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Abstract Based on the homotopy analysis method (HAM), a general ana-
lytical approach for obtaining approximate series solutions to nonlinear two-
point boundary value problems in finite domains is proposed. To demonstrate
its effectiveness, this approach is applied to solve three nonlinear problems,
and the analytical solutions obtained are more accurate than the numerical
solutions obtained via the shooting method and the sinc-Galerkin method.

Keywords Boundary value problem · Series solution · Homotopy analysis
method · Symbolic computation · Analytical solution

1 Introduction

In the field of differential equations, a boundary value problem is a differential
equation together with a set of additional restraints, called the boundary
conditions. A solution to a boundary value problem is a solution to the
differential equation which also satisfies the boundary conditions. Boundary
value problems arise in engineering, applied mathematics and several branches
of physics, and have attracted much attention; see [1–7] for references.

However, it is usually difficult to obtain closed-form solutions for boundary
value problems, especially for nonlinear boundary value problems. In most
cases, only approximate solutions (either numerical solutions or analytical
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solutions) can be expected. Some numerical methods such as finite difference
method [1], finite element method [2], shooting method [3], spline approxi-
mation method [4], and sinc-Galerkin method [5] have been developed for
obtaining approximate solutions to boundary value problems.

Perturbation method [8] is one of the well-known analytical methods for
solving nonlinear problems. However, it strongly depends on the existence
of small/large parameters. Traditional non-perturbation methods such as
differential transformation method [9] and Adomian’s decomposition method
[10] have been developed for solving boundary value problems. However,
these methods cannot provide a mechanism to adjust and control the conver-
gence region and rate of the series solutions.

In Section 2 of this paper, based on the homotopy analysis method (HAM)
[11–13] which has been successfully applied to solve many types of problems
[14–17], we propose a general analytical approach for solving the following
type of nonlinear boundary value problems in a finite domain:

u(n)(x) = f (x, u(x), u′(x), . . . , u(n−1)(x)), (1)

subject to the two-point boundary conditions

u(a) = α0, u′(a) = α1, . . . , u(r)(a) = αr,

u(b) = β0, u′(b) = β1, . . . , u(n−r−2)(b) = βn−r−2, (2)

where 0 ≤ r ≤ n − 2 is an integer, f is a polynomial in x, u(x), u′(x), . . .,
u(n−1)(x), and a, b , α0, α1, . . . , αr, β0, β1, . . . , βn−r−2 are real constants. For the
cases when n = 4 and n = 6, see [18, 19].

To demonstrate its effectiveness, the approach is applied to solve three
nonlinear two-point boundary value problems. More precisely, in Section 3.1,
the approach is applied to solve a nonlinear second order boundary value
problem [6]. It is shown that the series solution obtained via this approach is
more accurate than the numerical solution obtained via the shooting method.
In Section 3.2, the approach is applied to solve a nonlinear third order
boundary value problem [7] which does not have a closed-form solution, and
an approximate series solution is obtained which agrees very well with the
numerical solution obtained by the Runge–Kutta–Fehlberg 4–5 technique.
In Section 3.3, the approach is applied to solve a nonlinear fourth order
boundary value problem [5]. It is shown that the series solution obtained via
this approach is much more accurate than the numerical solution obtained via
the sinc-Galerkin method. The success of this approach lies in the fact that the
HAM provides a convenient way to adjust and control the convergence region
and rate of the series solutions obtained. Finally in Section 4, some concluding
remarks are given.
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2 The HAM-based approach

In order to obtain a convergent series solution to the nonlinear problem (1, 2),
we first construct the zeroth order deformation equation

(1 − p)L[φ(x; p) − u0(x)] = p �N [φ(x; p)], (3)

where p ∈ [0, 1] is an embedding parameter, � �= 0 is a convergence-control
parameter, and φ(x; p) is an unknown function, respectively. According to (1),
the auxiliary linear operator L is given by

L[φ(x; p)] = ∂nφ(x; p)

∂xn
, (4)

and the nonlinear operator N is given by

N [φ(x; p)] = ∂nφ

∂xn
− f

(
x, φ,

∂φ

∂x
, . . . ,

∂n−1φ

∂xn−1

)
. (5)

The initial guess u0(x) of the solution u(x) can be determined by the rule of
solution expression as follows.

