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Abstract—The Lambert W function possesses
branches labelled by an index k. The value of W
therefore depends upon the value of its argument
z and the value of its branch index. Given two
branches, labelled n and m, the branch difference
is the difference between the two branches, when
both are evaluated at the same argument z.
It is shown that elementary inverse functions
have trivial branch differences, but Lambert W
has nontrivial differences. The inverse sine func-
tion has real-valued branch differences for real
arguments, and the natural logarithm function
has purely imaginary branch differences. The
Lambert W function, however, has both real-
valued differences and complex-valued differ-
ences. Applications and representations of the
branch differences of W are given.
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I. INTRODUCTION

The Lambert W function is a multi-branched

function (also called a multivalued function).

The branches are indexed by an integer k,

and written Wk. For z ∈ C, the branches are

defined for |z| → ∞ by [1]

Wk(z)e
Wk(z) = z and Wk(z)→ lnk z ,

where lnk z = ln z + 2πik is the kth branch

of logarithm. The branch cuts vary between

branches. For the principle branch, the cut is

(−∞,−1/e], while for other branches it is

(−∞, 0].
Unlike the elementary multivalued functions,

such as logarithm or the inverse trigonometric

functions, the branches of the Lambert W
function are not trivially related. This means

that the difference between branches is a new

function with interesting and useful properties.

In fact, this has already been noticed in a

variety of contexts, with some instances pre-

dating the naming of the Lambert W function.

For example, in [10], Jordan and Glasser, ap-

parently working independently, used a substi-

tution equivalent to W (xex) to evaluate the

definite integral∫ ∞

0

e−w/2
√
w du , where w =

u

1− e−u
,

a problem posed by Logan, Mallows & Shepp.

Karamata [11] derived a series expansion for

W as part of his solution of a problem posed by

Ramanujan. Definite integrals containing the

tree T function, a cognate of W , used branch

differences in [3]. Further applications can be

seen in [12].

In order to establish the significance of

branch differences, we begin by discussing the

branches of some of the elementary functions.

This will explain the meaning of ‘trivial differ-

ences’ referred to above.

II. ELEMENTARY INVERSE FUNCTIONS

Branch information was added to the nat-

ural logarithm function in [7]. Although the

notation loga is widely used to denote log-

arithm to the base a, this notation does not

apply to natural logarithm, since the base must

be e. Therefore lnk denotes the kth branch

of logarithm. Modern convention places the

branch cut for ln along the negative real axis

(−∞, 0] and hence the range of lnk obeys

� lnk ∈ ((2k − 1)π, (2k + 1)π]. Therefore,

for the logarithm function, two consecutive

branches differ by the imaginary constant

lnk+1 z − lnk z = 2πi .
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Figure 1. The domain of the sine function in the complex
plane, denoted the w-plane. The variable w will become
the argument of sinw, or equivalently, w will be mapped
to the z-plane (shown in figure 2) by the sine function.
The red vertical lines separate the branch regions. Each
region between the red lines maps to the entire z-plane.
When returning from z back to w using the inverse sine
function, the branch information must be specified. Thus
this figure is also the union of the ranges of each of the
branches of invsink .

Thus, there is no new function created by

taking the difference.

In contrast with logarithm, the inverse sine

function has real-valued differences. Without

branch information, inverse sine is denoted

arcsin, but when branch information is added

to the inverse sine, it is denoted invsink, for

convenience in software implementation [6].

We consider the pair of equations

z = sinw ,

w = invsink z .

To understand these equations, it is easiest to

start in the w-plane, shown in figure 1, and

consider the mapping under sine. The sine

function does not have branches, but each

region labelled as a branch maps to the entire

z-plane as shown. Two points in the w-plane

differing by 2π map to the same point

z = sin(w) = sin(w + 2π) ,

Figure 2. The range of the sine function in the complex z-
plane, and the domain of the inverse sine functions. Before
a point in this plane can be mapped to the w-plane, the
branch of the inverse function must be specified. Notice
that the real axes contain the red lines which map back to
the separating lines in the w-plane, and hence are branch
cuts in this plane.

and hence the branch difference is

invsink+2 z − invsink z = 2π .

