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Abstra
t

Three topi
s are dis
ussed that relate to the tea
hing of linear algebra using 
omputers

(here the term 
omputers in
ludes 
al
ulators). The �rst topi
 is the variation in notation

and terminology both between books and 
omputer systems, and between di�erent 
omputer

systems. The se
ond topi
 is the importan
e of numeri
al linear algebra, and how it be
omes

more diÆ
ult to avoid numeri
al aspe
ts of the subje
t on
e 
omputers are used in tea
hing.

The �nal topi
 is the Turing fa
toring of a matrix. This is a fa
toring approa
h to row

redu
tion, and if it is taught in 
ourses, students 
an transfer what they know to 
omputers

with a minimum of diÆ
ulty.

1 Introdu
tion

Tea
hing linear algebra with 
omputers requires a 
o-operative e�ort between tea
hers and

system developers to mat
h 
ourse material and software. Neither 
omputer software nor


ourse material 
an remain stati
. When 
omputers were �rst used in tea
hing, students sat

down with 
al
ulators or general purpose software and 
ontinued to study the same 
on
epts

and te
hniques that existed before 
al
ulators. In the future we 
an expe
t software to adapt

itself more 
losely to tea
hing requirements, but we must also expe
t 
ourse 
ontent will

evolve, whether we will it or no, as it adapts to a \material 
hange of 
ir
umstan
es", to use a

legal term. Therefore, many de
isions remain to be made by tea
hers and system developers

regarding the shape of software and the shape of 
ourses. This arti
le dis
usses questions in

three general areas, and draws on experien
e at the University of Western Ontario (UWO),

where engineering students have been required to buy and use HP48 
al
ulators in their 
lasses

and in their examinations.

Courses 
alled `linear algebra' 
over a number of variations, di�ering basi
ally in the weight

they give to theory, appli
ations, and numeri
al topi
s, and therefore any dis
ussion must be


lear on what type of 
ourse is being addressed. Perhaps the most 
ommon �rst 
ourse in

linear algebra (espe
ially in North Ameri
a) 
ombines se
tions on matrix methods for solving

simultaneous linear equations with se
tions on the study of matrix algebra as a 
on
rete

example of a ve
tor spa
e. Appli
ations are given short shrift, be
ause students don't like

them. A more abstra
t treatment of linear algebra|what we might 
all a ve
tor-spa
e 
ourse|

is usually left to a later 
ourse for mathemati
s majors, and is sometimes used as a vehi
le

for an introdu
tion to axiomati
 algebra; the other type of advan
ed 
ourse is numeri
al

linear algebra, whi
h may be taught as part of a 
ourse on numeri
al analysis. The students

also should in
uen
e the 
ourse. For engineering students, it seems reasonable to emphasize


omputations and appli
ations, and for mathemati
ians, mathemati
al 
on
epts.
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The major use of 
omputers has been to assist students with matrix manipulation. Usually

the students will be taking a 
ourse, su
h as the one des
ribed above, whi
h in
ludes pra
ti
al


omputations (solving systems, �nding eigenvalues) and some introdu
tory treatment of ve
tor

spa
es (the ideas of basis, subspa
es, mapping between spa
es). Consequently, the fo
us here

is on matrix 
omputations in the servi
e of linear algebra.

In an e�ort to disguise, somewhat, our own prejudi
es, we have presented the dis
ussion in

the form of questions.

2 Representations and Operations

The questions in this se
tion refer to the basi
 design de
isions upon whi
h a software system is

based. We use the following notation. S
alar quantities are denoted by Greek letters; ve
tors

are denoted by lower-
ase roman letters; matri
es are denoted by upper-
ase roman letters.

2.1 Notation

The �rst question is

what standard notation should a 
omputer system use?

Mathemati
al handwriting re
ognition software is not yet generally available. This for
es 
om-

promises on mathemati
al notation in the presen
e of 
omputers. Let us ignore for the moment

the di�erent notations in use for matrix entry or display, and 
onsider just the transpose of a

matrix. In textbooks, the transpose of A is variously denoted as

A

T

; A

t

; A

0

; A

�

; A

H

(the last being used ex
lusively for Hermitian or 
onjugate transpose). The 
omputing lan-

guages all 
hoose notation other than A

T

, A

t

, or A

H

be
ause it would be too diÆ
ult to

distinguish this from raising A to a power (we suspe
t there is at least one paper somewhere

that does use A

t

to mean raising A to the power t). Matlab uses A' to mean Hermitian trans-

pose and A.' for ordinary (non-
onjugated) transpose, while Maple uses Transpose(A) for the

ordinary transpose, and HermitianTranspose(A) otherwise. The HP48 series 
al
ulators use

TRN or TRAN for Hermitian transpose and do not appear to have a 
ommand for ordinary

transpose (other than su

essively using TRN and CONJ); 
onversely Derive and Mathemati
a

have 
ommands for ordinary transpose and not the Hermitian one.