In view of (1), the solution u(x) can be expressed by a set of base functions

{xn| n = 0, 1, 2, . . .} (6)

in the form

u(x) =
+∞∑
n=0

dnxn, (7)

where dn(n = 0, 1, 2, . . .) are coefficients to be determined later. This provides
us with the rule of solution expression.

According to the rule of solution expression (7), the initial guess u0(x) is
given by

u0(x) = xn + an−1 xn−1 + · · · + a2 x2 + a1 x + a0. (8)

In view of the given boundary conditions (2), the coefficients a0, a1, a2, . . .,
an−1 can be determined by solving a system of n linear equations. Finally from
(2), the boundary conditions to the zeroth order deformation equation (3) are
given by

φ(a; p) = α0,
∂φ(a; p)

∂x
= α1, . . . ,

∂ rφ(a; p)

∂xr
= αr,

φ(b ; p) = β0,
∂φ(b ; p)

∂x
= β1, . . . ,

∂ n−r−2φ(b ; p)

∂xn−r−2
= βn−r−2. (9)

We now focus on how to obtain higher order approximations to the problem
(1, 2). From (3), when p = 0 and p = 1,

φ(x; 0) = u0(x) and φ(x; 1) = u(x) (10)
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both hold. Therefore, as p increases from 0 to 1, the solution φ(x; p) varies
from the initial guess u0(x) to the solution u(x). Expanding φ(x; p) in Taylor
series with respect to p, one has

φ(x; p) = φ(x; 0) +
+∞∑
m=1

um(x) pm, (11)

where

um(x) = 1

m!
∂mφ(x; p)

∂pm

∣∣∣∣
p=0

. (12)

Now the convergence of the series (11) depends on the parameter �.
Assuming that � is chosen so properly that the series (11) is convergent at
p = 1, we have, by means of (10), the solution series

u(x) = φ(x; 1) = u0(x) +
+∞∑
m=1

um(x) (13)

which must be one of the solutions of the original problem (1, 2), as proved by
Liao in [12].

Our next goal is to determine the higher order terms um(x)(m ≥ 1). Define
the vector

us(x) = {u0(x), u1(x), . . . , us(x)}. (14)

Differentiating the zeroth order deformation equation (3) and its boundary
conditions (9) m times with respect to p, then setting p = 0, finally dividing
them by m!, we obtain the mth order deformation equation

L[um(x) − χmum−1(x)] = �Rm(um−1(x)), (15)

and its boundary conditions

um(a) = u′
m(a) = · · · = u(r)

m (a) = 0,

um(b) = u′
m(b) = · · · = u(n−r−2)

m (b) = 0, (16)

where

Rm(um−1(x)) = 1

(m − 1)!
∂m−1N [φ(x; p)]

∂pm−1

∣∣∣∣
p=0

, (17)

and

χm =
{

0, m ≤ 1,

1, m > 1.

Note that the mth order deformation equation (15) becomes

u(n)
m (x) = χmu(n)

m−1(x) + �Rm(um−1(x)). (18)
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According to the rule of solution expression (7), the right hand side of (18) can
be expressed by

u(n)
m (x) =

N(m)∑
k=0

dk xk, (19)

where the upper limit N(m) depends on m.
Since the solution of u(n)

m (x) = xk with the boundary conditions (16) can be
expressed by

um(x) = k!
(k + n)! xk+n + δn−1xn−1 + δn−2xn−2 + · · · + δ1x + δ0, (20)

where, in view of (16), δ0, δ1, . . . , δn−2, δn−1 can be determined by solving a
system of n linear equations, then by (19), (20) and the linearity of L−1, we
finally obtain

um(x) =
N(m)∑
k=0

dk

(
k!

(k + n)! xk+n + δn−1,k xn−1 + · · · + δ1,k x + δ0,k

)
. (21)

In this way, we can solve um(x)(m = 1, 2, 3, . . .) recursively.
The mth order approximation to the problem (1, 2) can be generally

expressed by

u(x, �) ≈
m∑

k=0

uk(x) =
σ(m)∑
k=0

γm,k(�) xk, (22)

where the upper limit σ(m) depends on m, and the coefficients γm,k(�)(k =
0, 1, 2, . . . , σ (m)) depend on m, k and �. Equation (22) is a family of solutions
to the problem (1, 2) expressed in terms of the parameter �.

