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Abstract—The hydrodynamic interactions between two unequal spheres immersed in a low Reynolds
number flow are calculated. Explicit expressions for the force and the stresslet that each sphere
exerts on the fluid are derived, assuming that the spheres are nearly touching and that their motions
are axisymmetric. The results are asymptotic expansions based on the width of the gap between the
spheres, which must be small when compared with either of the two radii. The force and stresslet
results give the asymptotic behaviour of the resistance functions which describe the axisymmetric
low Reynolds number interactions between a pair of spheres. Two specific problems are considered.
In the first, one sphere approaches the other along the line of centres and in the second, one sphere
deforms axisymmetrically and uniformly. It is shown that the new asymptotic results agree with
numerical data that have been published for these functions and moreover, the asymptotic results
can be used to improve the convergence of series expressions for the resistance functions.

I. INTRODUCTION

The axisymmetric approach of two unequal spheres has been studied by Cooley and O Neill
(1969), Hansford (1970) and Jeffrey (1982) with the aim of calculating asymptotically the
forces exerted by the spheres on the fluid. These forces are not the only quantities of interest,
however, because the analysis of the properties of suspensions of particles requires also the
stresslets of the spheres, defined by Batchelor (1970) as:

S=_J.H(X'G'n+a'nx’)—'-Jx’-::r'n]df{ (1.1)
A

The vector x” is drawn from the centre of the sphere. Various authors have defined resistance
functions to describe the forces and stresslets exerted by each of 2 spheres on the suspending
fluid (Brenner and O'Neill, 1972 ; Schmitz and Felderhof, 1982 ; Jeffrey and Onishi, 1984b;
Kim and Mifflin, 1985). Using the notation of Jeffrey and Onishi (1984b) and Kim and
Mifflin (1985), we can reduce the resistance functions that describe force and stresslet
interactions in axisymmetric flows to the scalar functions X3, X3 and X3} (defined below
for o, B = 1,2). Of these, only the X7, functions have been investigated with any thorough-
ness. For them, we have asymptotic results for the cases of widely separated spheres and
nearly touching ones and numerical data for most other parts of the domain of the functions
(Jeffrey and Onishi, 1984b). In contrast, X3, and X;j; are known only through numerical
data available for equal spheres (Kim and Mifflin, 1985). This paper provides asymptotic
results for X5 and X2, which are valid when the separation between the spheres is small.
In order to obtain these results, we found it convenient to formulate the calculations
differently from earlier papers. Previous calculations worked only with the stream function
i, because the force on a sphere in an axisymmetric flow can be expressed entirely in terms
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of . This is not so for the stresslet, however. For its calculation we require the pressure
and the velocity field, so if one has to obtain explicit expressions for velocity and pressure
it is just as convenient to work from the start in these variables.

The new approach is also of interest because it is much closer in spirit and detail to the
calculations made in non-axisymmetric flows by, for example, O’Neill and Stewartson
(1967) and Corless and Jeffrey (1988). The main difference between the axisymmetric and
non-axisymmetric cases is that the Reynolds equation for the pressure is simpler in the
axisymmetric case and whereas O’Neill and Stewartson could obtain only asymptotic
estimates for the homogeneous solutions to the equation, here we can obtain closed form
solutions. Apart from this, the principles of the earlier calculations carry over and will not
be re-iterated in detail. Thus, the fluid motion in the gap is analysed and the flow outside
the gap is not. This does not mean that the flow outside the gap is not important, but rather
it means we can avoid calculating it if we restrict our attention to the singular terms in the
forces and stresslets (O'Neill and Stewartson, 1967). To calculate the non-singular terms
we must calculate the solution outside the gap; we do not do that here and instead use
existing results to calculate the required terms. One feature of the earlier calculations that
is taken a step further here is the use of a computer to perform the algebra. Previously, the
CAMAL system was used (Jeffrey, 1982): for this work the Maple system was used. The
newer language has made several steps easier (not to say possible) ; for example, the solution
of the Reynolds equation in closed form.