The di�erent notational 
onventions in use prior to 
omputers have thus only multiplied;

and what the 
omputer uses will almost 
ertainly not mat
h the textbook.The resulting burden

on student memory may play a useful pedagogi
al role, but it is also a potential sour
e of


onfusion, espe
ially when more than one 
omputer system is used.

Notation, though often super�
ially treated when used in tea
hing, is one of the more

signi�
ant topi
s taught; we often 
onvey more in how we 
hoose to denote things than in our


al
ulations. The isomorphism between a row and a 
olumn ve
tor of the same dimensions is

rarely explained 
arefully; but students get used to multiplying matri
es by 
olumn ve
tors

on the right and row ve
tors on the left, and 
an be 
onfused if a 
omputer system does this

di�erently. For example, the HP 
al
ulators display ve
tors horizontally, an obvious saving of

s
reen spa
e. We note that tensor notation for multipli
ation, namely a

ij

b

j

, does not rely so

mu
h on student memory of how matrix multipli
ation works (but does require that they get

used to the summation 
onvention, whi
h is useful for higher-order tensors).



2.2 Di�erent types of arrays

The se
ond question is

should a 
omputer system distinguish between s
alars, ve
tors and matri
es?

Two systems that 
onveniently illustrate di�erent positions on the representation question are

Matlab and the HP48/49 
al
ulators. In Matlab, the data storage makes no distin
tion

between s
alars, ve
tors and matri
es, storing all obje
ts as a single type of array; the HP48

has separate data stru
tures for all three types and enfor
es operational rules between them.

In the HP48, a s
alar is a bare number, for example, 0:67 ; a ve
tor is an array en
losed in

single bra
kets, e.g. [0:67; 2; 3℄; a matrix is an array of ve
tors, e.g. [[0:67; 2; 3℄; [�1;�2;�3℄℄.

A one-dimensional row matrix [[0:67; 2; 3℄℄ is di�erent from a ve
tor. In the HP, the following

operations all generate error messages.

1+[1℄ , 1+[[1℄℄ , [1℄+[[1℄℄ .

For the purposes of multipli
ation, ve
tors 
an be 
ombined with matri
es. Thus the following

are legal operations

�

[1; 2; 3℄

[4; 5; 6℄

�

2

4

[1℄

[2℄

[3℄

3

5

;

�

[1; 2; 3℄

[4; 5; 6℄

�

[1; 2; 3℄ :

In the �rst 
ase, a 2 � 3 matrix is multiplied by a 3 � 1 matrix and a 2 � 1 matrix will be

returned; in the se
ond 
ase, the matrix is repla
ed by a ve
tor, and the result will be a ve
tor

also. In 
ontrast, the expression

�

[1; 2; 3℄

[4; 5; 6℄

�

[[1; 2; 3℄℄

is not legal syntax. Derive and Mathemati
a follow similar 
onventions, but with some varia-

tions.

InMatlab, a 1�1 matrix 
an have several interpretations. Thus the following operations

generate error messages in an HP48 
al
ulator, but are legal in Matlab.

[1℄

2

4

[1℄

[2℄

[3℄

3

5

; [1℄ +

�

[1; 2; 3℄

[4; 5; 6℄

�

:

In an abstra
t ve
tor spa
e, the operations � + v, � + A, are not de�ned, but �v and

�A are de�ned. Clearly a tea
her who wishes to stress this fa
t had better keep the students

away from the 
omputer during this part of the 
ourse, or prepare to explain whatMatlab is

doing. The point is that an array is both a data stru
ture and a mathemati
al obje
t. Sin
e

Matlab uses arrays for many more tasks than just linear algebra, all of its extensions are


onvenient, and make sense in 
ontext. The tea
her must remember, however, that Matlab

is now a general purpose 
omputational system, and not just a study aid for linear algebra, or

more spe
i�
ally, matrix analysis, and therefore it does not 
on�ne users to the narrow streets

of linear algebra.

