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Abstract

In this paper, the homotopy analysis method (HAM) is applied to solve a param-
eterized sixth order boundary value problem which, for large parameter values,
cannot be solved by other analytical methods for finding approximate series solu-
tions. Convergent series solutions are obtained, no matter how large the value of
the parameter is.
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1 Introduction

Boundary value problems arise in engineering, applied mathematics and sev-
eral branches of physics, and have attracted much attention. However, it is
difficult to obtain closed-form solutions for boundary value problems, espe-
cially for nonlinear problems. In most cases, only approximate solutions (either
numerical solutions or analytical solutions) can be expected. Some numerical
methods such as finite difference method [1], finite element method [2] and
shooting method [3] have been developed for obtaining approximate solutions
to boundary value problems.

Perturbation method is one of the well-known methods for solving nonlin-
ear problems analytically. However, it strongly depends on the existence of

∗ Corresponding author.
Email address: sliang22@uwo.ca, Fax: 1(519)661-3523, Tel:

1(519)434-9410 (Songxin Liang).

Preprint submitted to Elsevier 29 July 2009



small/large parameters. Traditional non-perturbation methods such as Ado-
mian’s decomposition method [5], differential transformation method [6,7] and
homotopy perturbation method [8] have been developed for solving boundary
value problems. However, these methods have their obvious disadvantages.

Consider the following special sixth order boundary value problem involving
a parameter c [8]:

u(6)(x) = (1 + c) u(4)(x)− c u′′(x) + c x, (1)

subject to the boundary conditions

u(0) = 1, u′(0) = 1, u′′(0) = 0,

u(1) =
7

6
+ sinh(1), u′(1) =

1

2
+ cosh(1), u′′(1) = 1 + sinh(1). (2)

The boundary value problem (1,2) is interesting because its exact solution

uexact(x) = 1 +
1

6
x3 + sinh(x) (3)

does not depend on the parameter c although itself does. This can be explained
if we rewrite (1) in the following equivalent form

{u(6)(x)− u(4)(x)} − c{u(4)(x)− u′′(x) + x} = 0. (4)

From (4), we see that a solution of the fourth order problem is also a solution
of the sixth order problem, no matter what value of c is.

However, Noor and Mohyud-Din [8] found that the approximate solutions
given by the Adomian’s decomposition method and the homotopy perturba-
tion method, both of which give the same results, are valid only for small values
of c, while the approximate solution given by the differential transformation
method is valid for a wide range of values of c.

At this point, one concludes that, for very large values of c, all these analytical
methods are no longer valid. In other words, only divergent series solutions can
be obtained by these methods. The main reason is that they cannot provide a
mechanism to adjust and control the convergence region and rate of the series
solutions obtained, according to the values of c.

The homotopy analysis method (HAM) [9–11] is a powerful analytical tool for
solving nonlinear as well as linear problems. It has been successfully applied
to solve many types of problems [12–18]. In this paper, we apply the HAM
to solve the problem (1,2), and obtain convergent series solutions which agree
very well with the exact solution (3), no matter what value of c is. The success
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lies in the fact that the HAM provides a convenient way to adjust and control
the convergence region and rate of the series solutions obtained.

2 Solutions of the problem

We first construct a zeroth order deformation equation

(1− p)L[φ(x; p)− u0(x)] = p ~N [φ(x; p)], (5)

where p ∈ [0, 1] is an embedding parameter, ~ 6= 0 is a convergence-control
parameter, and φ(x; p) is an unknown function, respectively. According to (1),
the auxiliary linear operator is given by

L[φ(x; p)] =
∂ 6φ(x; p)

∂x6
, (6)

and the nonlinear operator is given by

N [φ(x; p)] =
∂6φ (x; p)

∂x6
− (1 + c)

∂4φ (x; p)

∂x4
+ c

∂2φ (x; p)

∂x2
− cx. (7)

Now suppose the initial guess of the solution is of the form

u0(x) = x6 + a5x
5 + a4x

4 + a3x
3 + a2x

2 + a1x + a0. (8)

