spheres are found using tangent-
sphere coordinates. These coordinates were first suggested by Ghosh (1936) who
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made the mistake, however, of writing an infinite sum where now we write a Hankel
transform (as in (3.3) below); this mistake is discussed further in Jeffrey & Chen
{1977). The properties of the coordinates are given in Smith & Barakat (1975) and in
Moon & Spencer (1961) and are only outlined here. We start by taking cylindrical
coordinates (ar, az, 8) with the z axis along the line of centres and the origin midway
between the spheres. Tangent-sphere coordinates (£, 5, ) are defined by

z2=2/(¢*+n*) and r=2n/(+n?). (3.1)

If the width of the gap is 2k (see Fig. 1) and ¢ = h/a < |, then the equation for the
upper sphere whose centre is on the positive z axis is (z— 1 —¢)* +r? = 1 which, when
expanded as a series in ¢ and transformed using (3.1), is equivalent to

E=1 +i2%(?]2— 1)+ 0(e?). (3.2)

To leading order, then, we solve V2¢ = 0 and apply boundary conditionson ¢ = +1,
1.e. on a pair of touching spheres. Denoting these leading-order solutions for
problems (a)-(d) by T,¢'", T, iV, G, ¢! and G4\, we follow the methods of Smith
& Barakat (1975) and use tables of Hankel transforms (Erdelyi ¢t al., 1954) to find

P = (§2+n2)%j e "Ssech s cosh s&J o(sn)ds, (3.3a)
0
i = (Cz-l-rlz)%J “e~Scosech s sinh s¢Jo(sn)ds, (3.3b)
0
= 25/(§2+;72)—(g“2+;72)5j 2se” % cosech s sinh s&Jo(sn)ds, {3.3¢)
0

P4 = cos 02n/(E* 4+ n?)—cos 9(§’Z+n2)§J 2e~*sech s cosh sEJ (sn)ds. (3.3d)
0

. We put these solutions to immediate use and motivate the development of the
solutions in the gap by calculating the leading-order approximation to Q, defined in
(2.1). For problem (a):

[ 6¢“’] 2ndn
() _ T a
< ajo l: o =1 1+’72

o« 1 & s i’]d}’]
=2TaJ {n—n;«#(l-l-nzﬁj‘ se tanhsJO(sn)ds}m.

0 0

The double integral is evaluated by changing the order of integration and using tables
of Hankel transforms to integrate with respect to #. Then

o = ’I:,<l+ j e~ * tanh sds) =T2In2,
0
in agreement with Smith & Barakat (1975). Similarly,

€X

(1) _ - — 1.2

{ _GC4J se *cosechsds = 4n°G,,
0
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and Q, = 0. An attempt to calculate Q{" from (3.3b) by this method leads to an
integrand e~ % coths which would give an infinite value for Q{"’. Obviously the
approximation ¢§" breaks down in the neighbourhood of the gap where its gradient
becomes unbounded at the origin.

4. The Solution in the Gap

The asymptotic solution in the gap is the outer approximation of the procedure
needed to solve problem (b). The leading-order solution was given by Keller (1963);
in this section we shall extend the solution to the next order. In the gap we define
stretched coordinates Z, R by

Z =1z/¢ and R =r/el (4.1)

4 7 {also X)

\/

2/71——-——————-—~—-—>

F1G. 1. The coordinates in the gap. The main paper uses cylindrical coordinates (Z,R,8) while the
Appendix uses Cartesian coordinates (X, Y).

The surface of the upper sphere in Fig. 1 is then given, within the neighbourhood of
the gap, by

Z = H+eiR* +0(e%), (4.2)

where H = 1 +1R%. We rewrite the Laplace equation in stretched coordinates and
seek a solution in the form (as in (3.3b), T, will not appear explicitly)

¢, = OV +e0D +0(e?).
The equations for @ and ®* are
20 P 1 9 [ eo
a—(bz—':o and 253 = "5 ap R ——.
0Z YA R 6R OR
The boundary conditions come from applying @ +&®'* = | on the surface given in
(4.2), and are
®D(H,R)=1 and O®D(H,R)=—LR[601V/IZ], .