2.3 Matrix and array operations

The next question is

should 
omputer systems de�ne operations that are not part of standard linear

algebra texts?



Most mathemati
al software pa
kages have extended the operations that 
an be performed

on matri
es beyond the operations de�ned in linear algebra. The most obvious operation is

division. Many tea
hers of linear algebra or matrix analysis spend some time explaining that

division \does not exist" and that the system Ax = b has the exa
t solution x = A

�1

b only if

A

�1

exists. Further, the solution 
annot be written b=A be
ause this notation does not show

that multipli
ation must be on the left. Having taught this, the tea
her is then 
onfronted

with the HP48 
al
ulator, whi
h happily a

epts b=A. Also if b and A are pla
ed on the sta
k,

then pushing the � button produ
es the solution of Ax = b. InMatlab, the statement A=B


omputes the X that solves the problem B

T

X

T

= A

T

in the sense of least squares. Explaining

this to students requires that they be taught least-squares solutions.

Some years ago, questions were set on UWO exams following a model found in many books:

Does the following system of equations for fx; yg have a solution?

5x+ 3y = 3

�x+ y = 4

4x+ 4y = 8

The expe
ted response was a row-redu
tion of the system followed by the 
on
lusion \no".

As it happens, if the last 
onstant is 7 rather than 8, then the system has the exa
t solution

x = �9=8; y = 23=8, be
ause in that 
ase the last equation is the sum of the other two, but

no solution exists to the problem as printed. Many students, however, entered the system into

their HP48 
al
ulators and used the menu item \Solve linear system" to dis
over, apparently,

that a solution existed, and 
omplained when their answers were marked wrong

1

. The same

problem is present in Matlab, where the operation Anb also is de�ned to return a least-

squares solution. The diÆ
ulty with general purpose software is that students will sooner

or later wander into advan
ed areas that the tea
her is not expe
ting. On
e su
h an area of

mis
on
eption is un
overed, there are two responses: �rst, di
tate instru
tions in the 
lassroom

and in the exam that this menu item must not be used, or, se
ond, modify the 
ourse so that the

students are taught least-squares and then the responsibility for 
hoosing the 
orre
t 
ommand

be
omes theirs. If least-squares is in
luded only to explain 
al
ulator behaviour, then many

tea
hers might obje
t to the thought that their 
ourse material is being de
ided for them by

a 
al
ulator 
ompany.

Division is not the only problem, 
onsider simple multipli
ation. In the equation

(A�)B = A(�B) ;

the multipli
ations are di�erent, those between � and a matrix being 
ommutative, and those

between matri
es being non-
ommutative. This distin
tion is not re
orded in the notation

used in any books we know, but it is re
orded in some software systems, spe
i�
ally Maple. In

Maple, the equation 
annot be written (A��)�B = A�(��B), be
ause A�B is illegal notation

for the non-
ommutative matrix produ
t. Instead, one must write (A � �):B = A:(� � B).

In addition, many pa
kages implement array arithmeti
, also 
alled element-by-element

arithmeti
. The array produ
t is also 
alled Hadamard produ
t, after usage introdu
ed by von

Neumann [4℄. In Matlab, the notation for array produ
t and array division is

[a; b; 
; d; : : :℄ : � [w; x; y; z; : : :℄ � [aw; bx; 
y; dz; : : :℄

[a; b; 
; d; : : :℄ := [w; x; y; z; : : :℄ � [a=w; b=x; 
=y; d=z; : : :℄

1

A 
he
k of their apparent answer by 
omputing the residual, something expli
itly en
ouraged in the 
ourse,

would have exposed their error to them; so their marks were not improved by their 
omplaints



From the point of view of linear algebra, these operations are not important, be
ause they

are not matrix operations, but for tea
hers of introdu
tory numeri
al analysis 
ourses, the

notation is the sour
e of endless debugging problems for the students. For professionals, the


ompa
tness of this notation is a great 
onvenien
e.

In Maple, the elementwise operations are available by working with Arrays and not Matri
es

(these are di�erent from `arrays' and `matri
es' in Maple, by the way; the 
ase of the initial

letter is signi�
ant). One 
an eÆ
iently 
hange the type of a two-dimensional Array to be

a Matrix by issuing the 
ommand rtable_options(A,subtype=Matrix). This is useful for

programming, but not something that most tea
hers would want to in
lude in a �rst 
ourse

on linear algebra.