To obtain an accurate approximation (22) to the problem (1, 2), a proper
value of � must be found. First, the valid region of � can be obtained via the
�-curve as follows.

Let c0 ∈ [a, b ]. Then u(c0, �) is a function of �, and the curve u(c0, �) versus
� contains a horizontal line segment which corresponds to the valid region of �.
The reason is that all convergent series given by different values of � converge
to its exact value. So, if the solution is unique, then all of these series converge
to the same value and therefore there exists a horizontal line segment in the
curve. We call such kind of curve the �-curve; see Fig. 1 for example, where the
valid region of � is about −0.5 < � < −0.1.

Although the solution series (22) given by different values in the valid region
of � converge to the exact solution, the convergence rates of these solution
series are usually different. A more accurate approximation can be obtained
by assigning � a proper value. By substituting the mth order approximation
(22) into the original governing equation (1) and then integrating the square
residual error over the whole domain [a, b ], one gets a function of �, denoted
F(�). Minimizing F(�) gives the best value of � which corresponds to the best
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approximation. However, it is usually difficult to minimize F(�). Alternatively,
one can obtain a proper value of � just by observation.

3 Applications

In this section, the approach proposed in Section 2 is applied to solve three
nonlinear two-point boundary value problems. For the nonlinear second order
problem (Section 3.1) and the nonlinear fourth order problem (Section 3.3),
the approximate solutions given by the approach are much more accurate than
the numerical solutions given by the shooting method and the sinc-Galerkin
method. For the nonlinear third order problem (Section 3.2) whose closed-
form solution is not available, the approximate solution given by the approach
agrees very well with the numerical solutions given by the Runge–Kutta–
Fehlberg 4–5 technique.

3.1 A second order problem

Consider the following nonlinear second order boundary value problem

u′′(x) = 2 u(x)3 − 6 u(x) − 2 x3, 1 ≤ x ≤ 2, (23)

u(1) = 2, u(2) = 5

2
, (24)

whose exact solution is

uexact(x) = x + 1

x
. (25)

This problem was considered in [6] by means of the shooting method.
For the zeroth order deformation equation (3), the auxiliary linear operator

L is given by

L[φ(x; p)] = ∂2φ(x; p)

∂x2
, (26)

and the nonlinear operator is given by

N [φ(x; p)] = ∂2φ (x; p)

∂x2
− 2 φ (x; p)3 + 6 φ (x; p) + 2 x3. (27)

In view of the boundary conditions (24), the initial guess is determined as

u0(x) = x2 − 5

2
x + 7

2
, (28)

and the boundary conditions to (3) are given by

φ(1; p) = 2, φ(2; p) = 5

2
. (29)
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To obtain higher order terms um(x), the mth order deformation equation
(15) and its boundary conditions (16) are calculated:

u′′
m(x) = χmu′′

m−1(x) + �Rm(um−1(x)), (30)

um(1) = 0, um(2) = 0, (31)

where

Rm(um−1(x)) = u′′
m−1(x) + 6 um−1(x) + 2(1 − χm)x3

−2
m−1∑
j=0

(
um−1− j(x)

j∑
i=0

ui(x)u j−i(x)

)
. (32)

In this way, we can calculate um(x)(m = 1, 2, . . .) recursively. For example,
when m = 1, (30) becomes

u′′
1(x) = �

(
u′′

0(x) + 6u0(x) + 2x3 − 2u0(x)3
)

= −1

4
h

(
8 x6 − 60 x5 + 234 x4 − 553 x3 + 795 x2 − 675 x + 251

)
. (33)

Since the formula (20) now becomes

u1(x) = xk+2

(k + 1)(k + 2)
−

(
2k+2 − 1

)
x

k2 + 3k + 2
+ 2k+2 − 2

k2 + 3k + 2
, (34)

by (21), the first order term

u1(x) = − 1

560
� (x − 1) (x − 2)

× (
20 x6 − 140 x5 + 632 x4 − 1695 x3 + 2926 x2 − 3582 x + 972

)
. (35)

um(x)(m = 2, 3, . . .) can be calculated similarly.
The mth order approximation can be expressed by

u(x, �) ≈
m∑

k=0

uk(x) =
6m+2∑
k=0

γm,k(�) xk, (36)

where the coefficients γm,k(�)(k = 0, 1, . . . , 6m + 2) depend on m, k and �.
Equation (36) is a family of approximate solutions to the problem (23, 24) in
terms of the convergence-control parameter �.