In addition the functions are antisymmetric about Z = 0. The solutions to these
equations are

oW =Z/H, (4.3a)
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OP =4732-H)/H?>-£Z(H? - 2H + 3)/H?. (4.3b)

Expressions related to these were given by Thwaites (1962).
To calculate the quantities defined in Section 2, we shall need d¢/dn on the sphere
surface within the gap; this is most easily expressed in terms of Z:

2 _ 00 0
on BV 4 A cR

= e YZ+ 51 +1/2)+0(0). (4.4)

5. The Second-order Solution Outside the Gap

Before deriving the second-order solutions outside the gap, we note that the first-
order solutions to problem (b) inside and outside the gap, (4.3a) and (3.3b), match
trivially. In the neighbourhood of the gap, n > | and ¢ < I, so (3.3b) becomes
asymptotically

g 2
By ~n %f Jo(t)dt+0(n~ ")~ —f
0

This is the same as the asymptotic form of (4.3a) for large R:
O ~ Z/SR*+0(R™*).

[t may seem, therefore, that the solutions are unique and that no new information is
produced by matching. However, it is possible to construct eigensolutions which
should be added to (3.3b), because strictly we are not allowed to apply our boundary
condition on ¢ =1 everywhere including the origin (1 —o0). Consequently, it is
possible for multipoles to be placed at the origin while the problem outside the gap
remains correctly posed. One example of an eigensolution is obtained by taking the
solution (5.3) below and changing the first £ in (5.3a) to (£ — 1) and the first £ in (5.3b)
to (26 —1). Leaving these eigensolutions out of (3.3b) is the same as anticipating the
results of matching. One expects that similarly the problem inside the gap will have
eigensolutions, but this does not seem to be so, making (4.3) unique, which is an
unusual feature of this matching problem. Not all two-sphere potential problems are
like this, for example in the potential-flow problem studied by Jeffrey & Chen (1977)
and Czaykowski (1970), the solution in the gap is not unique and unknown constants
must be found by matching in the conventional way.

The second-order solutions for problems (a) and (d) do not produce anything of
interest, and so we concentrate here on problems (b) and (c). We extend the solutions
') of (3.3) by writing the solutions outside the gap as

¢ = ¢V +ed P+ 0(e).

The boundary condition on ¢®, which is applied on & = 1, is derived from the
requirement that the real boundary condition is applied to ¢ on (3.2), thus

21, n) = =4 — D[0¢' /0T = 1.

We substitute (3.3) into this condition and convert it to a suitable form by using the
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result

s

n? f f(s)Molsn)ds =J [(ffsy =f"1J o(sn)ds, (5.1)
o} 0

which is true provided ' — f/s — 0 as s — 0. The prime denotes d/ds. For problem (c)

the boundary condition becomes

o

(L) =—(1+¢?)} J Cl(s)sinh sJ 4(sn)ds,

0
where

C(s)sinhs = e 5—3se *+2s’e S+s’e Scoths—
(se~*coths) +(s?e *coths)”.

The required solution for ¢!{*' is then obviously
¢7E,n) = — (& +n?) j Cls)sinh s¢Jo(sm)ds.
0

For problem (b) things are not so straightforward. Before we can use (5.1) we must
separate the s~ ' singularity in coth s; we obtain

(1, n) = =31+ +(L+n?) Jx B(s) sinh s.Jo(sn)ds, (5.2)

0
where

B(s)sinhs =se *+1se *coths— .
e *coths—e™%/s) +4{se *coths—e~5)".

We must now find a particular integral of Laplace’s equation that will fit this
boundary condition. We find it by substituting

ee)

5(52+'72)+(4‘2+V12)*j Wis, ) o(sn)ds (5.3a)
0

into Laplace’s equation, taking an inverse Hankel transform and obtaining an
equation for W:

OPW[eE s W +4 f E(E2+nP)"tnd o(sn)dn = 0.
0
Any solution of this equation that gives a convergent integral in (5.3a) will suit our
purpose; the most convenient is
I+s __ sinhsé

¢ -
W o= = L )
s? (L+¢s)e 2 ° sinhs

(5.3b)

When this partly arbitrary choice is combined with a general solution of Laplace’s
equation and (5.2) applied, the solution for ¢\ is unique (although again
eigensolutions have been suppressed):

PRE, ) = —FE(E+n) = +n*) x

Jm [W(s,&)—2B(s) sinh s&1J o(sn) ds. (54)
0
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We now proceed to calculate Q, S and F and compare the expressions with other
work.

