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EXACT RATIONAL SOLUTIONS OF A TRANSCENDENTAL
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ABSTRACT. The equation z"b* = c¢ is solved using the Lambert W
function. A new simplification rule for W is given that allows those cases
in which the equation has rational solutions for z to be identified. A
related equation studied by Euler, 2¥ = y*, is also investigated using W'

RESUME. On résout I’équation z™b® = c en utilisant la fonction W
de Lambert. Une nouvelle regle de simplification pour W est donnée
qui permet d’identifier et de calculer certains cas pour lesquels I’équation
possede des solutions rationnelles z. Nous examinons aussi a l'aide de la
fonction W une équation apparentée a la premiere et qui fut étudiée par
Euler, o¥ = y*.

1. Introduction. Forn € Z, b,c € Q and b > 0, the equation
(1) "’ =c

has, in general, solutions x € C. The most interesting cases, however, usually have
some solutions x € Q, and a method is needed to find both types of solution. The
general solution of (1) is obtained below in terms of the Lambert W function Wj(z),
which is defined by [1]

(2) Wi(2)e"* @ = 2 |

where £ identifies the branch of this multivalued inverse function. Thus an automatic
solution of (1) by computer is possible, except for the difficulty of identifying rational
solutions. Consider z22% = 72, which has an infinite number of non-rational solutions,
and the solution z = 3. In terms of W, this solution is

z= %WO (3\/§1n2) ,

which implies the simplification Wy (3v/2In2) = (3/2) In2, but no rule covering this
has been previously reported. Such simplification rules must be investigated before
equation (1) can be solved in the best way. In addition, new simplifications may prove
useful in other applications of the Lambert W function.
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2. Real solutions and rational solutions. In (1), the case b < 1 can be avoided
by the transformation x — —z, so only the case b > 1 is considered.

Theorem 1. Let b,c € R, b > 1 and n € Z. Let {/c denote the real branch of c/™.
The solutions x € R of the equation z"b* = ¢ are as follows.

1. If nis odd and ¢ > —(n/elnb)” or if n is even and ¢ > 0,

Inb
LR (LLIAN
Inbd n

2. If nisodd and 0 > ¢ > —(n/elnb)™,

1
r= W, —nb% .
Inb n

3. Ifniseven and 0 < ¢ < (n/elnd)”,

x:%wo <_M%) Do o= MW, <_M%) _
n

In Inb n

Proof: Consider the case for n odd. Take the real-branch nth root of both sides
of (1). Then it becomes, because n is odd,

xbw/n — xe(w/n)lnb — \n/E ’

and multiplying through by (Inb)/n and comparing with (2) establishes that

= " (ﬁﬁ) _
b n

In

Only the branches £ = 0 and k£ = —1 of W take real values [1]. The principal branch
Wo(x) is real for © > —1/e, while W_;(z) is real for —1/e < z < 0. Imposing these
restrictions leads to the cases listed in the theorem. The other cases are similar. It is
clear that the converse statements are also true.

Example. The solutions of 22(9/16)* = 3/16 are

-2 1
)Wo (ﬁ ln—6> A~ —.387351650 ,

In(16/9 g g

9 1 1
2 (V3 16) L
In(16/9) g g 5

9 1
_—* w, _ V316 1 3508946
In(16/9) g g

One must be aware of the possibility of equivalent expressions:

—2 (_\/3 E>_ -1 (\/3 4.1

_ Vo — VoS = o
n(16/9) °\ "8 "9 ) Tz e M3 =3
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We are led by the above to seek an algorithm for deciding whether Wy (r /72 Inb),
with ri, 79,0 € Q, simplifies to rInb, with » € Q. A standard method for obtaining
rational numbers from approximate data is to truncate a continued-fraction expan-
sion [5], and therefore the obvious strategy is to evaluate W/Inb as a floating point
number and then to expand the result as a continued fraction. This idea has two
drawbacks, and they are related: first, the number of digits at which the computa-
tion is done will determine its success, and second, it is not a decision procedure,
because failure to find a rational simplification is no proof that one does not exist.
For example, consider the following problem, worked first using 10 digits.

2
(3) Wi (5 8309, (9) 31%“55;121%1;6‘1) / ln% ~ 1.852760155 .

168976 \ 4
The continued-fraction expansion, in the notation of [5], begins
1.852760155 =~ [1,1,5,1,3,1,3,1,63,1, 30] .
Re-computed using 16 digits, the continued fraction becomes
1.852760155288325 ~ [1,1,5,1,3,1,3,1,64,291347701] .

Therefore, it is only at 16 digits of precision that we are led to conjecture, correctly,
that r =[1,1,5,1,3,1,3,1,64]; in other words

528309 (9\ .z s\ 19567 9
I (2) sferofdr ) = 200 2
W%<w&ﬁ6n<4> mmj%m) 10561 4

If this method fails, it might be that no rational simplification exists, or it might
be merely that the precision used was insufficient. An algorithm that guarantees a
decision is based on the following definition and theorem.