Note in figure 1 that points differing by 2π are

in regions 2 branches apart. Similar considera-

tions show that consecutive branches differ by

invsink+1 z − invsink z = π − 2 arcsin z .

Thus in either case, no new function is cre-

ated by the branch difference, and the existing

function is recovered. Further the difference in

purely real.

Therefore we turn to the Lambert W func-

tion for more interesting properties.

III. ALGEBRAIC PROPERTIES

As with Lambert W, there is an algebraic

equation solved by W.

Theorem 1: For z, d ∈ C, d satisfies the

equation

d

e−d − 1
exp

(
d

e−d − 1

)
= z (1)

if and only if d = Wmn(z) for m,n ∈ Z.
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Proof: Observe that

exp (Wmn(z)) = exp (Wm(z)) / exp (Wn(z))

= Wn(z)/Wm(z) . (2)

Since Wm = W+Wn, this becomes

exp (Wmn) =
Wn

W+Wn
,

which can be solved for Wn as

Wn(z) =
Wmn(z)

exp(−Wmn(z))− 1
, (3)

and for Wm as

Wm(z) =
Wmn(z)

1− exp(Wmn(z))
. (4)

Since Wn exp(Wn) = z, then (1) follows. For

the converse, assume (1) holds, then ∃n ∈ Z,

such that

d

e−d − 1
= Wn(z) .

Look for d in the form d = v − Wn. Then

e−d = (z/Wn)e
−v and hence

v −Wn = Wn

(
ze−v

Wn
− 1

)
= ze−v −Wn .

Thus vev = z and v = Wm(z) for m ∈ Z.

Lauwerier [12] studied a parametric repre-

sentation of W and his work gives another

equation that can be solved in terms of W.

Theorem 2: For z ∈ R and 0 < z ≤ 1/e,

the equation

qe−q coth q cosech q = z (5)

has a real solution being given by

q = ± 1
2W0(−1)(−z) .

Proof: In this proof, we shall abbreviate

W0(−1) to W. The left-side of (5) is even in q,

so we need consider only the case q > 0. The

range of the left side of (5) is (0, 1/e], with

the maximum at q = 0 equal to 1/e, which

determines the restrictions on z in the theorem.

Since for x ∈ [−1/e, 0), we have W0(x) ∈
[−1, 0] and W−1(x) ∈ (−∞,−1], we can note

that W(x) ∈ [0,∞).

Using (2), we see

q cosech q =
W(−z)

exp(W/2)− exp(−W/2)

= −W0(−z)
(
W−1(−z)
W0(−z)

)1/2

= −W0

(
W−1W0

W 2
0

)1/2

= (W−1W0)
1/2

,

where the signs of the quantities have been

taken into account when manipulating the

square roots. Similarly

e−q coth q =

(
z2

W0(−z)W−1(−z)
)1/2

.

Thus combining these expressions and taking

the signs of the quantities into account, we see

that both sides of (5) equal z.

Corollary 1: If we make the substitution

q = iv in (5), then the equation becomes

v

sin v
e−v cot v = z , (6)

in which form it has appeared in a variety

of integration problems; for example, in [13]

the following integral was studied by Nuttall,

Bouwkamp and Hornor & Rousseau.∫ π

0

{
sin v

v
ev cot v

}p

dv =
πpp

p!
, p ∈ N .

IV. RANGE OF BRANCH DIFFERENCE

We consider first the principal difference

W(z) = W0(z) − W−1(z), where we shall

suppress the subscripts as being the default

case. Denoting the positive real axis by R
+ and

the positive imaginary axis by I
+, we prove the

following theorem.

Theorem 3: The range of W is the region in

C bounded by R
+, I+ and the curves given by

the following. For x ∈ [−1/e, 0)
W0(x)−W−2(x) , (7)

and for x ∈ (−∞,−1/e]
W−1(x)−W−2(x) . (8)

Proof: We begin by recalling important

properties of the branches of W . The principal

branch W0 has branch cut (−∞,−1/e], while
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the branch cut for W−1 is (−∞, 0]. Further,

both branches are closed on the top, meaning

that for x ≤ −1/e
W0(x) = lim

y↓0
W0(x+ iy) ,

and for x < 0

W−1(x) = lim
y↓0

W−1(x+ iy) .