6. Calculation of Q

The quantity Q!" was calculated in Section 3. We start this section by calculating
0?, which comes easily from ¢{*. We must first express our definition (2.1) in terms
of the (&,,0) coordinates we have been using. At first sight it may seem that this
requires expressions for d¢/dn and dA on ¢ = 1 +}&(n” — 1), but Q is independent of
the surface chosen, provided it surrounds only one sphere, and so we choose the

surface £ = 1. Then
o [[22] 24
| 6¢ Jeoy 149

The calculation of Q! follows exactly that of Qi", giving

0¥ =-2| C(s)ds=3n*-14,

JO

where all integrals can be evaluated using integration by parts and Gradshteyn &
Ryzhik (1963, Section 3.552).

To calculate Q" and @4, we match an integral over the sphere surface in the gap
with an integral over the remaining surface. We choose some point n, > 1 which lies
in the region of overlap in which both solutions are valid and integrate separately the
solutions (3.3b), (5.4) and (4.3) to this point. If we denote the “inner” contribution to
0, from outside the gap (1 < 1,) by Q,; and that from inside by Q,,, then

o [ 0¢L 2ndn
b 0 0¢ 1+’72.

To do this integral we separate the s~ singularity in coth s as we did in Section 5 and
integrate it separately. To O(ng '), the remainder integral can be taken from 0 to co.
We obtain

-5 -2s

© es )ds—i-O(no“).

(!)z 2 T -V -
Qbi T,In(1+n5)+2 bJo <Sinhs

The integral is —2y(1) = 2y (Gradshteyn & Ryzhik, 1965, Section 8.361), where y is
Euler’s constant. The calculation of Q{2 is similar:

O = —4Tyn§+3T, In (1 +n3)+ T,Gv +15).
All integrals are done by integrating by parts and using the definition of y(1).

In stretched coordinates the point 7, corresponds to Z;, where

£
0(c?).
1+n3>+ )

¢Zy = <1+e%(r1(2,—3)+

1+n3

The area element is d4 = 2nadZ and so integrating (4.4) from | to Z, gives the
“outer” contribution
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Qoo =T InZy+e3T(In Zy+ Zy+ 1)+ 0(c?).
Substituting for Z,, gives

Qvo=T[In2—Ine—In(I+nd)]+
eTsn2—$lne—5in (1+472)+4n2 =31+ 0(c) + O(ng ).

Adding Q,; and Q,, cancels the singular terms and gives
0, =T(In2=Ine+2y)+eT(5In 2—5Ine—3+ 3L +2y)+ 0(c?).

We now compare this result with those derived by Keller (1963) and Batchelor &
O’Brien (1977), who used just the solution (4.3a). Keller gave only the logarithmic
term ; by considering the O(1) term of the expression above, we see that & must be less
than 107° before the logarithmic term alone is accurate to 10%. Batchelor & O’Brien
(1977) included an O(1) constant in their expression, although they could not
actually construct a solution outside the gap to cancel the In#3 singularity (the
constant 2:48 they quote for the present two-sphere case should be 2-54). What the
present result contributes is a more formal approach to justify their procedure (made
possible because of the simpler situation) and an error estimate O(cIn¢) for their
expression.

We can now solve problem (bc) as well. We require Q,+ Q. = 0 which gives the
following relation between T, G, and &:

T, = Ga[n® +e3n®> — ))/[In 2+ 2y —Ine+ 3G +1In 2+ 2y —n &)]. {6.1)

This expression shows that T,, — 0 as ¢ » 0. This does not mean, however, that T,
can be conveniently set to zero and forgotten for small gaps, because it is very
sensitive to the value of ¢. The implication is that although calculations such as those
by Smith & Barakat (1975) and Smith & Rungis (1975) are formally correct in setting
T,. = 0 for touching spheres, in practice the conditions at the point of contact will be
all-important in determining the value of T,.. In the next section we shall see another
consequence of the sensitivity of T, to «.

