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Abstract. An unusual boundary-value problem that arises in a fluid-
mechanical application is solved to high precision, as a challenge problem
in scientific computation. A second-order differential equation must be
solved on (0,∞), subject to boundary conditions that specify only the
asymptotic behaviour of the solution at the two ends of the solution
domain. In addition, the solution is required to high accuracy to set-
tle a conjecture made by previous authors. The solution is obtained by
computing multiple series solutions using Maple.

1 Introduction

Computations of fluid flow sometimes lead to unusual problems in the solution
of ordinary differential equations. The present problem comes from a paper by
O’Neill and Stewartson [1]. The problem posed is an excellent test case for the
application of computer algebra systems, such as Maple, to scientific computa-
tion. A function A(s) satisfies the differential equation

s3K ′A′′ + sA′[s2 K ′′ + 3 sK ′ + 2K] − A[s2K ′′ + 4sK ′ + 2K] = −s2X ′′ , (1)

where K = s−1 − coth s and X = coth s− 1, subject to the boundary conditions
that A(s) is no more singular than s−2 at the origin and that A(s) decays at
infinity. The equation has a regular singular point at s = 0 and an irregular point
at infinity. In terms of this function, constants k1 and k2 must be calculated
according to the formulae
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The challenge is to verify (by computation) that the two constants are equal.
The problem is an ideal one for exploring ways in which Maple can con-

tribute to computational problems. Because of the singular points in the equa-
tion, the standard way to solve them numerically is to generate the first steps of
a numerical solution using a series expansion about the origin, and about infin-
ity. The truncation of the series and the change from one integration method to
another generate some inaccuracies that might be acceptable in other contexts.
However, since the question concerns the difference between the constants at the
fifth and sixth significant figures, we need a highly accurate solution. Here we
show that such a solution can be obtained by Maple with relatively little effort
on the part of the user, the work being done by routines that we developed in [2].

The use of series expansions in the solution of differential equations has always
been hampered by several difficulties. The first difficulty is the laborious nature
of their derivation. This is compounded by the second difficulty, which is the slow
rate of convergence of the series. In order to obtain acceptable accuracy, many
terms are needed, but the calculation of these is tedious. The final difficulty
is their radius of convergence. Often a singularity in the complex plane will
prevent the series converging at all points of interest, although the function is
well behaved on the real line.

All of these difficulties can be overcome in this case using Maple. The new
routines developed in [2] allow us to obtain large numbers of terms in the series
with little effort and quickly. Using this fact we can re-expand the solution at
different points along the axis, thus working around the convergence problem.
We shall thus obtain a highly accurate solution and prove that the two constants
k1 and k2 are indeed equal.

2 Solutions About s = 0

The differential equation (1) has a regular singular point at the origin and an-
other in the complex plane at s = i π. We denote the homogeneous solutions
about s = 0 as A

(0)
h and the particular integral as A

(0)
p . Using Maple we found

each as a series expression correct to 75 terms.
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where the first few constants in the series are
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The particular integral A
(0)
p , correct to 75 terms is found as
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where
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(6)
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(7)

We reject the other homogeneous solution because asymptotically it behaves as
O(s−2−√

10), for small values of s. Hence for small s, the general solution of
differential equation (1) is

A(s) = A(0)
p + cA

(0)
h , (8)

where the constant c has to be determined.

3 Series Solutions About Other Expansion Points

The solutions A
(0)
h and A

(0)
p converge only for s < π. This is unavoidable because

of the singularity on the imaginary axis. We expand the functions A
(0)
p and A
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h

along the real axis by analytic or numerical continuation. We use the solutions
A
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h and A
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p to give us boundary conditions at a new expansion point. We

begin with the series solutions about s = 5/2, an ordinary point of the differen-
tial equation (1). We find the homogeneous solution A
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h of the homogeneous

version of the differential equation (1) (i.e. right-hand side is zero) subject to
the boundary conditions
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Similarly, we find the particular integral A
(5/2)
p . The general solution of the

differential equation (1) about s = 5/2 is

A(s) = A(5/2)
p + cA

(5/2)
h . (10)

Continuing in this way, we find the solutions at expansion points s = 4, 6, 8 etc.
To achieve high accuracy, all the solutions were found correct to 75 terms.

4 Asymptotic Solution

About s = ∞, we obtain an asymptotic expansion as follows.
For large s, coth(s) ∼ 1. We therefore replace coth s with 1 and find the

particular integral ap and the homogeneous solution ah for the resulting equation
to be

ah = e−2s, ap = −2 s2 e−2s. (11)
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We neglect the other homogeneous solution which is 1 − 2 s for large s.
Higher order approximations are found in the same manner. Hence for large

s, the differential equation (1) has the asymptotic solution

A(s) ∼ ap + C ah (12)

where the constant C has to be determined.

5 The Constants C and c

We find the constants C and c by matching the two solutions, for s small and
for s large. The two solutions and their derivatives are equal for those values
of s where these solutions converge. By solving the two equations, we get the
constants c and C as given in Table (1).

Table 1. Values of constants C and c for different N

N C c

30 3.8687549168 0.218368701355

50 3.8797383823 0.218369454539

74 3.8797393835 0.218369454587

6 Definite Integrals k1 and k2

Since we have series expansions at all points, the evaluation of the integral is
equally straightforward. The integrals k1 and k2 are found as

k1 = − 0.2622674637, (13)
k2 = − 0.2622674637. (14)

The programs used for the series solutions of ODEs and the programs used in
this particular computation can be obtained from the authors.
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