Then using the boundary conditions (2) gives a system of six linear equations
in six parameters a0, a1, . . . , a5. Solving the resulting system gives the initial
guess

u0(x) = x6 − (19 + 24 e− 7 e2) x5

4 e
+

(23 + 22 e− 9 e2) x4

2 e

−(87 + 82 e− 39 e2) x3

12 e
+ x + 1. (9)

The boundary conditions to (5) can be set as

φ(0; p) = 1,
∂φ(0; p)

∂x
= 1,

∂2φ(0; p)

∂x2
= 0, φ(1; p) =

7

6
+ sinh(1),

∂φ(1; p)

∂x
=

1

2
+ cosh(1),

∂2φ(1; p)

∂x2
= 1 + sinh(1). (10)

We now focus on how to obtain higher order approximations to the problem
(1,2). From (5), when p = 0 and p = 1,
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Fig. 1. ~-curve for the 15th order approximation (c = 10).

φ(x; 0) = u0(x) and φ(x; 1) = u(x) (11)

both hold. Therefore, as p increases from 0 to 1, the solution φ(x; p) varies
from the initial guess u0(x) to the solution u(x). Expanding φ(x; p) in Taylor
series with respect to p, one has

φ(x; p) = φ(x; 0) +
+∞∑

m=1

um(x) pm, (12)

where

um(x) =
1

m!

∂mφ(x; p)

∂pm

∣∣∣∣∣
p=0

. (13)

Now the convergence of the series (12) depends on the parameter ~. Assuming
that ~ is chosen so properly that the series (12) is convergent at p = 1, we
have, by means of (11), the solution series

u(x) = φ(x; 1) = u0(x) +
+∞∑

m=1

um(x) (14)

which must be one of the solutions of the original problem (1,2), as proved by
Liao in [9].

The next goal is to obtain the higher order terms um(x). Differentiating the
zeroth order deformation equation (5) and its boundary conditions (10) m
times with respect to p, then setting p = 0, finally dividing them by m!, we
obtain the mth order deformation equation and its boundary conditions:

u(6)
m (x) = χmu

(6)
m−1(x) + ~Rm(~um−1(x)), (15)
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Table 1
Relative errors of HAM approximations (c = 10).

x 5th order 10th order 15th order

0.1 6.9E-11 3.0E-16 5.4E-22

0.2 2.6E-10 6.1E-16 8.0E-22

0.3 1.1E-9 8.7E-16 9.0E-22

0.4 1.7E-9 1.1E-15 9.2E-22

0.5 1.9E-9 1.1E-15 8.7E-22

0.6 1.5E-9 9.2E-16 7.8E-22

0.7 7.6E-10 6.3E-16 6.5E-22

0.8 1.6E-10 3.7E-16 4.9E-22

0.9 3.5E-11 1.5E-16 2.7E-22

um(0) = u′m(0) = u′′m(0) = um(1) = u′m(1) = u′′m(1) = 0, (16)

where

Rm(~um−1(x)) = u
(6)
m−1(x)− (1 + c)u

(4)
m−1(x) + cu′′m−1(x)− c(1− χm)x (17)

and

χm =





0, m ≤ 1,

1, m > 1.
(18)

In this way, one can calculate um(x)(m = 1, 2, . . .) recursively.

For example, when m = 1, (15) becomes

u
(6)
1 (x) = ~

(
u

(6)
0 (x)− (1 + c)u

(4)
0 (x) + cu′′0(x)− cx

)

= 30 ~cx4 − ~
e

(
95 c + 120 ce− 35 ce2

)
x3

+
~
e

(
138 c− 54 ce2 − 228 ce− 360e

)
x2

+
~
2e

(
1053 c + 1356 ce− 381 ce2 + 1440e− 420 e2 + 1140

)
x

−12 ~
e

(
23 + 22 ce + 23 c− 9 ce2 − 38 e− 9 e2

)
. (19)

Integration of (19) with (16) gives the first order term
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Fig. 2. ~-curve for the 15th order approximation (c = 1000).