Definition. — The integer power content of b € Q is the largest m € Z such that
b=10" and b € Q. We write m = ipcb, and call b the integer-power-free reduction of
b, written b = ipf b. Clearly b = (ipf b)'Pc?.

Theorem 2.  Given r1,79,b € Q, the simplification of Wy (ry ¢/r21nb) to the form
rlnb, with r € Q, is possible if and only if £ =0 or £ = —1 and

n
= ——0 Yryl Z
(4) T ln(lpfb)Wk(rl 9 Ilb) € ,

in which case r = xzipc(b)/n. Moreover, z is an integral solution of

. b n
) i — (M) =0,
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Proof: By theorem 1, z as defined in (4) is a solution of
(6) z"(ipf b)* = ¢ = rin"(ipcb)"ry .
Then z € Q = = € Z, because if z = p/q, with p,q € Z, then

(ipf b)/¢ = c(q/p)" -

Clearly the right-hand side is rational, but by the construction of ipf b, the left side
is not in Q unless ¢ = 1.

Computational algorithm. A practical procedure is as follows. The quantity = defined
in (4) is evaluated in two stages. At first, the order of magnitude of x is determined;
let it be O(107). The evaluation is then repeated using more digits of precision
than p, so that if z is indeed an integer, its value will be determined correctly.!
The proposed integral value is then accepted if it satisfies (5), otherwise there is no
rational simplification. If a computer system verifies (5) by direct computation of
the left-hand side, very large integers are generated. It would therefore be wise for a
system to use the laws of exponents first.

Example. Returning to problem (3), one now computes

10561 (528309 (O et o se ) 30135,
In(3/2) 168976 4

where 5 digits of precision have been used. The size of the result shows that a
computation accurate to 6 digits is sufficient (less than half the 16 needed by the
continued fraction method), and this gives 39134.0 as the result. We now must verify
that

(3/2)%134 — 528309 (10561)2 1ot 3745193110 _
168976 39134 -

A brute-force evaluation of the left-hand side takes about 20 seconds on existing
computers, but working in powers of 2 and 3 gives rapid verification.

3. A problem solved by Euler. An interesting related equation was studied by
Euler and others, namely,

¥ =9y*
Regarding y as a given quantity makes this equation a special case of (1). For z > 0
and y > 0 it is straightforward to obtain the solution z = —yWy(—Iny/y)/Iny. In
addition to the solution z = y, the equation has the parametric solutions

z=(1+s)"", y=(1+s)*s

! Arithmetic in Maple V release 5 is guaranteed to produce results accurate to 0.6 ulp for funda-
mental operations such as multiplication and single function evaluations. Other systems are similar.
Evaluation of a simple composition of these operations, such as aW (bln¢) for numeric a, b and ¢,
can be proved accurate—with some work—if enough guard digits are used in the computation.
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and the symmetric solution (y,x). This implies simplification rules for W. We find
from the y = x solution, setting y = 1/¢,

Wy (tlnt) = Int, for t>1/e,
W_i(tlnt) = Int, for 0<t<l1/e.

From the parametric solution, we obtain the additional relations

In(1+ s) 1+s
Wo <_7s(1+3)1/3> = - In(I1+s) for —1<s<0,
In(1+ s) 1+s
W_, (_W> = —Tln(l +s) for0<s.

These results are equivalent to a result by Lauwerier [3, 4]. Equations (54-57) in [3]
are obtained by writing s = €?* — 1 . As of this writing, there are no computer
algebra implementations of these (domain-specific) simplification rules.

4. The complex case. If all variables are allowed to be complex, then theorem 1
can be generalized, but without the same degree of completeness. If it is assumed that
2% and b® are the principal complex values of the power function, we give a formula
that generates all solutions of z%b* = ¢, but in addition generates solutions that
correspond to other branches of the power function. Theorem 3 uses the unwinding
number /C, but defined as the negative of the unwinding number defined in [2]. Thus,
it is now defined for z € C as

(7) Ine* = z — 2mik(z) .

After working with K, it has become clear to us that this new definition is better,
because fewer minus signs arise in the equations.
Theorem 3: Let a,b,c € C. If z € C is a solution of 2%b* = ¢, then it satisfies
Inb 27

(8) z = iWk 20 /e exp ﬂlC(ozlnz—i—zlnb) ,

Inb « o}
where k is any integer and K is the unwinding number.
Proof: Take the 1/a power of both sides:

(Zozbz)l/a — Cl/a ’

where all powers are principal value. In terms of the unwinding number,
o
(2°b*)H = 2b*/* exp <—ﬂIC(alnz +zln b)) .
Q

The solution of the equation then follows as stated.

The theorem can be used algorithmically to generate solutions for z*b* = ¢, by
taking advantage of the fact that both £ and K are integers. Stepping through the
ranges of k and K generates all possible solutions, and some spurious solutions. Each
new solution must to be verified in the original equation.
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Example. For the equation z/3256 = 1, the exponential factor in (8) is 1, but even
so, Wy and Ws give solutions, but W_;, Wy, W, do not, unless z'/3 takes values from
its other branches.
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