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Abstract. We consider a new invariant transformation of some pre-
viously known series for the Lambert W function. The transformations
contain a parameter p which can be varied, while retaining the basic series
structure. The parameter can be used to expand the domain of conver-
gence of the series. The speed of convergence, that is the accuracy for a
given number of terms, can increase or decrease with p. Theoretical and
experimental investigations that rely heavily on the computer-algebra
system Maple are described.

1 Introduction

The LambertW function is the inverse of the mapping z 7→ zez. The inverse is a
multivalued function denoted Wk, and the branches of this multivalued function
are fixed by defining Wk through the equations [1]

∀z ∈ C,Wk(z) exp(Wk(z)) = z , (1)

Wk(z) → lnk z for ℜz → ∞ . (2)

Here, lnk z is the kth branch of logarithm, namely lnk z = ln z+2πik, where ln z
is the principal branch of natural logarithm [2]. Lambert W and its branches
are important in the study of delay-differential equations. The simplest delay
equation, using the notation ẏ = dy

dt for the derivative with respect to time, is

ẏ(t) = ay(t− 1) ,

subject to the condition on −1 ≤ t ≤ 0 that y(t) = f(t) , a known function. The
solution can be expressed as the sum [3]

y(t) =
∞∑

k=−∞

ck exp (Wk(a)t) ,

where the ck can be determined from the initial conditions. One sees immediately
that the solution will grow exponentially if any of the Wk(a) has a positive
real part, which leads to important stability theorems in the theory of delay
equations. Other applications are given in [1].



In this paper, we use the computer-algebra system Maple to investigate
the properties of series expansions for W . We focus on a number of asymptotic
expansions for large z; these are also valid for non-principal branches around
z = 0. One practical application of the series is to provide initial estimates for
the numerical evaluation of W ; these estimates can then be refined using itera-
tive schemes to provide the arbitrary precision computations used in computer
algebra systems. The series also have intrinsic interest. For example, the defi-
nition above of the branches Wk is based on partitioning the plane using the
asymptotic series. Another interest is the fact that the asymptotic series are also
convergent, and the nature of the convergence is one particular interest of this
paper. In this paper, we shall mostly be concerned with the principal branch
k = 0, which is the only branch that is finite at the origin. We shall abbreviate
W0 to W for the rest of the article.

The first asymptotic series is that found by de Bruijn [4] and Comtet [5] as

W (z) = ln z − ln ln z + u , (3)

where u has the series development

u =
∞∑
n=1

n∑
m=1

(−1)n−m
[

n

n−m+ 1

]
σn−mτm

m!
, (4)

where σ = 1/ ln z and τ = ln ln z/ ln z, and where
[

n
n−m+1

]
denotes Stirling Cycle

Numbers, also called the unsigned Stirling numbers of the first kind [6, 7]. This
series was rearranged in [8] by introducing the new variable ζ = 1/(1+σ) to get

u =
∞∑
m=1

τm

m!

m−1∑
k=0

{
k +m− 1

k

}
≥2

(−1)k+m−1ζk+m , (5)

where the 2-associated Stirling Subset Numbers [6, 7] appear. Two further ex-
pansions introduce the variables Lτ = ln(1− τ) and η = σ/(1− τ).

u = −Lτ +
∞∑
n=1

(−η)n
n∑

m=1

(−1)m
[

n

n−m+ 1

]
Lmτ
m!

, (6)

u = −Lτ +
∞∑
m=1

1

m!
Lmτ η

m
m−1∑
k=0

{
k +m− 1

k

}
≥2

(−1)k+m−1

(1 + η)k+m
. (7)

All of these expansions are limited in their domain of applicability by the
fact that σ and τ are each singular at z = 1, restricting their utility to z > 1. In
addition to the domain of validity of the variables, there is the question of the
domain of convergence of the series. For example, we show below that for z ∈ R,
series (4) is convergent only for z > e.

In this paper, we consider transformations of the above series. We shall con-
centrate on the properties of the series for z ∈ R. Our aims are to improve
the convergence properties with respect to domain of convergence and with re-
spect to rate of convergence. We shall do this using theoretical and experimental
methods.



2 Computer algebra tools

We shall be using a number of tools from Maple in the work below. The co-
efficients appearing in the expansions (4) and (5) can be computed from their
generating functions as follows. The 2-associated Stirling subset numbers are
defined by the generating function

(ez − 1− z)m = m!
∑
n≥0

zn

n!

{
n

m

}
≥2

.