7. Calculation of S

The subject of this section is the calculation of S for problems (b), (¢) and (d) and
a numerical comparison of the asymptotic formulae with the expressions given in
Jeffrey (1973) which are valid for all separations of the spheres. Each method then
tests the accuracy of the other. The calculation of S follows exactly the lines of that for
Q with the difference that the gap region no longer contributes singular terms in Mo
and so the only contribution to S comes from outside the gap. The definition (2.2) of §
is independent of the surface chosen to evaluate it, and so as in the last section we can
choose & = | as the surface for integration. The origin for x in (2.2) will be our origin
of coordinates, although this choice makes a difference only when Q is non-zero, and
since Q. = Q, = 0, there is no effect on S, or S,.

Integrating (4.4) to find the contribution from the gap, we obtain

S0 = 4na* T,[(1+15) ™" —Se(1+n13) "' +0(e?)],
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which, as stated, contains no singular terms. Thus, combining this with the fact that
only the z component of S is non-zero, we can reduce our expression for S to

S =2na® f’ {[?::l —(1 —Z)lﬁ(“} (14%;%7 +0(?).
0 ¢ Je=1

Performing the integrations gives (using { for the Riemann zeta function)
Spe = $na’ T, [in? +e(37 — 1)]— $na’G [6(3)+e(4((3)—3(4))],  (7.1)

where T,, is given by (6.1), and S'% = 3na%{(3)G,. Smith & Rungis {1975) and Love
(1975) obtained the leading-order G, term for S, but not the T, term.

The expressions with which we shall compare these results come from Jeffrey (1973)
and are exact for all separations; in the present notation,

7 ks
S, = $ma® Z Ao1,t? and S, =3m1a’G, Y. Ay, 17

p=0

Wl

where t = $(1+¢)” ! and the coefficients are given by

pon 302 [y
A.o=236,, and A, =(—1)" Amsio—n—s—1-
mn0 1n P ( ) 5;1 <”+m> s(p s—1)

We wish to test the rate at which the infinite series converge, both to test their
usefulness computationally and to test the method of reflexions. The rate of
convergence of the method of reflexions is of interest because it is a method often
applied to situations more complicated than those studied here, when only a small
number of terms (say 10) in the infinite series can be obtained. We shall sum the series
expressions for S, and S, up to some p = P and compare the numerical results with
those obtained from asymptotic expressions.

Starting with what turns out to be a rapidly converging series, we calculate
S /4na*G, when the spheres touch (¢ = §) for P = 12, 15, 20 and obtain 2:718, 2706,
2:705. The last value equals {(3) to the accuracy shown and we conclude that for this
weak interaction between the spheres a small number of terms in the series is
satisfactory. Such is not the case for S,,. In Fig. 2 the solid lines give S,/3ma*G, for
P = 70, 150 while dotted lines show two approximations to (7.1), namely

1.4

1. 1.4
63)+— and 60(3)+ o
Ine

(Ine~In2-2y)

The full expression (7.1) is indistinguishable from the second approximation because
the O(¢) terms largely cancel leaving a very small coefficient. It is clear that even with
a very large number of terms, methods such as those using reflexions give very poor
numerical results when ¢ < 0-005.

8. Calculation of F

The final calculation is of the electrostatic force on a sphere. Almost all the leading-
order non-singular contributions to the force have been calculated by Smith &
Barakat (1975), and so here we shall concentrate on the singular behaviour of F, and
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F6L(3)=7-212
7_

4__ 2
3 Ta G,

Spe/

F1G. 2. Comparison of different expressions for S,.. The broken lines actually start from 7212 at ¢ = 0.
The curves are: (1) 6(3)+in*/lne; (2) 6{(3)+4in*/(Ine—In2~2y); (3) the series summed to P = 70;
(4) the series summed to P = 150.

F ., which has not yet been studied. Warren & Cuthrell (1975) have calculated F, and
also measured it experimentally; Davis (1964) has calculated F, ; Smith & Barakat
(1975) have calculated F.. Since T, — 0 as ¢ — 0, one might expect that F,, —» F, as
¢ — 0. The numerical results of Davis (1964) and Smith & Barakat (1975) throw
doubt on this and here we shall see explicitly that it is not true. In fact F,, —>cc as
e— 0.