To find the valid region of �, the �-curve given by the 15th order approxi-
mation (36) at x = 3

2 is drawn in Fig. 1, which clearly indicates that the valid
region of � is about −0.5 < � < −0.1.

When � = −0.167, we obtain an approximate solution which is more accu-
rate than the numerical solution given by the shooting method [6] as shown in
Table 1, where the absolute errors of the shooting method approximation, the
5th order, 10th order, and 15th order HAM approximations are calculated and
compared.
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Fig. 1 �-curve for the 15th
order approximation to (23,
24)

3.2 A third order problem

In this section, we consider the following nonlinear third order boundary value
problem

u(3)(x) + u(x)u′′(x) − u′(x)2 + 1 = 0, 0 ≤ x ≤ 1, (37)

u(0) = 0, u′(0) = 0, u(1) = 0. (38)

A similar problem was considered in [7] via the finite difference method.
For the zeroth order deformation equation (3), the linear operator L and

the nonlinear operator N are given by

L[φ(x; p)] = ∂3φ(x; p)

∂x3
, (39)

N [φ(x; p)] = ∂3φ (x; p)

∂x3
+ φ (x; p)

∂2φ (x; p)

∂x2
−

(
∂φ (x; p)

∂x

)2

+ 1. (40)

Table 1 Absolute errors of shooting and HAM approximations

x Exact soln Shooting 5thHAM 10thHAM 15thHAM

1.1 2.0090909 0.0006723 0.0005673 0.0001009 0.0000525
1.2 2.0333333 0.0014338 0.0007144 0.0000551 0.0000544
1.3 2.0692308 0.0021682 0.0004844 0.0001164 0.0000124
1.4 2.1142857 0.0028069 0.0001755 0.0003130 0.0000443
1.5 2.1666667 0.0033009 0.0001453 0.0004174 0.0000844
1.6 2.2250000 0.0035980 0.0006529 0.0003336 0.0000776
1.7 2.2882353 0.0036213 0.0017059 0.0000210 0.0000265
1.8 2.3555556 0.0032344 0.0028780 0.0004440 0.0001910
1.9 2.4263158 0.0021849 0.0030510 0.0007363 0.0001458
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In view of the boundary conditions (38), the initial guess and the boundary
conditions to (3) are determined as

u0(x) = x3 − x2, (41)

φ(0; p) = 0,
∂φ (0; p)

∂x
= 0, φ(1; p) = 0. (42)

To obtain higher order terms um(x), the mth order deformation equation
(15) and its boundary conditions (16) are calculated:

u(3)
m (x) = χmu(3)

m−1(x) + �Rm(um−1(x)), (43)

um(0) = 0, u′
m(0) = 0, um(1) = 0, (44)

where Rm(um−1(x)) =

u(3)
m−1(x) +

m−1∑
i=0

ui(x)u′′
m−1−i(x) −

m−1∑
j=0

u′
j(x)u′

m−1− j(x) + 1 − χm. (45)

In this way, one can calculate um(x)(m = 1, 2, . . .) recursively. For example,
when m = 1, (43) becomes

u(3)
1 (x) = �

(
u(3)

0 (x) + u0(x)u′′
0(x) − u′

0(x)2 + 1
)

= −�
(
3x4 − 4x3 + 2x2 − 7

)
. (46)

Since the formula (20) now becomes

u1(x) = xk+3

(k + 1)(k + 2)(k + 3)
− x2

k3 + 6k2 + 11k + 6
, (47)

by (21), the first order term

u1(x) = − 1

210
�x2 (x − 1)

(
3 x4 − 4 x3 + 3 x2 + 3 x − 242

)
. (48)

um(x)(m = 2, 3, . . .) can be calculated similarly.
The mth order approximation can be expressed by

u(x, �) ≈
m∑

k=0

uk(x) =
4m+3∑
k=0

γm,k(�) xk. (49)

To find the valid region of �, the �-curve given by the 15th order approxi-
mation (49) at x = 1

2 is drawn in Fig. 2, which clearly indicates that the valid
region of � is about −1.6 < � < −0.4.