The rationale for studying deforming spheres needs a little explanation. The usual defi-
nitions of the resistance matrix for Stokes flow consider rigid spheres translating and
rotating in a shear flow (Jeffrey and Onishi, 1984b; Kim and Mifflin, 1985). The linearity
of the Stokes equations allows us to express the forces F,, couples L, and stresslets S,
exerted by sphere o (a = 1,2) as:

[(F\) (A Ay By By, G, G,) (U—Ux))

F, Ay Ay By By, Gy Gy U,—U(xy)

L, B, B, Cy, Cy H, Hp; Q,—-Q

Ly | TH | By By O Gy Ha | |00 ¢
S G, G, H, H, M, M, —&

S, Gy Gy Hy Hyp My, Myn) | -6 )

e S "~

In this equation, U, is the velocity of the centre of sphere o and U(x,) is the ambient velocity
at x, the position of the sphere’s centre; Q, is the angular velocity of sphere « and Q is the
ambient angular velocity ; & is the ambient rate of strain. Once S, has been calculated, it is
clear that M,, and M, will be known only in the combination M ,+ M ,,. However, it is
desirable to separate the M functions because numerical evidence given in Jeffrey (1988)
clearly shows that the asymptotic behaviour of each scalar function within M is different
and the numerical evaluation of the functions benefits from recognizing this. Therefore, we
should like to formulate a problem that will lead to separate estimates of M, and M ..
Even if these problems are artificial, the mathematical benefits are worthwhile. With this
aim, we suppose that each sphere can have a uniform rate of strain &,. The no-slip condition
continues to apply even to these deforming spheres. Then (1.2) remains valid, with the
replacement of the terms — & by rates of strain &, — & and & ,— & . By selecting the particular
axisymmetric rates of strain:

& =Ekk—1I) and &,=0,

where k is a unit vector along the line of centres of the spheres, together with the conditions
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U, = Q, = & = 0, we can reduce the stresslets to expressions containing the scalar functions
X¥-and X%

S| = Mil 351 =X¥l{kk—ll) and Sz = Mz; :(g| = Xl;fl {kk—%n.

Thus, from S, and S, we can now obtain separate asymptotic estimates of X} and X%, to
improve on the purely numerical separation achieved in Jeffrey (1988).

The governing equations that apply to both flow problems are as follows. We suppose
the spheres have radii a and b and that their centres are on the z axis at z = a+h and
z = —b. The gap width is clearly A. The non-dimensional gap width is ¢ = iifa with & < 1.
We introduce non-dimensionalized, stretched cylindrical coordinates by the relations:

Z=z/ac and R =rjac"?.

If ¥ is a velocity scale, as yet unspecified, we can write the velocities as ¥ (u, 0, w) and the
pressure as ¥ p/a, where u is the viscosity. The velocity and pressure are then scaled and
expanded in powers of ¢ as follows :

u=¢ "?U=¢ "*[U,+eU,+0(e?)), (1.3)
w=W=W,+eW,+0@), (1.4)
p=¢ 2P =g [P, +eP,+0(?)). (1.5)

After making the usual approximations of low Reynolds number flow, the scaled governing
equations are the continuity equation :

J(RU)/OR+ R dW[0Z = 0. (1.6)
and the Stokes equations:
OP|0Z = eV*W and 8P/OR =V?*U—eU/R>. (1.7)
The V? operator has also been scaled and here is given by :
9* 1 o
e
The surfaces of the spheres in the neighbourhood of the gap can be expanded in powers of
¢. For the first sphere (radius a) we have:

Z=1+3R?2+&lR*+0(?) = H, +&iR*+0(&?)

(1.8)

and for the second sphere:
Z = —(a/2b)R* —e(a/2b)* R* +O(e?) = ik R* +eix’ R* +O(e?).
The « is the same as that defined in Jeffrey (1982). In addition we shall use H, for kR?/2.