Only the z components of F,, F., and F,, are non-zero (neglecting possible
complications produced by problem (d)). Squaring (4.4) and integrating
appropriately gives the contribution from the gap as '

Fpo = 2nT2{e (1= 1/Zy) =310 Zoy+3(1 — 1/Z o)} + O(e)
=2nT e '+5ine+3—4In2~4(1+n)+5In (1 +72)} +
O(e)+0(ng ?).

Note that both terms of the gap solution are needed to cancel the singularities in the
first term of the solution outside the gap. The contribution of (3.3b) to the force is

mo a¢( 12 ’72 —1
FV = 22T2 f [ b ] dn. (8.1)
’ ’ 0 0% e=1 ’72 +1 1
We first separate those terms in d¢/0¢ which will lead to singular terms in #,. Thus
oY 2/3 N 1 )

=1+ +(1+7%) e | coths— = +% ) J,(sn)ds.
[95 o e ( ’7)05 S—g*s3 olsm)
Squaring this and integrating according to (8.1) gives

FV = 2nT2{3(1+n3)—3In (1 +13)+O(1)}.
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It will be seen below that the singular terms alone in F, will be sufficient to reproduce
the numerical results of Davis (1964) and Warren & Cuthrell (1975) and so the O(1)
contribution to F will not be pursued. Adding F,, and F,; gives

FiP = 2rTXe™ ' +4Ine+0(1)). (8.2)

We compare (8.2) first with the results of Warren & Cuthrell (1975), who solved
problem (b). Their Fig. 2 shows, in the present notation, F,/2rT;* plotted against .
Their figure is not reproduced here because the graph of (8.2) is indistinguishable
from the line they calculate. Thus (8.2) is a very good representation of the force for
e < 0-01. We next compare (8.2) with the results of Davis (1964), who solved problem
(bc). To do this we use

T, = GAn?/(In 242y —In¢e)+O(e). (8.3)

In the present notation, Davis (1964) calculates F, /8= T, as a function of 2¢. Thus for
2e = 0001 and 0-01, he obtains 59-5 and 96, respectively, which agrees well with 60-5
and 105 calculated from (8.2) and (8.3).

I should like to thank Professor Van Dyke for writing the Appendix, and discussing
with me the significance of the “trivial” matching of the inner and outer
approximations.
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Appendix: Two Almost Touching Circles
M. Van DykEe

IF oNE replaces the spheres of the main paper by parallel, almost touching circular
cylinders, the various approximate solutions to problems (b)-(d) can be found in
simple closed form. There is no counterpart of problem (a), for if two circles are at
equal temperatures there is a logarithmic singularity in the potential at infinity unless
the temperature is constant everywhere.

First-order Solution QOutside the Gap

We use the coordinates defined in (3.1) which here are touching circles. The change
to two dimensions, however, brings with it some minor modifications to the
coordinates. If we denote the Cartesian coordinates in the plane by (x, y) and place the
sphere centres on the x axis (see Fig. 1), then the equivalent of (3.1) can be written

{=¢4in=2/(x+iy).

We must remember, however, that while in three dimensions the range of n is
0 € n <0, in two dimensions it is —oo <y <oo. For problem (b) the first-order
solution outside the gap (the inner approximation) is simply

P = & = 2x/(x*+y?), (A.1)

where the temperature T, has been set equal to 1. Problem (c) can be solved by the
method of images, or by conformally mapping the twin circles into the unit circle in
the plane of cot n{, which gives

¢V = n Re {cot inl} = msin né/(cosh nn —cos n&). (A2)
Similarly for problem (d) we find
@4 = n Im {cosec {n{} = — 2z cos 4né sinh 4nn/(cosh mnp—cos n&).  (A.3)

The flux into the upper circle (positive x axis) is given by

o 2 g [ [26°
Q()_J'E?_ds_f_x[ﬁé l=1dﬂ, (A4)

and for problem (c) this is

x dn
(0 _ _ 2 " =27 AS
2 4 _[_w 1 +cosh ny g (A)

For problem (b), however, the integral diverges, the contribution from —n, <7 <1,
being 27, (where n, has the same meaning as it does in the main text).