When � = −1.23, we obtain an approximate series solution which agrees
very well with the numerical solution given by the Runge–Kutta–Fehlberg 4–5
technique (RKF45), as shown in Fig. 3 and Table 2, where the relative errors of
the 5th order, 10th order, and 15th order HAM approximations are calculated
and compared. The formula for the relative error is defined by

δ(x) =
∣∣∣∣unum(x) − u(x, �)

unum(x)

∣∣∣∣ , (50)
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Fig. 2 �-curve for the 15th
order approximation to (37,
38)

where unum(x) is the numerical solution given by the Runge–Kutta–Fehlberg
4–5 technique, and u(x, �) is the approximate solution (49) when � = −1.23.

3.3 A fourth order problem

Finally we consider the following nonlinear fourth order boundary value
problem

u(4)(x) + u(x)2 = x− 5
2

16

(
9 + 30x + 105x2

) + x3 (1 − x)4 , (51)

u(0) = 0, u′(0) = 0, u(1) = 0, u′(1) = 0, (52)

Fig. 3 Symbols: 15th order
HAM approximation to (37,
38); solid line: numerical
solution of (37, 38) given by
RKF45
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Table 2 Relative errors of
HAM approximations to (37,
38)

x RKF45 soln 5thHAM 10thHAM 15thHAM

0.1 0.001496064 2.7E−3 1.4E−5 3.2E−6
0.2 0.005317810 2.6E−3 1.3E−5 1.4E−6
0.3 0.010466190 2.6E−3 1.4E−5 7.6E−7
0.4 0.015943267 2.8E−3 1.5E−5 4.8E−7
0.5 0.020752307 3.2E−3 1.7E−5 3.5E−7
0.6 0.023897842 3.7E−3 1.8E−5 2.4E−7
0.7 0.024385830 4.6E−3 2.0E−5 1.2E−7
0.8 0.021224162 5.9E−3 2.2E−5 1.7E−8
0.9 0.013423694 7.7E−3 2.3E−5 1.1E−7

whose exact solution is

uexact(x) = x
3
2 (1 − x)2. (53)

This problem was considered in [5] via the sinc-Galerkin method. It is worth
mentioning that although this problem does not belong to the category (1, 2),
the approach proposed in Section 2 is still applicable to it.

For the zeroth order deformation equation (3), the auxiliary linear operator
L is given by

L[φ(x; p)] = ∂4φ(x; p)

∂x4
, (54)

and the nonlinear operator N [φ(x; p)] is given by

∂4φ (x; p)

∂x4
+ φ (x; p)2 − x− 5

2

16

(
9 + 30x + 105x2

) − x3 (1 − x)4 . (55)

By the boundary conditions (52), the initial guess is determined as

u0(x) = x4 − 2 x3 + x2, (56)

and the boundary conditions to (3) are given by

φ(0; p) = 0,
∂φ (0; p)

∂x
= 0, φ(1; p) = 0,

∂φ (1; p)

∂x
= 0. (57)

To obtain higher order terms um(x), the mth order deformation equation
(15) and its boundary conditions (16) are calculated:

u(4)
m (x) = χmu(4)

m−1(x) + �Rm(um−1(x)), (58)

um(0) = 0, u′
m(0) = 0, um(1) = 0, u′

m(1) = 0, (59)

where

Rm(um−1(x)) = u(4)
m−1(x) +

m−1∑
j=0

u j(x)um−1− j(x)

− x− 5
2

16

(
9 + 30x + 105x2

)
(1 − χm) − x3 (1 − x)4 (1 − χm).