2. APPROACHING SPHERES

We shall suppose that the sphere of radius a approaches the other, which is at rest, at
velocity U. The scale velocity %" is then U and the boundary conditions to be applied on
sphere a are:

U=0 and W= —1 onZ=H, +&{R",

The boundary conditions on sphere b are:
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U=0, W=0, onZ=H,+&ix’R".
Since:
U(R,Z = H,+¢eiR*) = U,(R,H,)+eU,(R, H[)+6§R“[8U];’OZ]Z=,,.,

we can equate powers of ¢ to find :

U(R,H\)=0, Uy(R H,)=—{R*0U,/0Z]z—y,.
In a similar way we find :
Wi(R,H\)=—1, WyRH,)=—{R[OW,[0Z);_y,.
On sphere b we have :
U(R,H;) =0, U,(R,H;)=— kR 0U,[0Z];_p,.
W\(R,Hy) =0, Wy(R,H,)= — k'R [OW,/0Z])7_y,.
Substituting (1.3)—(1.5) into (1.6)—(1.8), we obtain equations for P,, U, and W, by equating
powers of &,
8P,/6Z =0, 0P,/0R = d*U,/0Z%, O(RU,)/0R+R dW,/6Z = 0.
Integrating the first two equations with respect to Z, we obtain:
P,=P(R), U =3P\ (Z—H\)Z—-H,), 2.1)
where P} = dP;(R)/dR. From the last equation we obtain:
W,=— l,_:R(RP’I)’{ZZ—JM+H:}(Z-—H2)3
+ ; RP\[(1 —x)(Z—H)+2k(Z—H)|(Z—H3), (2.2)
where the condition W,(Z = H,) = 0 has been applied. The final boundary condition
W\(Z = H,) = —1 will be satisfied only if :
(RPV)+3(1—K)R*P,/(H,— H,)+12R/(H,— H,)? = 0. 2.3)

This is the Reynolds equation for axisymmetric flow. In non-axisymmetric flows the pressure
P, appears explicitly as a separate term, making the equation impossible to solve completely.
Here the solution is:

P, =3/[(1—k)(H,— H,)*|+C[(H,—H,) '+ }(H,—H,) *+In R*—In (H,— H,)]+K,

where C and K are constants of integration. Since the solution must remain bounded at
R = 0, we must have C = 0. Since P, must decay to zero as we leave the gap (R — o) we
must have K = 0. Substituting the pressure into (2.1) and (2.2) completes the solution to
the first order ; it agrees with that found previously using the stream function.

The solution at the next order is similar. The equations are:

a? 1 o d
{.32-2 U2+E ER U —U”’qu

OP,/0Z = 0*W,[0Z%, 8P,/0R = 70
O(RU,)/0R+ R 0W,/0Z = 0.

The obvious new feature is the presence of known functions of R and Z coming from the
first order solution. One finds that the new functions and the different boundary conditions
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affect only the inhomogeneous terms in the differential equation for 2, and so the integration
of the equivalent to (2.3) is only more difficult through the inhomogeneous terms being
longer. We shall not present any more intermediate steps, however, because the manipu-
lations were performed using Maple, an algebra manipulation language from the University
of Waterloo. Even our own record of the calculations is nothing more than a file of Maple
commands. The Reynolds equation was solved by a standard Maple routine, something
the previously used CAMAL system (Jeffrey, 1982; Jeffrey and Onishi, 1984a) could not
do.

The asymptotic form of the pressure near the edge of the gap (R — o) is important at
each order because it must match with the (not derived) pressure outside the gap and
because the singular terms in the resistance functions, which it is our object to find, depend
on the asymptotic behaviour. From (2.3), P, = O(R ™ *) and from the solution at the next
order we can show that P, = O(R~?). When the asymptotic scheme was extended to third
order, it was found that P; was asymptotically proportional to log R. At this order the
pressure no longer decays as one leaves the gap, but must match with some outer solution.
We therefore feel that extending the present scheme to third order will require a full solution
both inside and outside the gap and that the derivation of the singular behaviour of the
force and stresslet to third order cannot be justified on the basis of the gap solution alone.
The earlier calculation of Jeffrey (1982) of the force to third order did not encounter this
difficulty because the stream function does not show the same behaviour. Presumably the
third order results found there are correct, but additional justification would be welcome.