Given numerical values for n and m, we expand the left-hand side symbolically
up to the term of nth order and then extract the appropriate numerical coeffi-
cient. The next lines show an implementation of this procedure with examples
in Maple.

> StirlingSubset2:=proc(n::integer, m::integer)

option remember;

local f,z;

f:=series( (exp(z)-1-z)^m , z , n+1);

if n<2*m then

0

else

coeff(f,z,n)*n!/m!;

end if;

end proc;

> StirlingSubset2(6,3),StirlingSubset2(9,4),StirlingSubset2(12,5);

15, 1260, 190575

It can be noted that a similar method to this is used in the standard Maple
library for Stirling Cycle numbers, which are used in (4). In practice, it is more
efficient to store all of the coefficients from any series expansion, but this level of
detail is not shown here. Similar techniques can be used for the Eulerian numbers
used below in (23).

Another important tool from Maple for this paper is computation to arbi-
trary precision. It is a standard topic in numerical analysis that summing series
requires a close watch on the effects of working precision, otherwise one runs the
risk of generating ‘numerical monsters’ which are completely artificial effects of
the computation and do not reflect any actual mathematical properties [9]. In
all of the calculations below, the Maple environment variable Digits was set
and monitored to ensure that the results were reliable.

3 An invariant transformation

We reconsider the derivation of (4), replacing (3) with the ansatz

W = ln z − ln(p+ ln z) + u . (8)



Substituting into the defining equation WeW = z, we obtain(
ln z − ln(p+ ln z) + u

)
zeu

p+ ln z
= z

From this, it is clear that if we define

σ =
1

p+ ln z
and τ =

p+ ln(p+ ln z)

p+ ln z
, (9)

then we recover the equation originally given by de Bruijn for u.

1− τ + σu− e−u = 0 . (10)

The remarkable property is that (10) is invariant with respect to p, with only the
definitions of σ and τ being changed. From (10), the expansion (4) is derived [5].

We now consider the properties of the transformations for z ∈ R. We shall
start with p ∈ R and later consider briefly one complex value of p. Both σ and
τ are singular at zs = e−p, with the special case p = 0 recovering the previous
observations regarding the singularities at z = 1. We note σ is monotonically
decreasing on z > zs. For τ , we have τ(z0) = 0 at z0 = exp(zs−p), with τ positive
for larger z and negative for smaller. Also we note that τ has a maximum at
z = exp(ezs−p). In Figure 1, we plot σ and τ , defined by (9), for different values
of p. We see that for all z > zs, σ decreases with increasing p, but τ increases. In
view of the form of the double sums above it is not obvious whether convergence
is increased or decreased as a result of these opposed changes. This is what we
wish to investigate here.

Fig. 1. Dependence σ and τ on z for different values of parameter p.



4 Domain of Convergence

We wish to investigate first the domains of z ∈ R for which the various series
above converge, and how the domains vary with p. We begin with a theoretical
result for p = 0.

Theorem 1. The series (4) converges for p = 0 for all z ≥ e.

Proof. For p = 0, we have τ = −σ lnσ. We write (10) in the form

1− τ + σu− e−u = g(u) + f(u;σ, τ) = 0 , (11)

g(u) = 1− e−u and f(u;σ, τ) = σu− τ .

We now consider this equation in the complex plane of u. For any analytic
function F (ζ) with a single isolated zero at ζ = u inside a contour C, we can
use Cauchy’s integral formula to write

u =
1

2πi

∫
C

F ′(ζ)

F (ζ)
ζ dζ . (12)

Thus for our case, we have

u =
1

2πi

∫
C

e−ζ + σ

1− e−ζ + σζ − τ
ζ dζ =

1

2πi

∫
C

e−ζ + σ

g(ζ) + f(ζ;σ, τ)
ζ dζ , (13)

provided we can find the contour C.
For z ≈ e while z > e, we have σ ≈ 1 and σ < 1. We define δ > 0 by

σ = (1−δ). A contour which satisfies the requirements is the rectangular contour

ζ =


δ + it , −2δ1/2 ≤ t ≤ 2δ1/2 ,

t+ 2δ1/2i , −2 ≤ t ≤ δ ,

−2 + it , −2δ1/2 ≤ t ≤ 2δ1/2 ,

t− 2δ1/2i , −2 ≤ t ≤ δ .

(14)

It is straightforward for Maple show that on this contour |g| > |f |. Rouché’s
theorem states that g and f + g have the same number of zeros within C. Since
g(u) = 0 for u = 0, the function f + g has a single isolated zero as desired.