u1(x) =
~c

5040
x10 +

~c
12096 e

(
7 e2 − 24 e− 19

)
x9

− ~
3360 e

(
60 e + 9 c e2 + 38 c e− 23 c

)
x8

+
~

3360 e

(
351 c− 127 c e2 − 140 e2 + 480 e + 452 c e + 380

)
x7

+
~

60 e

(
38 e− 22 c e− 23 c + 9 c e2 + 9 e2 − 23

)
x6

− ~
20160 e

(
4135 c e2 − 9643 c− 8700 c e + 4032 e2 + 51984 e− 9504

)
x5

+
~

10080 e

(
1176 e2 − 2513 c− 2472 + 27972 e− 2360 c e + 1223 c e2

)
x4

+
~

15120 e

(
666− 378 e2 − 14436 e + 723 c e + 674 c− 398 c e2

)
x3. (20)

um(x)(m = 2, 3, . . .) can be calculated similarly.

The mth order approximation can be generally expressed as

u(x, ~) ≈
m∑

k=0

uk(x) =
4m+6∑

k=0

γm,k(~) xk, (21)

where the coefficients γm,k(~)(k = 0, 1, 2, . . . , 4m + 6) depend on m, k and ~.
Equation (21) is a family of approximate solutions to the problem (1,2) in
terms of the parameter ~.

The final step is to find a proper value of ~ which corresponds to an accurate
approximation (21). First, the valid region of ~ can be obtained via the ~-curve
as follows.

6



Table 2
Relative errors of HAM approximations (c = 1000).

x 5th order 10th order 15th order

0.1 9.1E-6 9.7E-6 1.9E-6

0.2 1.6E-4 2.9E-5 1.7E-6

0.3 4.4E-4 5.5E-5 3.1E-7

0.4 6.8E-4 7.6E-5 1.2E-6

0.5 7.3E-4 8.0E-5 1.7E-6

0.6 5.8E-4 6.5E-5 1.0E-6

0.7 3.2E-4 4.0E-5 2.2E-7

0.8 9.8E-5 1.8E-5 1.1E-6

0.9 4.7E-6 5.0E-6 9.8E-7

Let ξ ∈ [0, 1]. Then u(ξ, ~) is a function of ~, and the curve u(ξ, ~) versus ~
contains a horizontal line segment which corresponds to the valid region of ~.
The reason is that all convergent series given by different values of ~ converge
to its exact value. So, if the solution is unique, then all of these series converge
to the same value and therefore there exists a horizontal line segment in the
curve. We call such kind of curve the ~-curve; see Figure 1 for example, where
the valid region of ~ is about −1.6 < ~ < −0.2.

Although the solution series given by different values in the valid region of ~
converge to the same exact solution, the convergence rates of these solution
series are usually different. A more accurate solution series can be obtained
by assigning ~ a proper value which usually can be obtained by observation.

Now we are in a position to show how the parameter c in the problem (1,2)
affects the approximate solution (21), and how one can always get a convergent
series solution to the problem (1,2) no matter what value of c is, by choosing a
proper value of ~. In the following, we will discuss four cases: (I) small values
of c, (II) large values of c, (III) very large values of c, and (IV) any values of
c.

(I) Small values of c. In this case, we take c = 10 as an example. To find the
valid region of ~, the ~−curve given by the 15th order approximation (21) at
x = 1

2
is drawn in Figure 1, which clearly indicates that the valid region of ~

is about −1.6 < ~ < −0.2.

When ~ = −0.92, we obtain an approximate series solution which is in ex-
cellent agreement with the exact solution (3) as shown in Table 1, where the
relative errors of the 5th order, 10th order and 15th order HAM approxima-
tions (21) when c = 10 at different points in the interval (0, 1) are calculated
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Fig. 3. ~-curve for the 15th order HAM approximation (c = 108).

by the formula

δ(x) =

∣∣∣∣∣
uexact(x)− u(x, ~)

uexact(x)

∣∣∣∣∣ , (22)

where uexact(x) is the exact solution (3), and u(x, ~) is the approximate solu-
tion (21).

(II) Large values of c. In this case, we take c = 1000 as an example. As pointed
out in [8], the Adomian’s decomposition method is no longer valid for this case.