2.4 The answers

It has not been our intention to sell one parti
ular notation or to re
ommend one 
omputer

system over others. Ea
h tea
her will have to sele
t some approa
h to linear algebra, and

then mat
h the software to the 
ourse. If the students in the 
ourse are 
omfortable with


omputers, then usage questions are less important than in the 
ase of students who are not


omfortable. If ever the mathemati
ians 
an agree on notational issues, then 
omputers 
an

be asked to follow them, but only if the mathemati
ians agree to 
hange to a notation that 
an

reasonably be implemented. In the meantime, the mathemati
s tea
her is fa
ed with 
hoi
es

both in textbooks and in software. The one point we do want to make is that the de
ision to

adopt 
omputers for
es su
h notational 
hoi
es on the tea
her.

3 Numeri
al or exa
t linear algebra?

The main question we ask in this se
tion is

should tea
hers in
lude any material on numeri
al linear algebra (i.e. 
omputation

in the presen
e or rounding errors 
aused by non-exa
t numeri
al data) in a �rst


ourse?

The subje
t of numeri
al linear algebra is a large and important one, both for industry and

s
ien
e. However, most tea
hers of matrix analysis would prefer to avoid any mention of the

subje
t in a �rst 
ourse. There are two reasons, however, why they might not be allowed to.

3.1 Di�erent (sometimes better) pro
edures

The �rst reason is that general purpose software, su
h as we have been des
ribing, must

perform 
orre
tly for professional users as well as students. Therefore many 
ommands that a

student might use will give results in the form that is required by advan
ed users.

For example, LU fa
toring is often taught without pivoting

2

, or at most with pivoting

to avoid exa
t zeros. Both the HP48 and Matlab, however, always use partial pivoting in

this operation, be
ause professional pra
ti
e requires it. Therefore any student using either of

these produ
ts to 
he
k homework problems may fa
e the diÆ
ulty that the 
omputer answers

problems di�erently from the textbook. Similar remarks apply to QR fa
toring: the HP48

fa
tors AP = QR, where the P matrix again is required by numeri
al linear algebra.

2

We might 
all this a useful \lie-to-
hildren"[6℄. The pedagogi
al point is to avoid unne
essary burdens on the

student's �rst en
ounter with the 
on
ept.



It 
an also be argued that we should look to the future. If the students are in a program su
h

as engineering, where we 
an hope that some of them will a
tually see large linear problems

in their future employment, then it is a good thing to start introdu
ing 
orre
t ideas as early

as possible.

3.2 In
orre
t results

Should system programmers design their produ
ts so as to expose or to disguise the

e�e
ts of rounding errors?

Some years ago, the following problem was set on a UWO examination:

Find the rank of the matrix

�

1 2=3

3 2

�

.

Of 
ourse the expe
ted solution was for the students to see that multiplying the �rst row by 3

gave the se
ond row, and hen
e the rank is 1. However, many students typed the matrix into

their 
al
ulators and sele
ted the menu item \rank". The 
al
ulator returned 2, be
ause it

worked with 
oating point numbers, and rounding errors had 
orrupted the solution. Students

�nd a dis
ussion of in
orre
t results from 
al
ulators (su
h as in [1℄) to be sho
king. Thus,

this simple problem 
reated a head-on 
ollision between the students and numeri
al linear

algebra. In this 
ir
umstan
e the tea
her has several options: the obvious ones are not to

use a 
al
ulator, or to ensure that the students will get 
orre
t results by setting only those

problems that have been pre-tested on the 
al
ulator. This is awkward, now that there are so

many menus and methods to try; it is diÆ
ult to anti
ipate just whi
h menu item a student

will press into servi
e.

More options exist. The designers of software 
an give in to the temptation to disguise the

problem by for
ing tiny numbers to zero. The row redu
tion routines in Matlab have su
h

a default behaviour. It should be noted, though, that examples 
an be 
onstru
ted showing

that any �xed 
hoi
e of \tiny" leads to in
orre
t answers. In the short term, su
h a qui
k �x

saves the tea
her mu
h talking, but at the 
ost of failing to alert students to the dangers that

will fa
e them in the world of very large matrix problems. Instead of disguising the problem,

one might in
orporate some aspe
ts of numeri
al analysis into the 
ourse. In this parti
ular

example, a numeri
al analyst would 
omment that rank is known to be a quantity that 
annot

be reliably 
omputed, be
ause it is ill-
onditioned.