In addition to satisfying the conditions of the integration, the contour allows
us to evaluate the integral by expanding the denominator of the integrand as an
absolutely and uniformly convergent power series in f/g.

1

1− e−ζ + σζ − τ
=

∞∑
k=0

∞∑
m=0

(1− e−ζ)−k−m−1ζkσkτm(−1)k+1Cm+k
m . (15)

Substituting this expansion into (13) and integrating term by term, we obtain u
as the sum of an absolutely convergent double power series in σ and τ , provided
z > e.



The domain of convergence cannot be extended to z < e, because the series
for du/dz diverges at z = e. This can be seen by noting that τ = 0 at z = e (for
p = 0). All terms reduce to zero except m = 1 which gives the sum

1

e

∞∑
k=0

(−1)k ,

which is divergent. �
In general, the precise domain of convergence is not of high importance,

although its characterization remains an interesting mathematical challenge. The
important point is to establish whether the domain of convergence increases or
decreases, so that numerical procedures can be designed accordingly. Therefore,
rather than devote space here to accumulating formal proofs for all the different
cases, we can use numerical means as a rapid method to ascertain trends in
the domains of convergence for all series. The method is simply to compute the
partial sum of a series to a high number of terms, using extended floating-point
precision as necessary, and then to plot the ratio of the partial sum to the exact
value (the exact value is obtained by means other than series summation). The
edge of the domain of convergence is then signaled by rapid oscillations and by
marked deviations from the desired ratio of 1. Thus for the series just discussed,
namely (4), we have plotted in Figure 2 the partial sum to 40 terms for different
values of p. For p = 0, we see a nice illustration of theorem 1, with the partial
sum becoming unstable in the vicinity of z = e. For positive p, we see the domain
of convergence increased and for negative p it is decreased.

Fig. 2. For series (4), the ratio W (40)(z, p)/W (z) as functions of z for p = −1/2, 0, 1.

Similar effects can be seen for (5), we plot in Figure 3 the partial sums for
40 terms as p varies. The domain of convergence for each p is clearly seen, and



confirms that the point of divergence moves to larger z for decreasing p and to
the left for increasing p.

Fig. 3. For series (5), the ratio W (40)(z, p)/W (z) as functions of z for p = −1, 0, 1.
Compared with Figure 2, this shows convergence down to smaller z.

A similar investigation of series (6) shows an interesting non-monotonic
change in the domain of convergence. In Figure 4 the partial sums are plotted
and the boundary of the domain of convergence moves to the right for p ̸= 0.

We can summarize these findings by noting that series (5) has the widest
domain of convergence, and the best behaviour with p, while the domains of
convergence for series (4) and (6) become worse in that order.

5 Rate of convergence

By rate of convergence, we are referring to the accuracy obtained by partial
sums of a series. Given two series, each summed to N terms, the series giving on
average a closer approximation to the converged value is said to converge more
quickly. The qualification ‘on average’ is needed because it will be seen in the
plots below that the error regarded as a function of z can show fine structure
which confuses the search for a general trend. Further, the comparison of rate
of convergence between different series can vary with z and p. For some ranges
of z, one series will be best, while for other ranges of z a different series will be
best. Although one series may converge on a wider domain than another, there
is no guarantee that the same series will converge more quickly on the part of
the domain they have in common. The practical application of these series is to
obtain rapid estimates for W using a small number of terms, and for this the
quickest convergence is best, but this will be dependent on the domain of z.



Fig. 4. For series (6), the ratioW (40)(z, p)/W (z) against z for p = −1, 0, 1, 2. Compared
with figures 2 and 3, the changes in convergence are no longer monotonic in p.

The previous section showed that positive values of the parameter p extend
the domain of convergence of the series, but its effect on rate of convergence is
different. Figures 5, 6 and 7 show the dependence on z of the accuracy of compu-
tations of the series (4),(5) and (7) respectively with N = 10 for p = −1,−1/2, 0
and 1. One can see that the behaviour of the accuracy is non-monotone with
respect to both z and p although some particular conclusions can be made. For
example, one can observe that for the series (4) at least for z < 30 within the
common domain of convergence the accuracy for p = −1/2, 0 and 1 is higher
than for p = −1. The series (5) and (7) have the same domain of convergence
and a very similar behaviour of the accuracy. Specifically, for these series an
increase of positive values of p reduces a rate of convergence within the common
domain of convergence i.e. for z > 1.5. However, at the same time for z > 11
computations with p = −1 are more accurate than those with positive p and for
5 < z < 18 the highest accuracy occurs when p = −1/2.