The forces exerted by the spheres must, by symmetry, be in the z direction so we can
calculate them from:

F.= ~Jk-a-uds, (2.4)

The known expressions for X} are reproduced. A new result is obtain by calculating the
stresslet. We know from symmetry that the stresslets will have the form (Batchelor and
Green, 1972 ; Kim and Mifflin, 1985):

S, = 4na’ X%, (kk —iNU (2.5)
and

S, = n(a+b)* X5, (kk—iD)U. (2.6)
Therefore, we can obtain X, by calculating the kk component of the stresslet. The integral
is:

Sra’UXYC, = —j(k‘nk-a-n—_{n-a'n) ds, 2.7)

provided that the stress o is expressed with respect to the non-dimensionalized coordi-
nates. The integrand in this integral has the same behaviour for large R as the integrands
previously considered (O’Neill and Stewartson, 1967; Jeffrey and Onishi, 1984a) and
therefore the singular behaviour of Xf, can be extracted directly from the asymptotic
behaviour of the integrand in (2.7) following exactly the steps of the earlier papers. The

result is best expressed using 4 = b/a = —1/u:
342 L 3A(14124—42%) :
e L e i i e AT, -1 _1L0(1). s
XN =30t 0(1+4° me +o) (2.8)

In the same way, we obtain from the stresslet of the stationary sphere :
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o6 __,+6,1_"(22+121—4}
T+t 5(1+4)°

A point of interest, in passing, concerns the way these results were obtained using computer
algebra. In earlier papers, the expansions (1.3)-(1.5) were substituted into (2.7) and the
integral was separated into powers of & The asymptotic forms of the integrands were
obtained after this separation. The present calculation proceeded by substituting the solu-
tions directly into the integrand without preliminary separation, then the asymptotic expan-
sion was obtained and only lastly were the powers of ¢ separated.

We have two checks that the calculations have been performed correctly. First, Jeffrey
(1988) has estimated, by purely numerical means, the singular terms in the functions for
the special case 4 = 1. The expressions (2.8)-(2.9) agree with the numerical estimates.
Secondly, the reciprocal theorem can be used to derive a relation between the newly obtained
functions and the functions X7 already known. We suppose that the two spheres are held
stationary in an ambient rate of strain:

& = E(kk—1I).

Xz In e~ '+ 0O(1). (2.9)

The force on sphere a will be in the z direction and equal to:
F = dnauXt,(—E)(a+h)—2n(a+b)uX{s(— E)b+4na® u[X§, + i(1 + )2 X9, J(2E/3).

Since singular forces arise from relative motion of nearly touching surfaces, and since in
this case the surfaces are stationary, we conclude that F must be non-singular. In other
words :

X6, +3(1+)2X5, — 3(1+e) X1 + A0 + ) X1, = O(1). (2.10)

This identity can be confirmed from the results above. To complete these results we must
find expressions for X{, and X$,. To obtain these, we re-express X%, and X%, as functions
of ¢ = 2¢/(1+44). Thus:

g 33-2_ 1 3&(1%442_) -
X‘..-U_+.D,c + oA +a)° n & +0(1), (2.11)
3 §2742 7
124 | 62 +120—4) 5 . -

T T )
For these functions we have results similar to those derived in Jeffrey and Onishi (1984b),
namely :

X6 (&) = —X5(&47") and XT(¢,4H) = —X5(§,47). (2.13)
Therefore :
. 34 3(A%4124—4)
G SO s N L i 1
X7 (1+;‘,)3§ 10(1+2)° In &' 40(1). (2.14)
: 1242 - 6A(I+I24_j422) -

From these results we see that:

X5 +4(1+24)2 X7, = O(1). (2.16)

This reflects the fact that when the two spheres move with identical velocities the stresslets
of the spheres are not singular in the gap width.
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3. DEFORMING SPHERES

We now consider the case in which sphere @ deforms while its centre remains at rest and
sphere b does not deform and is at rest. The velocity on the surface of sphere a is :

u= —2aE(l+&—z)k—akEr. 3.1

This gives a uniform rate of strain E;=2Ed30y—ES 0 iy — Ed,0,; throughout the sphere.
The velocity scale for the problem is ¥~ = 24E. Translating the boundary conditions into
stretched coordinates, we obtain :

W= —1-¢g(l—z) and U= —1e'?R.
Therefore the boundary conditions on the deforming sphere become :
Wi(R,H))=—1 and W,(R, H)) = %Rz—éR"[BWt/é‘Z]z:H‘

together with :
U](R.,Ht)=0 and U;(R,H])= —%R‘—}ERJ[{IBU[/GZ]Z.__HJ.