Yet another option is to swit
h to exa
t 
omputation using a 
omputer algebra (CA) pa
k-

age, or a CA enabled 
al
ulator. This raises the other spe
tre of linear algebra: 
omplexity, in

the 
omputer s
ien
e sense of the `
ost' of a 
omputation. Computations using exa
t numbers

grow in 
ost (with the size of the matrix) more qui
kly than 
oating-point 
omputations, be-


ause the individual matrix elements grow in size. For example, if one tries to invert a matrix

of integers, the numerator and denominator of ea
h element will in
rease in length regardless of

the magnitudes of the numbers being represented. As another example, if one tries to 
ompute

the eigenve
tors of a general matrix, then for matri
es up to 4 � 4, one gets nested radi
als,

while for larger systems the 
omputation will be plagued by general algebrai
 numbers.

On
e we start to 
ompute, both stability and 
omplexity of 
omputation will for
e them-

selves on the attention of the student and tea
her sooner or later. The only solution is never

to venture outside the domain of 2 � 2 and 3 � 3 integer matri
es. If, however, one is going

to do that, then one of the most ex
iting possibilities that 
omputers o�er is lost, namely the


han
e for students to explore for themselves.



3.3 Never learning the best method

A book on 
anoeing [5℄ re
ommends that the �rst paddling stroke to tea
h students is the

ba
kstroke,

be
ause we note a tenden
y to revert to the most familiar stroke when 
ustered.

Many readers will have heard stories of students graduating and going to work in industry, and

then applying mathemati
s from their undergraduate textbooks. Perhaps they try solving 100

equations in 100 unknowns using Cramer's rule, or sear
hing for the eigenvalue of a large matrix

by trying to solve its 
hara
teristi
 polynomial. With today's arbitrary pre
ision software, they

might even get the 
orre
t answer after a long wait.

We 
an ask

how far into the future does your 
ourse proje
t?

We happily tea
h 
hildren that \you 
annot take 3 from 2" be
ause we are 
on�dent that

someone will later introdu
e them to negative numbers. No one suggests we should 
hange

this

3

. Should we insist that students learn Gaussian elimination with partial pivoting (insist

on less lies-to-
hildren); should software vendors program and sell systems o�ering Gaussian

elimination without pivoting (
omputers enshrine lies-to-
hildren)? In fa
t, in many intro-

du
tory books, every 
omputational pro
edure they tea
h requires later modi�
ation for the

purposes of numeri
al linear algebra. Should we worry about this?

3.4 The answers

At UWO, we have modi�ed the linear algebra that is taught to engineers; it now exhibits

a more numeri
al slant. Thus we tea
h partial pivoting and least-squares solutions. Gram{

S
hmidt is linked to the QR fa
toring on the 
al
ulator. We demonstrate, to the students'

horror, the possibility that 
omputers will return a wrong answer; we do our best to persuade

students to 
he
k their results using their 
al
ulators. In 
ontrast, the linear algebra taught

to our mathemati
ians remains more traditional. Ultimately, the dis
ussion above 
ombines

with the personal tastes of the instru
tor to de
ide what a
tion is taken. Again, the prin
iple

is that the presen
e of the 
omputer will for
e these issues into the area of dis
ussion.

4 Row redu
tion and symboli
 systems

This se
tion addresses the question

should symboli
 
omputation systems be allowed to ask tea
hers to modify time-

honoured material in their 
ourses?

Spe
i�
ally, the time-honoured material is row redu
tion. The tea
hing of the Gauss-Jordan

redu
tion of a matrix to redu
ed row-e
helon form (RREF) is thoroughly engrained in North

Ameri
an linear algebra 
ourses. A sour
e of frustration, for students and tea
hers alike, is

the fa
t that a lot of arithmeti
 is required and subtra
tion and division errors are 
ommon.

The automation of this pro
edure, therefore, seems to be a natural appli
ation of 
omputer

te
hnology. Unfortunately the spread of symboli
 systems has 
reated a problem for designers

and tea
hers.

3

It is interesting to wonder how many people there are in the world who are living their lives happily, not knowing

anything about negative numbers.