The next two figures 8 and 9 display the dependence of convergence properties
of the series (4) and (5) respectively on parameter p for different numbers of
terms N = 10, 20 and 40. Again, the curves in these figures confirm that the
accuracy strongly depends on parameter p and is non-monotone and show that
on the whole an increase of the number of terms improves the accuracy. It is
also interesting that there exists a value of p for which the accuracy at the given
point is maximum; this value depends very slightly on N and approximately is
p ≈ −0.75 in Figure 8 and p ≈ −0.5 in Figure 9.

The explained behaviour of the accuracy depending on parameter p shows
that introducing parameter p in the series can result in significant changes in
accuracy. The pointed out non-monotone effects of parameter p on a rate of
convergence can be due to the aforementioned non-monotone behaviour of τ .



Fig. 5. For series (4) with N = 10, changes in accuracy in z for p = −1,−1/2, 0 and 1.

Fig. 6. For series (5) with N = 10, changes in accuracy in z for p = −1,−1/2, 0 and 1.

Fig. 7. For series (7) with N = 10, changes in accuracy in z for p = −1,−1/2, 0 and 1.



Fig. 8. For series (4), the accuracy as a function of p at fixed point z = 18 forN = 10, 20
and 40.

Fig. 9. For series (5), the accuracy as a function of p at fixed point z = 9 for N = 10, 20
and 40.



6 Branch −1 and complex p

The above discussion has considered only real values for the parameter p. We
briefly shift our consideration to complex p and to branch −1. For z in the
domain −1/e < z < 0, we have that W−1(z) takes real values in the range
[−1,−∞). The general asymptotic expansion (2) takes the form

W−1(z) = ln(z)− 2πi− ln(ln(z)− 2πi) + u . (16)

This will clearly be very inefficient for z ∈ [−1/e, 0) because each term in the
series will be complex, and yet the series must sum to a real number. If, however,
we utilize the parameter p, we can improve convergence enormously.

We again adopt the ansatz used above to write

Wk(z) = [lnk z + p]− [p+ ln(p+ lnk z)] +
p+ ln(p+ lnk z)

p+ lnk z
+ v , (17)

where v stands for the remaining series which will not be pursued here. By
setting p = iπ, we can rewrite [ln−1 z + iπ] as ln(−z). A numerical comparison
of partial sums can be used to show the improvement. We compare

W
(1)
−1 = ln(z)− 2πi− ln(ln(z)− 2πi) +

ln(ln(z)− 2πi)

ln(z)− 2πi
, (18)

Ŵ−1 = ln(−z)− ln(− ln(−z)) + ln(− ln(−z))
ln(−z)

. (19)

The results are shown in table 1. We note that the transformed series is exactly
correct at z = −1/e and asymptotically correct as z → 0, and therefore the error
is a maximum somewhere in the domain. In contrast the untransformed series
has an error that increases as z → −1/e.

The accuracy is also shown graphically in figure 10. Notice that although the
approximation Ŵ−1 given in (19) is exactly equal to W−1 at z = −e−1, the local
behaviour is different. We know that W−1 has a square-root singularity, while
Ŵ−1 is regular there. This is why the maximum error occurs at z = −e−1.

z W−1(z) Ŵ−1(z) W
(1)
−1 (z)

−0.01 −6.4728 −6.4640 −6.3210− 0.04815i
−0.1 −3.5772 −3.4988 −3.4124− 0.3223i
−0.2 −2.5426 −2.3810 −2.5182− 0.5153i
−0.3 −1.7813 −1.5438 −2.0087− 0.6621i
−1/e −1 −1 −1.7597− 0.7450i

Table 1. Numerical comparison of series transformation with p = iπ.



Fig. 10. Errors in approximations (18) and (19) for W−1.

7 Taylor series

We have seen that the transformation allows us to obtain series valid for a wider
range of z. We now observe that the Taylor series for W (z) around z = 0 is well
known [1]

W (z) =

∞∑
n=1

(−n)n−1

n!
zn. (20)

This converges for |z| < e−1. We can bridge the gap between the series above
and the Taylor series by a series around z = 1. We have [7, 10] with ω =W (1)

W (x) = ω +
∞∑
n=1

an(lnx)
n (21)

or by setting t = lnx

W (et) = ω +
∞∑
n=1

ant
n, (22)

where

an =
1

n!(1 + ω)2n−1

n−1∑
k=0

⟨⟨
n− 1

k

⟩⟩
(−1)kωk+1 . (23)

This formula represents the expansion coefficients in terms of the second-
order Eulerian numbers [6, 7]. We now show that these coefficients can also be
represented through the unsigned associated Stirling numbers of the first kind
d(m, k) given by [5]

[ln(1 + v)− v]k = k!