The boundary conditions on the non-deforming sphere are the same as in the previous
section. The method of solution is also the same and again the pressure when R is large
goes as O(R™*)+eO(R?). Since this flow problem has not been solved before, we have
both the force and the stresslet to calculate. However, the force calculation does not give
any new results, because the reciprocal theorem shows that the forces are proportional to
X7 (the resistance matrix is symmetric). It does, of course, provide a second calculation of
the functions obtained in the previous section and therefore provides a check on the

working.
From the definition of X2 the kk component of the stresslet of sphere a is:
20
S:z = 3 ! ﬁa"ﬂXﬂ E.,

and after completing the calculation, we find :

307 3A(14174—9)

——r , == a—1
5(I+A)"a + A+ Ine "+O(1). (3.2)

X =

The stresslet of sphere b is given by :
S.: = in(a+b)’ uXME,
and the calculation shows that :
24)°
M =T B ctoiei B
o =sarpst t 25(147)°

In the special case 1 = 1, we recover the results obtained in Jeffrey (1988). If we again
change to & = 2¢/(1+ 1), we obtain:

2412 (— 4224 174—
oo o il 9 o, In &' +0(1). (.3)

” B RN L 3(A*+174-9) :
X722(8,2) = XY (& A )—5(i+).)3é '+ Z—S(IW_[ni "+0(1), (3.4)
” ik’ _ B 24A(—4+170—-4)
Xaszsi)—Xz’;('f-i)—5—(I+A—)Gf + 2501+ )° —ml{'+o1), 3.9

The last result is consistent with the reciprocal theorem. For the special case 4 = 1, the
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singular terms in X7| are the same as those in X%, but we can see that in general this is
not true. Since we expect non-singular behaviour when the spheres are at rest in an ambient
rate of strain field, we obtain the relation :

XY+ 11+ X3 = 31+ HXT, +0(1), (3.6)

which can be verified from the results above.

4. NUMERICAL RESULTS

Numerical data for X and X have been published for equal spheres by Kim and Mifflin
(1985) and by Jeffrey (1988). We can use them to check our results. After the series in
Jeffrey (1988) have been improved as detailed below, the data of Kim and Mifflin (1985)
are accurately reproduced and in addition, we obtain numerical values for the constants
O(1) appearing in (2.8)-(2.9) and (3.2)~(3.3); these constants cannot be calculated from
the asymptotic analysis. The present results can also be used to investigate the convergence
of the series in Jeffrey (1988).

Each resistance function has been obtained in Jeffrey (1988) as a series in the variable ,
the inverse separation of the sphere centres, given in terms of & by the relation :

t=1/2+e). @.1)
The series for X9, can be written :
X5 =Y 4,2, (4.2)
i

where the 4, are coefficients known up to A4;5,. Noting (2.8) and the identities given in
Corless and Jeffrey (1988), we can rewrite the series as:

+2t o

5, X 2704, —g1—2:/p)0), @.3)
podd
p=1

_ i I
X?j = Zg;!f(l —4f“)+g2 In i

where g, = 3/8 and g, = 27/80. In the same way we obtain:

X0, = —g/(1—4r")+g,+g, In (1-4r")— Z (2774,—g,—28:/p)20)".  (4.4)

peven
Similar expresssions can be written down for X} and X75. In fact,
XM =gi/(1—4t)—gs—gsIn (1—4)+14+ ) (277B,—gs—28:/p)(21)", (4.5)
pc:c‘ﬁ
and
1+21 i
+ Y (277B,—g5—284/p)(21)", (4.6)