Consider the plight of some adventurous students at UWO who de
ided to use a 
omputer to

solve some eigenvalue problems by an original method. Instead of 
omputing the 
hara
teristi


polynomial using det(A � �I), they argued that the real problem was to �nd non-trivial

solutions to (A��I)x = 0. Surely, they argued, we 
an simply row-redu
e the matrix and see

when it is singular. The idea is not so unusual, be
ause many textbooks in
lude problems in

whi
h they present a system of equations with one or more parameters, and the students must

de
ide when the system fails to have a unique solution. Using their favorite CA system, the

students typed in

Find-Redu
ed-Row-E
helon-Form

�

1� � 3

�2 7� �

�

:

Of 
ourse, all they got ba
k was the identity matrix and were none the wiser.

There are several solutions to this problem. The �rst one is to say to the students \That's

what you get for being adventurous. In future, never try to solve any problem in a way di�erent

from what I showed you in 
lass". No one would want a tea
her to say that. A se
ond solution

is to go to the writer of the CA system and demand that the system be rewritten using provisos,

or spe
ial 
ase analysis [2℄. Thus, in the example, the system would return an identity matrix

together with a statement that �

2

� 8�+ 13 6= 0. A third solution, however, is to modify the

de�nition in the textbook, and the way that row redu
tion is taught, so that the 
omputer

systems 
an obey the de�nition and yet not lose information. Su
h an approa
h uses the

Turing fa
tors of a matrix.

4.1 Turing fa
tors of a matrix

The de�nition of Redu
ed Row E
helon Form for
es us to divide out pivots. In the example

above, this for
ed us to dis
ard the 
hara
teristi
 polynomial. The nub of the problem is that

row redu
tion is a transformation of one matrix into another matrix, and the transformation

for
es us to throw away information. What if we de�ne a new format that retains all informa-

tion? The key observation is that everywhere else in modern linear algebra, people work by

fa
toring a matrix. English speakers also use the term de
omposition for a matrix fa
toring.

Thus, in linear algebra, we �nd LU fa
tors

4

, QR fa
tors and singular-value fa
tors U�V

T

(usually 
alled the SVD, instead of the SVF).

The new format for RREF is an extension of LU fa
toring. The LU fa
toring of a matrix

has been generalized to a re
tangular, symboli
 matrix[3℄; we have 
alled this the `Turing

fa
toring' in honour of the remarkable paper published in 1948 by Alan Turing [7℄ in whi
h

he proved that row-redu
tion is equivalent to the following `resolution into the produ
t of

matri
es'

PA = LDU ;

where P is a permutation matrix, L is unit lower triangular, D is diagonal with nonzero entries,

and U is unit upper triangular. Modern textbook writers prefer to write this as PA = LU , and

either 
ombine the D with the L (sometimes 
alled Crout fa
toring) or with the U (Doolittle

fa
toring). The 
hoi
e is made in order to reprodu
e what the writers were taught when they

were students.

Many textbooks and software pa
kages 
onsider LU fa
toring to be appli
able only to

invertible matri
es. Thus in Matlab version 5.3 (release 11), applying the fun
tion lu to a

4
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non-square matrix produ
ed an error message; in Matlab 6 (release 12), this is no longer the


ase, but Mathemati
a and the HP still insist on an invertible matrix.

In fa
t, any re
tangular matrix A has the Turing fa
tors

PA = LDUR :

Here, the R matrix is the unique redu
ed row-e
helon form of A. The matrix P is a pre
ondi-

tioning matrix; it is usually a permutation matrix, but it 
an be a more general matrix. For

example, the standard software pa
kage LAPACK uses row and 
olumn equilibration (routines

xGESVX) and this 
an be des
ribed using pre
onditioning matri
es.

4.2 What 
an we do with this?

We return to the eigenvalue problem above and use Turing fa
toring:

�

0 1

1 0

��

1� � 3

�2 7� �

�

=

�

1 0

1

2

(�� 1) 1

��

�2 0

0

1

2

(�

2

� 8�+ 13)

��

1

1

2

(�� 7)

0 1

��

1 0

0 1

�

Noti
e the rather useless row-e
helon form at the end, and noti
e that the 
hara
teristi


polynomial has appeared naturally in the D matrix. Students 
ould be taught the simple

rule \always 
he
k the 
ases detD = 0 separately", but it is rewarding to understand where

this rule 
omes from.

The importan
e of detD = 0 
omes be
ause we are interested in spe
ial 
ases, and spe
ial


ases are often points of dis
ontinuity; indeed, this is why they are interesting and 
onsidered

spe
ial. So we ask about the 
ontinuity properties of Turing fa
toring.