∞∑
m=2k

(−1)m+k d(m, k)
vm

m!
(24)

and the 2-associated Stirling subset numbers used in the series (5).
Both representations can be obtained on the basis of a relation [2]

W (et) + lnW (et) = t (25)



and the Lagrange Inversion Theorem [11]. To apply this theorem it is convenient
to introduce a function that is zero at t = 0. We consider the function

v = v(t) =W (et)/ω − 1 (26)

and write (25) as
t = ω v + ln(1 + v). (27)

Then by the Lagrange Inversion Theorem we obtain

v =

∞∑
n=1

tn

n
[vn−1]

(
ω +

ln(1 + v)

v

)−n

(28)

where the operator [vp] represents the coefficient of vp in a series expansion in
v. Comparing (26),(22) and (28) leads to a formula for the coefficients an, which
after applying the binomial theorem becomes

an =
ω

n(1 + ω)n
[vn−1]

∞∑
k=0

(−1)k
(
n− 1 + k

n− 1

)
[ln(1 + v)− v]k

vk(1 + ω)k
(29)

or by (24)

an =
ω

n!

n−1∑
k=0

(−1)n+k−1 d(n+ k − 1, k)

(1 + ω)n+k
. (30)

If instead of function (26), we take

h = h(t) =W (et)− ω − t (31)

and apply the Lagrange Inversion Theorem to invert a relation

t = (e−h − 1)ω − h (32)

coming from (25), then we find in a similar way

an =
1

n!

n−1∑
k=0

{
n+ k − 1

k

}
≥2

(−1)k+1ωk

(1 + ω)n+k
. (33)

Finally, one more representation for the coefficients an can be found in the
following way. Let us consider a function

ψ = ψ(t) =W (et)− t (34)

which is a simplified version of functions (26) and (31): now one does not need
to provide the zero function value at t = 0 and here ψ(0) = ω. Then it follows
from (25) that

t = e−ψ − ψ. (35)

This equation can also be obtained from the fundamental relation (10) by trans-
formation u = ψ + ln t, σ = 1/t and τ = ln t/t.



Differentiating (35) in t and excluding the term e−ψ from the result again
using (35) result in an initial value problem for ordinary differential equation

dψ

dt
= − 1

1 + t+ ψ
. (36)

Searching a solution in the form of series

ψ(t) = ω +

∞∑
n=1

cnt
n (37)

by substituting it into the differential equation and equating coefficients of the
same power in t one can finally find

c1 = − 1

1 + ω
, cn = − 1

n(1 + ω)

(
(n− 1)cn−1 +

n−1∑
k=1

kckcn−k

)
, for n ≥ 2 .

(38)
At length combining (37),(34) and (22) gives

a1 = 1 + c1, an = cn for n ≥ 2. (39)

In practice, computing the coefficients using (38) and (39) is found to be
more effective than using other representations. However, we have found some
remarkable combinatorial identities. For example, equating the right-hand sides
of (23) and (33) we obtain

1

(1 + ω)n−1

n−1∑
k=0

⟨⟨
n− 1

k

⟩⟩
(−1)k+1ωk+1 =

n−1∑
k=0

{
n+ k − 1

k

}
≥2

(−1)kωk

(1 + ω)k
.

8 Concluding remarks

We found an invariant transformation defined by the parameter p and applied
it to the series for the Lambert W function to obtain a family of series. We
studied an effect of parameter p on convergence properties of the transformed
series. It is shown that an increase of p results in an extension of the domain of
convergence of the series and thus the series obtained under the transformation
with positive values of p have a wider domain of convergence than the original
series does. However, at the same time a rate of convergence can be found to
be reduced when the parameter p increases. Therefore in such a case within
the common domain of convergence of the series with different positive values
of p the series with the minimum value of p would be the most effective. The
found relationships can be used, e.g. in evaluating of the Lambert W function
in computer algebra systems.

We also considered the well-known expansion of W (x) in powers of lnx and
found three more forms for a represenation of the expansion coefficients in terms
of the associated Stirling numbers of the first kind (30), the 2-associated Stirling
subset numbers (33) and iterative formulas (39)-(38). As a consequence some
combinatorial identities are obtained.
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