1-2t ° 5aa
p=1

XY =2g:t/(1—4t*)+g, In

where g; = 3/20 and g, = 27/200. When the series above are summed to 350 terms, the
numerical data are in good agreement with Kim and Mifflin (1985) but this in itself is not
a very sensitive test of the convergence and accuracy of the new series expressions. It has
been pointed out in Jeffrey and Onishi (1984b) that a more sensitive test is obtained by
using the series to calculate the constants that are O(1) in the asymptotic forms.
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Before we proceed to calculate the O(1) constants, we wish to extend the results (2.11)-
(2.16) and (3.2)-(3.6) in the special case 2 = 1 using a plausible argument. We know that
the functions X7 contain singular terms in ¢ ', Ingand eln & and we expect that the new
functions studied here will be the same. We also note from (2.11)—(2.14) that the coefficients
of the ¢! and In ¢ terms of X¥¢, and X¢, are equal. If we suppose that this will be true for
the & In & terms also, we can remove X, from (2.10) and the equation then determines X7, .

Thus,
XTi(e, 1) = 3(1+3e)X7,. (4.7)
Since Jeffrey (1982) obtained the & In & term for X7,, we see that we get:
3 27 , 117
b ¢ =§£"'+%ln e ' +Gh(D+ g0t Im e '+Ke. (4.8)

The constants G¥, and K, will be obtained from (4.3). In the same way, we get:

. 31t 27 . 117
X5 =— P —g—Oln e '+ Gh()— 5'sﬁ.sln ¢ '+ Kse. (4.9)

The same considerations and assumptions lead to:

2l 2N
Xa‘ﬂ=5<l+ia):\’?1

—3 _'+2?1 M A2 Ine "+K (4.10
=30% Topp e +Mu()+ogppe e+, -10)
and a similar expression for X%%. It should be noted that this method cannot be used when
the spheres are not equal, because (3.2)-(3.5) show explicitly that the 11 and 12 functions

are not equal when 1 # 1.
To obtain series expressions for the O(1) constants defined above, we substitute (4.1)

into (4.3)-(4.6) and expand the singular terms for small &. Removing the e~ ' and log & terms
and then setting £ = 0 gives us:

4
G, =g//4+g, In4—2gs+ ) [2""A,,—g1—2.ngp+—g-5 —], (4.11)
1

= p(p+2)
GY,=g,/4+g:— i |:2—PA —g,—2g./p+ 4g s ]’ (4.12)
) i p=2 ! - p(p+2)
peven
M'lrt = —g3/4—gs+1+ i |:2_po_33—2§qu+ —4g6 ‘:|. (4.13)
fd Pp+2)
= 4g¢
£ = 4— B —g,— : .14
MY, =g3/4+g, In 286+ .";f! [2 B,—#; 234/P+p{p+2):| (4.14)
po

Here, g = 117/560 and g, = 423/2800.

In Table 1, these constants are shown evaluated by summing the series to various numbers
of terms. In addition the constants gs and g, were first set to zero and then given their
proper values. It can be seen that these terms usefully improve the convergence of the series
and therefore should be found for all 4, although their calculation will require a fair amount




470 D. J. Jerrrey and R. M. Corriss

Table 1. Convergence properties of series for GJ; and M2

G Gl

n without g with g4 without g5 with g5
100 —0.46507 —0.46921 0.19141 0.19551
200 —0.46723 —0.46931 0.19331 0.19538
300 —0.46789 —0.46928 0.19403 0.19541
350 0.46808 —0.46927 0.19424 0.19542

M1, M,

n without g, with g, without g, with g,
100 0.71927 0.71631 —0.14194 —0.14493
200 0.71858 0.71708 —0.14424 —0.14574
300 0.71815 0.71715 —0.14480 —0.14581
350 0.71805 0.71719 —0.14498 —0.14585

of work. Finally, by fitting the numerical data of Kim and Mifflin (1985) to (4.8)-(4.10) we
can obtain values for the O(g) terms as well :

X¢ = gr T4 ;;ln &' —0.4693 4 ;é;f‘ In &' +0.36¢,

X6, = — ;F b ;gln e '40.1954— ;égr In& '—0.29,
XY = 230.9_'+ 22070 In e '40.7172+ ;;;20?;]5 In e~ '+0.07e,
XY= 5368_'+ 2%76]11 e ' —0.1459 + -248%3 In & '+0.156.
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