Two-term Solution in the Gap

Using the stretched coordinates Z, R of (4.1) but denoting them X, Y in the plane,
we easily find the gap solution for problem (b):
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®, = X/H +4e[(4—3H)X3/H? + (2H — 3)X/H*] + O(&?), (A.6)

where H = 1+1Y? as one would expect. The first term is the solution of Keller
(1963). Although we have made no use of the boundary condition far from the circles,
this matches with the solution there (i.e. this outer approximation matches the inner
approximation (A.1)). That is, rewriting the one-term solution (A.1) in the gap
variables X, Y, expanding for small ¢ and keeping two terms gives 2X/Y>—2¢X3/Y*,
conversely, rewriting the two-term solution (A.6) in the variables used outside the gap
x, y, expanding for small ¢ and keeping one term gives 2x/y* —2x?/y*; and these are

the same.
This might suggest that in this singular perturbation problem matching has played

no role at this stage; but that is not true. The solution (A.1) is in fact not unique, for
we can add to it any multiple of any of the “eigensolutions”

sin Nnécosh Nany, N =1,2,3... (A7)

These vanish on both circles and far away, but are increasingly singular at the point of
(near) contact. We have tacitly rejected them by choosing the least singular solution;
otherwise they would be removed by matching.

The flux through the upper circle is the integral of

[% ds} = ¢ '[1/H +e{3+§(Y? — 1)/H?} + O(e7)]dY, (A.8)

where we use Y rather than X to obtain the simplest expression.
We integrate from 0 to Y,, where
61 Yy = 2n0(1+n) ™ '[L +e(l —nd)/(1 +15)]+O(e?), (A9)
and expand the result for small ¢ to obtain

o L+n5+n

=it Lot
Qp =2 ol £md) 1T
4 L+n3\*  2no(1—n) )
Lg[——s +< ; +0(E). (A.10)
S AR (1+n2)

For problems (c) and (d) the solution in the gap appears to be zero to any order in
¢. This is confirmed by rewriting the solutions (A.2), (A.3) in gap variables and
expanding for small &, which gives exponentially small terms.

Second Inner Approximation

We have calculated two terms of the solution in the gap which is the outer
approximation and only one of the inner approximation, because the outer
approximation is seen to make the primary contribution to the flux (it is for precisely
this reason that it is named “outer’”). In fact the role of the inner approximation is
merely to remove singularities: its contribution 277, to the flux just cancels the
singularity for large 7, in the second term of (A.10). Of course, in other problems it
can do more than this and add an O(1) constant to the expression for Q (for example,
Keller & Sachs (1964) predict an O(1) constant —1-95 in the expression for Q for a
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periodic array of cylinders). Thus the singularities in the last term of (A.10) must also
cancel. To verify this, we continue the solution outside the gap in the form
¢(l)+{i¢)(2)+ o

For problem (b) the correction to (A.1) is easily found as

O = Re (20 +0%) = $+4(8° - 38n%). (A.11)

This shows a typical symptom of non-uniformity, being singular like the inverse cube

of the distance from the origin, whereas (A.1) is singular like the inverse first power.

The two-term inner approximation is found to match with the two-term outer

approximation, again because we have excluded the more singular terms (A.7).
Using (A.11), we find the flux Q,; through —#, < < 1, becomes

Qui = 2o +6(3n0—3m0) + O(&?). (A.12)

Adding the contribution (A.10) to {A.12) cancels all singular terms; and then letting
1o tend to infinity yields the desired result:

0, = n2te 1+ e+ 0(eH)]. (A.13)

From the exact solution of problem (b) in bipolar coordinates (Morse & Feshbach,
1953) we can easily calculate the exact result:

0, = 2marcsech (1 +¢) = m2te {1 + e —thge’ + . . .].
For problem (c) the correction to (A.2) is
$B = —La? Re {(2L+ (1 —cosrl)}.

This contributes to the flux only exponentially small terms for large n,, so that taking
the limit gives

Q.= —2n+0(?). (A.14)
For problem (d), the correction to (A.3) is
PP = —LnIm {20+ ) cos $nl/(1 —cos nl)}.

Temperature for Zero Heat Flux

If the circles are at temperatures + T, with no net heat flux, and in a unit gradient
along the line of centres far away, we can find T,, by forming a linear combination of
the fluxes (A.13) and (A.14). This gives

T, = (2} 1 — 15+ O(e*)].
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