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The function y = Φα(x), the solution of yαey = x for x and y large enough, has a series
expansion in terms of lnx and ln lnx, with coefficients given in terms of Stirling cycle numbers.
It is shown that this expansion converges for x > (αe)α for α ≥ 1. It is also shown that new
expansions can be obtained for Φα in terms of associated Stirling numbers. The new expansions
converge more rapidly and on a larger domain.

1. Stirling numbers — Stirling cycle numbers
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The numbers (−1)n+m
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are also called Stirling numbers of the first kind [8]. Stirling partition numbers{
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, also called Stirling numbers of the second kind, are defined by
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and 2-associated Stirling partition numbers
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are defined by [2, exercise 5.7; 7, p. 296; 9, §4.5]
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2. Solution by Comtet of yαey = x. — For fixed real α, we let Φα(x) be the value of y that is the unique
positive solution of the equation yαey = x. If α is negative, then y > −α and x > e−α(−α)α. An asymptotic
expansion for Φα(x), in terms of Stirling cycle numbers and the quantities L1 = lnx and L2 = ln lnx, is
given in the following theorem [3,5].

Theorem 1. — With the preceding notation, the function Φα(x) has the following series development,
convergent if x is large enough.
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∑
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Proof. – We recall some details of the proof given in [5] for use below. We introduce a function w(x)
defined by

y = Φα(x) = L1 − αL2 + αw , (2b)

which satisfies

1− e−w + σw − τ = 0, σ =
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, τ = α
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)
. (2c)
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By the Lagrange Inversion Theorem [4], w has the expansion

w =
∑
m≥1
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]
σl . (2d)

One converts from σ and τ back to L1 and L2 to complete the theorem.
Since the domain of convergence of (2a) is described only as ‘x large enough’ by de Bruijn and Comtet,

we give a stronger statement in the next theorem.
Theorem 2. — For α ≥ 1, the series (2a) is convergent for x > (αe)α, while for α < 1 it is convergent

for x > e.
Abbreviated Proof. – We let f(w) = σw − τ and g(w) = 1 − e−w. For α > 1 and x > (αe)α, we define

δ > 0 by δ = 1 − ln(αe)α/ lnx, and then σ = (1 − δ)/(1 + lnα). We also set w0 = ln(1 + lnα). On the
contour consisting of the lines <(w) = w0 + δ, =(w) = ±2δ1/2, and <(w) = −2, one can show that |g| > |f |,
and therefore f + g has only one root within the contour, by Rouché’s theorem. Using Cauchy’s theorem to
express this root as an integral around the contour, we establish the convergence of (2a) by expanding the
integrand as a series in f/g and integrating term by term [3]. For α < 1, the contour must remain the same
as that for α = 1.

3. A New Expansion. — In view of the relation

Φα(x) = αΦ1

(
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)
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α

)
,

where W is the Lambert W function [6], we shall simplify our equations by considering only the case α = 1
from now on. By changing to the variable ζ = 1/(1 + σ), we obtain a new series for W = Φ1 that converges
on a wider domain than does (2a).

Theorem 3. — With the preceding notation, W has the series development
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and this is convergent for x ≥ 2.
Proof. — Into (2c), we substitute σ = 1/ζ − 1 and obtain

τ + e−w − 1 + w − w/ζ = 0 . (3b)

To invert this using the Lagrange Inversion Theorem, we introduce the operator [wp] to represent the
coefficient of wp in a series expansion in w, and obtain
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which can be rearranged to obtain the theorem.
To prove convergence, we let f(w) = ζ(e−w − 1 +w) + τζ and g(w) = −w. On the rectangular contour

bounded by the four lines <(w) = 2, =(w) = ±2 and <(w) = −1, it is simple to show that |f | < |g| for all
x ∈ [2, e]. Hence the series converges there. Since (3a) is equivalent to (2a) for x > e because of the relation[
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the theorem follows.

4. Expansions using new variables. — Two further series developments can be obtained by introducing
the variables Lτ = ln(1− τ) and η = σ/(1− τ).

Theorem 4.—With the preceding notation, W has the series development

W (x) = L1 − L2 − Lτ −
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Proof.— We set w = v − Lτ in (2c) and obtain, after rearranging,

1− e−v +
σ

1− τ
v =

σ

1− τ
Lτ . (4b)

This equation has exactly the form of (2c) itself, and therefore the expansion for v can be obtained from
(2d) by replacing σ with σ/(1− τ) and τ with σLτ/(1− τ). The theorem then follows by rearrangement.

The expansion (4a) converges more slowly than (2a), but when we transform it using the methods of
theorem 3, we obtain a very rapidly convergent expansion, as we show in section 5.

Theorem 5.—With the above notation, W (x) has the development
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Proof. — The proof follows exactly that of Theorem 3.
The process of generating series in new variables can be continued. If w(σ, τ) satisfies (2c), then Theorem

4 is equivalent to the identity

w(σ, τ) = − ln(1− τ) + w

(
σ

1− τ
,
σ ln(1− τ)

1− τ

)
, (4d)

which clearly can be applied repeatedly.

5. Rate of convergence. — We consider the accuracy obtained by truncating each of the series (2a), (3a)
and (4c) at N − 1 terms. Since the series are asymptotic series, the error terms for x large are respectively
O(LN2 /L

N
1 ) for (2a) and (3a) and O(LN2 /L

2N
1 ) for (4c), so (4c) is clearly better. In addition to being

asymptotic, however, the series are absolutely convergent, and can be used for relatively small values of x.
We observe that τ = Lτ = 0 at x = e, and hence the infinite sums in (2a), (3a) and (4c) are zero there.
Thus any truncated series will be exact at x = e and asymptotically correct as x → ∞, implying that the
error will have a maximum at some x > e.

However, although (2a) is correct at x = e, its derivative does not converge there. In contrast, (3a) and
(4c) give finite sums at x = e for all derivatives. To put it another way, taking N terms of (3a) or (4c) and
expanding about x = e gives N terms of the Taylor series for Φ1(x) about x = e. Both (3a) and (4c) are
much more accurate than (2a) near this point. Numerical experiments confirm these results.

We conjecture that (2a) and (4c) converge for all x > 1.
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