Consider the RREF of the matrix A(k) =

�

1 0

0 k

�

as the parameter k passes through 0.

The RREF is the identity I, ex
ept for a sudden, dis
ontinuous 
hange at k = 0. Linear algebra


ourses do not usually dis
uss the limit of a matrix, but under any reasonable de�nition, the

limit of RREF(A) as k ! 0 must be the unit matrix. So we have lim

k!0

RREF (A) = I 6= A(0).

Under any de�nition of 
ontinuity, the RREF of A is dis
ontinuous at k = 0.

De�nition. A matrix A(x) is 
ontinuous at x = a if ea
h of its elements is 
ontinuous at

x = a.

On
e we be
ome a

ustomed to thinking of (interesting) spe
ial 
ases as dis
ontinuities,

we 
an frame the following theorem.

Theorem: Let A(x) be a matrix depending upon one or more variables or parameters x,

and let A be 
ontinuous at a point x = a. For any �xed x, let A(x) have the Turing fa
toring

given by P (x)A(x) = L(x)D(x)U(x)R(x). If detD(x) 6= 0 in some neighbourhood of x = a,

then R(x), L(x), D(x), U(x) are all 
ontinuous at x = a and moreover P (x) may be taken


onstant in a neighbourhood of x = a.

This theorem is proved in [3℄ and means two things.

� A CAS 
an give an RREF whi
h 
ontains visible failure built in. Pla
es where an

RREF might fail are no longer invisible be
ause of the de�nition.

� The dis
ontinuity information is 
olle
ted in a single pla
e, namely, along the diagonal

of D.



To return to the eigenvalue problem, the Turing fa
tors of a matrix A � �I, will always

lead to a diagonal matrix D in whi
h the diagonal entries are

p

1

(�); p

2

(�)=p

1

(�); : : : ; p

n

(�)=p

n�1

(�)

where p

k

(�) is a polynomial of degree k, and in the last entry, p

n

(�) is the 
hara
teristi


polynomial. Thus, detD = p

n

(�) and only the roots of the 
hara
teristi
 polynomial are spe
ial


ases. For some matri
es, a fra
tion p

k

=p

k�1

might simplify; this would simply mean that a

preliminary splitting of the 
hara
teristi
 polynomial had been found during the 
omputation.

4.3 The bene�ts

The immediate bene�t to the tea
her of Turing fa
toring is the 
ombining together of row

redu
tion and LU fa
toring. If LU fa
toring was not previously in the 
ourse material, then it


omes along at no extra 
ost to the student. A 
ommon obje
tion to Turing fa
toring is that it is

\a bit ri
h" for beginning students. Its 
omputation also threatens a great deal of 
omputation.

However, the point of 
omputers is exa
tly to take over the burden of 
omputation. Provided

students know what Turing fa
tors are, 
omputer algebra systems 
an easily obtain them for

the student.

The immediate bene�t to the system designer is that a me
hanism be
omes available for

returning spe
ial 
ase information ba
k to the user. This obviates the need to develop new

user interfa
es that allow the passing ba
k to the user of proviso information. The bene�t to

the student is a gentle introdu
tion to one of the most powerful ideas of modern linear algebra:

fa
toring.

Referen
es

[1℄ Robert M. Corless. Six, lies, and 
al
ulators. The Ameri
an Mathemati
al Monthly,

100(4):344{350, 1993.

[2℄ Robert M. Corless and David J. Je�rey. Well, it isn't quite that simple. SIGSAM Bulletin,

26(3):2{6, 1992.

[3℄ Robert M. Corless and David J. Je�rey. The Turing fa
torization of a re
tangular matrix.

SIGSAM Bulletin, 31(3):20{28, 1997.

[4℄ Roger A. Horn. The Hadamard Produ
t, In Pro
. Sympos. Applied Maths (Charles R.

Johnson, Ed.). AMS Volume 40, 1990.

[5℄ Robert E. M
Nair. Basi
 River Canoeing. Ameri
an Camping Asso
iation, Martinsville,

Indiana, USA, 1972.

[6℄ Terry Prat
hett, Ian Stewart, and Ja
k Cohen. The S
ien
e of Dis
world. Ebury Press,

1999.

[7℄ Alan M. Turing. Rounding-o� errors in matrix pro
esses. Quart. J. Me
h. Appl. Math.,

1:287{308, 1948.