(60)
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In this way, one can calculate um(x)(m = 1, 2, . . .) recursively. For example,
when m = 1, (58) becomes

u(4)
1 (x) = �

[
u(4)

0 (x) + u0(x)2 − x− 5
2

16

(
9 + 30x + 105x2

) − x3 (1 − x)4

]

= �

(
x8 − 5 x7 + 10 x6 − 10 x5 + 5 x4 − x3

+24 − 9

16
x− 5

2 − 15

8
x− 3

2 − 105

16
x− 1

2

)
. (61)

Since the formula (20) now becomes

u1(x) = k! xk+4

(k + 4)! − x3

(k + 4)(k2 + 4k + 3)
+ x2

k3 + 9k2 + 26k + 24
, (62)

by (21), the first order term

u1(x) = �

(
x12

11880
− x11

1584
+ x10

504
− 5x9

1512
+ x8

336
− x7

840

+x4 − 9503

4752
x3 + 7919

7920
x2 − x

7
2 + 2 x

5
2 − x

3
2

)
. (63)

um(x)(m = 2, 3, . . .) can be calculated similarly.
The mth order approximation can be expressed by

u(x, �) ≈
m∑

k=0

uk(x) =
8m+4∑

i=2

γm,i(�) xi +
8m−5∑

j=1

ηm, j(�) x
2 j+1

2 , (64)

Fig. 4 �-curve for the 15th
order approximation to (51,
52)
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Table 3 Relative errors of sinc-Galerkin and HAM approximations

x exactSoln sincGalerkin 5thHAM 10thHAM 15thHAM

0.0915 0.0228445 1.3E−3 8.6E−13 2.2E−21 1.8E−31
0.1518 0.0425506 0.7E−3 1.1E−12 2.9E−21 2.4E−31
0.2410 0.0681568 0.2E−3 1.5E−12 3.7E−21 3.1E−31
0.3604 0.0885104 0.3E−3 1.8E−12 4.5E−21 3.8E−31
0.5000 0.0883883 0.2E−3 2.1E−12 5.2E−21 4.4E−31
0.6395 0.0664617 0.1E−3 2.2E−12 5.6E−21 4.7E−31
0.7590 0.0384058 0.2E−3 2.3E−12 5.7E−21 4.8E−31
0.8482 0.0180008 0.0E−3 2.3E−12 5.7E−21 4.8E−31
0.9084 0.0072645 0.0E−3 2.3E−12 2.7E−21 4.8E−31

where the coefficients γm,i(�), ηm, j(�) depend on m, i, � and m, j, � respectively.
Equation (64) is a family of approximate solutions to the problem (51, 52) in
terms of the convergence-control parameter �.

To find the valid region of �, the �-curve given by the 15th order approxi-
mation (64) at x = 1

2 is drawn in Fig. 4, which clearly indicates that the valid
region of � is about −1.75 < � < −0.25.

When � = −1, we obtain an approximate solution which is much more
accurate than the numerical solution obtained by the sinc-Galerkin method [5]
as shown in Table 3, where the relative errors of the sinc-Galerkin method ap-
proximation, the 5th order, 10th order, and 15th order HAM approximations
are calculated by

δ(x) =
∣∣∣∣uexact(x) − u(x, �)

uexact(x)

∣∣∣∣ , (65)

where uexact(x) is the exact solution (53), and u(x, �) is the approximate
solution (64).

4 Conclusions

In this paper, a general analytical approach is proposed for solving nonlinear
two-point boundary value problems in a finite domain. The effectiveness of
this approach is demonstrated by solving three nonlinear boundary value
problems. The success of this approach lies in the fact that the HAM provides
a convergence-control parameter � which can be used to adjust and control the
convergence region and rate of the series solutions obtained.

However, the current method cannot be extended to boundary value prob-
lems in inf inite domains because the radius of convergence of the power
series (7) is finite. It is a significant challenge to develop a general analytical
approach based on the HAM for solving boundary value problems in infinite
domains. The challenge lies in the fact that we have to seek a suitable set of
base functions such that the radius of convergence of the corresponding series
must be infinite and the corresponding initial guess must satisfy the boundary
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condition (2), while we must figure out an effective way to solve the mth order
deformation equation (15). We will leave this topic in our future work.
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