On the bottom of the branch cuts, we have the

properties that for x ≤ −1/e
lim
y↑0

W0(x+ iy) = W−1(x) , (9)

while for x ≤ 0, we have

lim
y↑0

W−1(x+ iy) = W−2(x) . (10)

Finally, W0 is continuous at the line −1/e <
x ≤ 0.

Therefore, the branch cut for W will be

(−∞, 0] with the properties that for x ≤ 0

lim
y↓0

W(x+ iy) = W(x)

= W0(x)−W−1(x) , (11)

while for −1/e < x ≤ 0

lim
y↑0

W(x+ iy) = W0(x)−W−2(x) , (12)

and finally for x ≤ −1/e
lim
y↑0

W(x+ iy) = W−1(x)−W−2(x) . (13)

The branch cut is illustrated in figure 3. The

upper side of the branch cut is labelled A,B,C,

with B showing the singular point z = −1/e,

and C the singular point at the origin. The

lower side of the branch cut is labelled D,E,F.

In order to map the axes in the domain of

W to its range, we consider expansions around

infinity and around critical points. From the

known expansions for W when |z| → ∞, we

obtain

Wmn(z) =2πi(m− n) + ln
lnm z

lnn z

+O(1/ ln(z)) . (14)

Thus for the principal difference, all points

at infinity map to 2πi as can be seen in

figure 4. When |z| → 0, W0 is regular, while

W−1 → ln z− iπ, so W→ iπ− ln z. This can

be seen in the figure when 	(W)→∞ and the

imaginary component of the domain becomes

asymptotic to the interval [0, 2π]. The series

expansions around the branch point z = −1/e
depend on the side of the branch cut. On the

upper side, both W0 and W−1 have square-

root singularities, while on the lower side W0

remains singular, but W−1 is regular. In the

neighbourhood of −1/e, the expansions use p
defined by [2]

p =
√
2(ez + 1) ,

to obtain for �z ≥ 0

W(z) = 2p+
11

36
p3 +O(p5) , (15)

while for �z < 0 we have

W(z) = −1 + p+W−2(−1/e) +O(p2) .
(16)

From (15), we see that the special value x =
−1/e on the upper side of the cut obeys

W(−1/e) = W0(−1/e)−W−1(−1/e)
= (−1)− (−1) = 0 .

Further, for x < −1/e, p, and hence (15) is

purely imaginary and for −1/e < x < 0 we

have p and (15) are real. This can also be

seen because W−1(x) = W 0(x), where the

bar denotes complex conjugate, for x < −1/e,

implying that for x < −1/e
W(x) = W0(x)−W 0(x) = 2i�W0(x) ,

and �W0(x) > 0 for x < −1/e. For −1/e ≤
x < 0, we have W0(x),W−1(x) ∈ R and

W0 > W−1, implying that for −1/e < x < 0

W(x) ∈ R
+ .

In figure 4 this is seen in AB mapping to the

imaginary axis [0, 2π) and BC mapping to R
+.

The point E maps to

W0(−1/e)−W−2(−1/e)
= −1−W−2(−1/e)
≈ 2.0888 + 7.4615 ,

and retains the square-root singularity because

of W0. There are no singularities away from

the branch cut and the remainder of the do-

main maps smoothly to the region between the

boundaries.

6464



Figure 3. The domain of W (the z-plane). The branch
cut is shown as two lines, one representing the upper side
(ABC) and one representing the lower side (DEF). The
points B and E are either side of x = −1/e.

Figure 4. The range of W0(−1)(z). The letters corre-
spond to the points labelled by the same letters in the
domain of W, shown in figure 3. Notice that the image
lines BA and EF , together with the images of the other
axes in the domain converge to 2πi as a result of (14).
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