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Two unequal spheres are immersed in an axisymmetric low-Reynolds-number flow and are
separated by a small nondimensional distance €. The forces and stresslets exerted by the
spheres on the fluid are calculated asymptotically to O(e In €), in order to improve the
convergence of numerical calculations of the same quantities. The main obstacle to the
extension to O(¢€ In €) was the breakdown of the usual lubrication approach at higher orders in
€. The method adopted here obtains expressions for the functions of immediate interest, but
does so by postponing the resolution of the fundamental difficulties until a higher order in €.

The axisymmetric motions of two nearly touching
spheres in a low-Reynolds-number flow have been studied in
several papers using an approach that is often called lubrica-
tion theory.'™ Although different in emphasis from the the-
ory of lubrication used in engineering, lubrication theory
uses many of the same assumptions. The most important of
these, from the perspective of the present work, is the as-
sumption that one can calculate quantities of interest using
only the solution for the flow in the narrow gap separating
the spheres. This assumption is made possible partly by the
nature of the problem, and partly because a quantity of inter-
estis usually taken to be one whose behavior is singular in the
gap width. The flow outside the gap is usually not calculated,
and its only role is to justify the whole procedure by existing.

Most authors have found this a satisfactory basis for
calculations, although O’Neill and Stewartson® expressed
some caution in the introduction to their paper and so calcu-
lated the full flow field, at least to first order. They showed
for their problem (which was actually an asymmetric flow
rather than an axisymmetric one) that the singular terms
could be found from the gap flow and that the usual proce-
dure gave the correct result. They then deduced results to the
next order, assuming the existence of a solution to a suffi-
ciently high order outside the gap. When, however, Jeffrey
and Corless® tried to use the method to obtain results for the
stresslet functions correct to O(€ In €), the procedure broke
down. The pressure at this order shows a logarithmic diver-
gence at the “edge” of the gap and this cannot be handled by
the usual arguments. Faced with this, one might try to un-
derstand the observed behavior by completing a full
matched asymptotic analysis to the problem. However, since
the difficulty does not arise until the third order, the calcula-
tion would clearly be one of some magnitude, and one must
ask whether the results obtained from such a calculation are
important enough to warrant the effort. In this regard, exist-
ing results*® do show that the terms that are O(¢ In €) for
the resistance functions make a very useful contribution to
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the convergence of numerical calculations and are worth
getting if the price is not too high.

The main result of this Brief Communication is to show
that the extra terms can indeed be obtained at not too great a
cost by an expedient that postpones the difficulties to
O(€’ In €). The key is to notice that the difficulties did not
arise in an earlier calculation® to O(eln¢€), where the
streamfunction was used to solve the flow problem and to
calculate the integrals for the forces; in contrast, Jeffrey and
Corless used primitive variables, because the stresslet inte-
gral cannot be expressed using the streamfunction. The inte-
gral for the force in terms of the streamfunction differs in
more than a trivial way from the integral of the surface
stress, and this is what we exploit.

The description of the flow problem will be highly con-
densed and the reader is referred to earlier work '~ for a full
treatment. Jeffrey and Corless defined two flow problems,
but the scaling is the same for each; only the boundary condi-
tions are different. We suppose the spheres have radii @ and b
and that their centers are on the z axis at z=a + & and
z= — b. The nondimensional gap width is € = & /a with
€< 1. We introduce nondimensionalized, stretched cylindri-
cal coordinates by the relations

Z =z/ae, (la)
and

R = r/ae"’?. (1b)

The scaled velocity and pressure are expanded in powers of €
as follows:

u=€ "0 =e"(U, 4 €U+ €0,), (2)
w=W=W, +eW, + W, (3)
p=¢€ *P=¢€ (P, +€P, + €P,). (4)

The governing equations for the third-order quantities are
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the obvious extensions of the equations given in Jeffrey and
Corless. When they are solved, it is found that the pressure
functions have asymptotic behavior for large R as follows:

PicR 4+ O(R~%), P,cR~24+O(R~%,
Pyxlog R + O(R ~2).

The forces exerted by the spheres must, by symmetry, be
in the z direction, so we can calculate them from

F, = —fk-o*ndS. (5)

Following the notation of Corless and Jeffrey,” we use the
velocity scale v and denote n in cylindrical coordinates
(,6,z) by (sin ¢,0, — cos ¢), and obtain

F,/mapv = -—j [—cosq&(—p-i—pd—w)
o dz
+psin¢(d—w+55‘-)]25in¢d¢. (6)
dr dz

The p cos ¢ is the troublesome term, because when we ap-
proximate the integral in the gap region, i.e., apply (1)-(4),
we find that at O(€) the integrand contains a logarithmic
term introduced by P;; previous calculations did not have
this. The problem is not simply one of divergence, because
many other calculations contain divergent integrands. Alge-
braic divergence can be handled, or more accurately can be
assumed to cancel, by the standard arguments developed by
earlier authors. It is the logarithmic nature that is new. The
logarithmic term did not appear in Jeffrey,’ who used a
streamfunction version of (5) (Happel and Brenner,* Eq. 4-
14.18). Studying the derivation of the streamfunction form,
we see that key steps are an integration by parts, followed by
an appeal to the fact that the body is closed. Taking this idea,
we integrate the term containing p cos ¢ by parts as follows:

