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In this extended abstract, we outline investigations of the application of Newton
and Halley iteration to the computation of nth roots of an integer. We give an
analysis that reduces the number of iterations by guaranteeing the number of
correct digits obtained at each iteration. The initial application is to the calculation
of the integer-power content of an integer.

1 Introduction

The integer-power content of a € Z is defined® to be the largest n € Z such
that a = b™ for some b € Z. We write ipc(a) = n. Also, b = ipf(a) is the
integer-power free base for a. Clearly we have a = ipf(a)®%(®). Any algorithm
that finds the integer-power content and base is called a perfect-power clas-
sification algorithm by Bernstein?. The first step in such an algorithm will
be what Bernstein calls a perfect-power decomposition algorithm, that is the
finding of any integer m, not necessarily maximal, such that a = b". Algo-
rithms for computing n have been given by Bach & Sorenson®, by Bernstein?,
and others. The computer algebra program Maple has a function iperfpow
which computes a perfect power. In Maple 6, this function does not compute
the integer-power content, as can be illustrated by the maple session

> iperfpow(256) ;
16

A critical part of all the algorithms is the computation of the integer root of
an integer, together with a test of whether this is an exact root. The Maple
command iroot (a,n) will compute the integer closest to a'/™, for a,n € Z,
but the command does not offer any test for an exact root.

Most algorithms proposed for root extraction use iterative schemes based
on Newton iteration. One exception is the algorithm used by the iroot
function in Maple release 6. The function iroot(a,n) rounds the result of
the floating-point computation of exp (1 Ina). The algorithm of Bach and
Sorensen uses a novel form of Newton iteration based on taking the floor of
all intermediate results. We show that although this algorithm is attractive,
it is not well suited to the Maple environment, and in general will become less
efficient as the integers in question become larger. The algorithm of Bernstein
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is based on a progressive-precision Newton iteration. The use of progressively
increasing precision at each step of an iteration is something that is obvious
and instinctive to human computers working by hand, and was enunciated in
a computer setting by Brent*.

As well as examining the efficiency of existing algorithms, including p-adic
methods, this paper considers in detail the control loops used in programming
progressive-precision iteration. We also consider Halley iteration as an alter-
native to Newton iteration. Our considerations are also influenced by the
specifics of the Maple computing environment, in particular the fact that
Maple offers a radix 10 number system.

2 Newton and Halley Iteration

In this section, we give a uniform treatment of the Newton and Halley itera-
tions.

2.1 General iteration formulae

Consider solving the equation f(z) = 0, given an initial estimate zo for the
solution. We expand f(z) as a Taylor series around xg.

f() = f(wo)+(z—z0) f'(z0) + 5 (z—20)* " (x0) + § (z—20)* f" (o) +... (1)
Setting h = x —x¢ and f(x) = 0, we can solve for h by the Lagrange inversion
theorem. Abbreviating f(zo) to f for clarity, we write

1 n 3 \2 _ frrem
-—f- Sf7+ ) 5ff P+ (2)
fro2r) 6(f')
The series is written as shown to emphasize that it is a series in powers of
f(zg). The classical Newton iteration is obtained by taking one term of this
series, and the classical Halley iteration is obtained by converting the series

to a continued fraction and taking terms to O(f?). The continued fraction
form of (2) is

h =

—f
, 3
— 3)
2f//f// + _f
3f1(f12 /B =21 )
and dropping higher-order terms and reverting to standard iteration notation,
we get Halley’s method as

h =
I+

f (@)
far) = 5F(@p) f"(xn)/ f'(20)

(4)

Tk41 = Tk —
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2.2 Rate of convergence

The accuracy of the iteration can be analyzed in terms of forward and back-
ward error. If the exact solution to f = 0 is denoted z., then an estimate z
gives a forward (absolute) error of |z, — z¢| and a backward error of |f(zo)].
Maple users are accustomed to specifying accuracy by setting ‘Digits’, in
other words specifying the number of correct digits in the answer. This is
essentially the forward error. The present root-finding problem also requires
a guaranteed forward error. The popular rules of thumb are that Newton
‘doubles the number of correct digits each iteration’, and Halley ‘triples the
number of correct digits’; the theorems below show that these rules are ap-
proximations.

Theorem. With the above notation, let o be a d-digit approximation in
radix B to Te. S0 |ze — zo|/|Te| = BB+, where 0 < b < 1. Then one step

of a Newton iteration gives ;" accurate to

gn) - 2| _ |b2372d+2$0f”(§)| )
ze| 2] ’

for some g < £ < z.. The improvement in one step of a Halley method is

21" = el _ (e = 201" @1 _ BB (6)
|| 1620 f' (o) 165" (o)

|z

(6)

3 Algorithms for root extraction

One standard algorithm for extracting a root is the p-adic algorithm®. This

has not been used by any of the other papers studying perfect powers, the

reason being that a p-adic iteration returns an integer, even if the root being

calculated is not exact. A separate test must then be made to detect this.
An integer-based algorithm has been given by Bach and Sorenson®. In

the Maple programming language, computing z = a'/™ can be simplified to

irootBachSor:=proc(a,n,flag)

X:=a; f:= x"n-a;

while 0<f do x:= floor(x-f/(n*x"(n-1))); f:=x"n-a; od;

if f=0 then assign(flag,true); else assign(flag,false); fi;

x; end;

For a = 101990 and n = 2, this takes 30 sec. in Maple 6 on a pentium system.

Most of this time is due to the poor starting approximation, but even with a

starting point with 1 digit correct, the time is 0.6 sec. The main cost being

that every iteration works with 1000 digit integers.
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Bernstein works with floating point numbers, and progressive precision.
Certainly in a Maple context, and perhaps others, progressive precision is more
efficiently programmed using floating point numbers rather than integers. Our
interest in this algorithm lies in the control of the iterative loop. In progressive
precision calculations this is typically programmed as (the program fragment
below is not Bernstein’s; it is a simplification used for explanation).
irootFloat:=proc(a,n,flag) % Digits is global
tol:= Float(1,-Digits); x:=start;
xnew:=0; UserDigits:=Digits; Digits:=1;
while abs(x-xnew)> tol do
Digits:=min(2*Digits,UserDigits); x:= xnew;
xnew:= x- (x"n-a)/(n*x"(n-1)); od;

Xx; end;

This fragment assumes that a start value for £ can be computed. The inef-
ficiency with this method is the fact that the last iteration does not improve
the accuracy, but simply verifies that the calculation is complete. This is in
contrast to p-adic methods in which the number of iterations is known in ad-
vance and no extra ones are performed. Using (5) and (6), we have programed
Newton and Halley iteration so that no extra iterations are performed.

3.1 Limitations of Newton and Halley iteration

Evaluating (5) for f = 2™ — a, it can be shown that the improvement in ac-
curacy per step deteriorates with increasing n. In current Maple, the existing
iroot is faster for n > 100, and Halley iteration is faster for n < 100.
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