To find the valid region of ~, the ~−curve given by the 15th order approxi-
mation (21) when c = 1000 and x = 1

2
is drawn in Figure 2, which clearly

indicates that the valid region of ~ is about −0.13 < ~ < −0.02.

When ~ = −0.118, one obtains an approximate series solution which agrees
very well with the exact solution (3), as shown in Table 2.

(III) Very large values of c. In this case, we take c = 108 as an example. Not
only the Adomian’s decomposition method but also the differential transfor-
mation method are no longer valid for very large values of c.

From the ~-curve in Figure 3, it is clear that the valid region of ~ is about
−1.4 × 10−6 < ~ < −2.0 × 10−7. By choosing ~ = −1.3 × 10−6, one obtains
an approximate series solution which agrees very well with the exact solution
(3), as shown in Table 3.

(IV) Any values of c. Finally in this case, we develop a relationship between
the convergence-control parameter ~ and the given parameter c based on the
rational interpolation technique [19].

First, we find the proper values of ~ for some given values of c as above. They
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Table 3
Relative errors of HAM approximations(c = 108).

x 5th order 10th order 15th order

0.1 4.9E-6 2.9E-5 1.4E-5

0.2 1.7E-4 7.1E-5 1.9E-5

0.3 5.3E-4 1.2E-4 1.9E-5

0.4 8.4E-4 1.5E-4 1.7E-5

0.5 9.1E-4 1.6E-4 1.5E-5

0.6 7.1E-4 1.3E-4 1.4E-5

0.7 3.8E-4 8.5E-5 1.4E-5

0.8 1.1E-4 4.3E-5 1.2E-5

0.9 2.5E-6 1.5E-5 7.3E-6

are

[c, ~] =
[
1,−49

50

]
,

[
10,−23

25

]
,

[
100,− 57

100

]
,

[
103,− 59

500

]
. (23)

Then we use the rational interpolation technique to find a rational function in
c that interpolates the given points (23), which gives a relationship between c
and ~:

~(c) = − 342960750 + 1115829 c

347425000 + 3665200 c + 8350 c2
. (24)

Substituting (24) into the mth order approximation (21) gives a solution ex-
pression

u(x, ~(c)) ≈
m∑

k=0

uk(x) =
4m+6∑

k=0

ηm,k(c) xk, (25)

which only depends on the parameter c. It turns out that from (25) one can
always get a convergent series solution which agrees very well with the exact
solution (3), no matter what value of c is.

For over 1000 random values of c in the interval [1, 1030], we have calculated
the relative errors of the 15th order approximation (25) at different points in
the interval (0, 1) as in the case (I), and found that all these relative errors
are less than 5× 10−5. Figure 4 shows that the 15th order approximation (25)
agrees very well with the exact solution (3) for any random value of c in the
interval [1, 1030].

The reasons behind this miracle are as follows. The coefficients of (25) can be
expressed as

ηm,k(c) =
s2m,kc

2m + s2m−1,kc
2m−1 + · · ·+ s1,kc + s0,k

t2m,kc2m + t2m−1,kc2m−1 + · · ·+ t1,kc + t0,k

, (26)
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Fig. 4. Symbols: 15th order HAM approximation (21); solid line: exact solution (3).

where si,j and ti,j are real numbers. Due to the continuity of ~ on c, equation
(24) leads to good approximations for small values of c; while for large values
of c, it is seen from (26) that

lim
c→∞ ηm,k(c) =

s2m,k

t2m,k

(27)

is independent of c. Therefore, equation (25) always give good approximation,
no matter what value of c is.

3 Conclusions

In this paper, the homotopy analysis method (HAM) is successfully applied
to solve a parameterized sixth order boundary value problem which, for large
parameter values, cannot be solved by other analytical methods for finding ap-
proximate series solutions. The success mainly lies in the fact that the HAM
provides a convergence-control parameter ~ which can be used to adjust and
control the convergence region and rate of the series solution obtained, ac-
cording to the value of the parameter. Therefore, the HAM is a promising
analytical tool for solving nonlinear as well as linear problems.
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