—J- (pcos¢)2singdd = [ —sin® gp)Z
0
+I sinzqﬁ-dﬁdn (7)
(1] dr‘

Provided the pressure is finite at ¢ = 0 and 7, the square
brackets are zero, and we have changed an integral of pinto
an integral of dp/dr, which means the logarithmic term is
replaced by an algebraic term. Notice that we have trans-
formed the integral using the properties of the entire flow,
not just the flow in the gap between the spheres. In this sense,
we cannot calculate the singular terms in the force on the
sphere to O(¢ In €) using only the solution for the flow in the
gap and the definition of force, which is a departure from
previous use of lubrication theory. When we calculate the
modified integral for the approaching sphere problem, we
reproduce the results for X 7, already known correct to
O(€ In €). From the deforming sphere problem, we get new
results, which, using £ = 2¢/(1 + 4), are

. R £ 3A(1 4 124 —447)
N Ay 10(1 + 4)3

XIné~'+GF(A)
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A 5+ 1814 — 4534 % + 5664 * — 654 ¢

In& !
120(1 + 4)° 55
(8)
and
Yoo - 1247 g1 SAUI+ 12447
* (1+4)° ST A4)°
XIng§ '+ GH(A).
2 3 4
54 1814 — 45342 + 5664 ° — 654 sigel
3I5(1+41)°
9)

The first check on the working is that the expression

X7 +10+ x5 (10)
should be free of singular terms, in accord with physical
expectations.! This is obviously so. A second check is that

XT 10+ -0+ DR+ HXY A
should also be free from singular terms,* as it is.
Turning now to the stresslet, the integral to evaluate is*

(12)

Iz

S.= = aJ- (ksnk-o*n — {n‘a*n)ds.

The integration by parts idea no longer works because the
relevant term is now p cos’ ¢ sin ¢. Thus we must look for
another transformation. We notice that inside the gap,

n= — k, meaning that we can write
2a
S:z T (T)F, = GJ((k.“ + l}k'o"ﬂ

—%{n + k)-o-n)dS. (13)

The integral still contains the pressure, and hence shows
In R behavior, but now the pressure is multiplied by € instead
of 1, and therefore the influence of the p, term is pushed back
until O(€’ In €). With the new integral and the results ‘or the
force, we arrive at our other main results, which are expres-
sions for the functions X 2. Since the previous calculations
had been programmed using MAPLE, there was little extra
work to repeat the calculations with the new integral expres-
sions. We find

XM _ 64° b SAL 1A —942)
SR T TER T 25(1 + 4)°
XIn &= MY (A,
542724 — 8314 % + 132242 — 41541 =
i 1
i 350(1 + A4)? §lng
(14)
and
w__ 481° = 2413 — 442+ 174 —4)
B SN A)® 25(1 + 4)°
XIné& '+ M¥X (1)
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TABLE I. Revised convergence properties of series for M ;. The columns
compare the convergence of infinite series expansions that do not use the
£ In £ terms obtained here with ones that do. The improvement in the con-
vergence with the number of terms 7 is clear.

M M,
without with without with
n new term new term new term new term
100 0.719 27 0.716 80 —0.141 94 —0.14552
200 0.718 58 0.71733 —0.144 24 —0.145 98
300 0.718 15 0.717 31 —0.144 80 —0.14597
350 0.718 05 0.717 33 —0.144 98 —0.14599

i 4A( — 654 * + 8324 % — 10414 % + 8324 — 65)
175(1 4 4)°

XEInE~". (15)

Since we expect nonsingular behavior when the spheres are
at rest in an ambient rate-of-strain field,* we expect the
expression

XM+ 10+ X0 — 10+ D2+ HXF (16)
will be free from singular terms, and this has been verified.

In the special case A = 1, Jeffrey and Corless attempted
to obtain the coefficient of the terms in £ In £ by using a
plausible argument. Now that we have the coefficients, we
see that they were correct for the X J; functions, but incor-
rect for the X}, functions. The corrected expressions for
A=1are
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Xh=2""+%MET407173

+ g €In & '+ 0.07¢, (17)
XM =3"+ £ ImE " —0.1460
+ 4% & & " +0.15, (18)

where £ = € when A = 1. As further tests of the new results,
the convergence tests of Jeffrey and Corless* and Jeffrey”
were done again. Some results are shown in Table I, where it
can be seen that the convergence is improved using the new
values.
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