The Turing factorization of a rectangular matrix

R. M. Corless and D. J. Jeffrey,
Department of Applied Mathematics,

The University of Western Ontario,
London, Ontario, Canada N6A 5B7

SIGSAM Bulletin, vol 31(3), September 1997, pp 20-28

Dedicated to the memory of M. A. H. Nerenberg

Abstract

The Turing factorization is a generalization of the stan-
dard LU factoring of a square matrix. Among other ad-
vantages, it allows us to meet demands that arise in a
symbolic context. For a rectangular matrix A, the gen-
eralized factors are written PA = LDUR, where R is
the row-echelon form of A. For matrices with symbolic
entries, the LDU R factoring is superior to the standard
reduction to row-echelon form, because special case infor-
mation can be recorded in a natural way. Special interest
attaches to the continuity properties of the factors, and
it 1s shown that conditions for discontinuous behaviour
can be given using the factor 1. We show that this is
important, for example, in computing the Moore-Penrose
inverse of a matrix containing symbolic entries.

We also give a separate generalization of LU factoring
to fraction-free Gaussian elimination.

1 Introduction

It is now fifty years since Alan M. Turing wrote the sem-
inal paper [16], in which he introduced several ideas that
have since had a profound effect on numerical analysis,
through their popularization and completion by Wilkin-
son [8]. One of the simplest, and yet most far-reaching,
ideas was his recognition that direct methods for solving
linear systems Az = b can be written as matrix factor-
izations, and in particular Turing proved that, once the
‘partial pivoting’ strategy is chosen, every square nonsin-
gular matrix A can be written uniquely (up to ties for
the choice of pivots) as the following ‘resolution into the
product of matrices’

PA=LDU, (1)

where P is a permutation matrix, L is unit lower triangu-
lar with entries of magnitude bounded by 1, D is diagonal
with nonzero entries, and U is unit upper triangular.

20

There are several ‘standard’ variants of LU factoriza-
tion for square matrices; the main two group the LD fac-
tors together or instead group the DU factors together.
Turing’s choice to separate out the diagonal entries did
not, unfortunately, become ‘the’ standard, which is a pity
because it has some advantages, such as greater symmetry
if A is symmetric. Incidentally, his use of the word ‘res-
olution’ where a modern author might use ‘factorization’
or ‘decomposition’ interchangeably, is another aspect of
his paper that has been forgotten, but in this case we
doubt whether any harm has been done. We shall use
‘factorization’ or ‘factoring’, in the main.

In this paper we generalize Turing’s factorization to the
case of rectangular matrices, and show that this helps to
deal with the so-called specialization problem?!, which we
now briefly discuss in the context of linear algebra.

Some of the standard operations of linear algebra, in
particular the reduction to row-echelon form, present dif-
ficulties when implemented in computer algebra systems,
because continuous input can lead to discontinuous out-
put. We give an example below in which discontinuous
behaviour is missed by a computer algebra system.

We emphasize that it is discontinuous matrix properties
that are the ultimate source of the difficulty. Properties
such as rank or nonsingularity are sometimes discontinu-
ous, even when the matrix is continuous, and this presents
problems both for exact and for floating point computa-
tion. The theory of ‘conditioning’ (initiated also by Tur-
ing in [16]) was developed to deal with discontinuity in the
floating-point context. Perhaps because most computer
algebraic systems take a formally algebraic viewpoint, no
similarly useful and satisfactory theory has yet been de-
veloped for the case of exact computation.

The difficulty is, however, well known in algebra sys-
tems, and a number of approaches to it have been pro-

1'We would be interested in printed references to this usage. The
term ‘specialization problem’ appears to be well-known but we do
not know a single paper, other than our own, which uses it. Fur-
ther, there are other kinds of ‘specialization problems’ than the ones
caused by removable discontinuities in expressions (see e.g. [15]),
but we restrict ourselves to this type in this paper.

posed and discussed (see e.g. [3]). Many of the proposals
are based on appropriate modifications of the user inter-
face to the individual systems, but for the problems stud-
ied here, an alternative is to modify the mathematical
setting so that special cases can be identified efficiently.
We do this by formally replacing the notion of the ‘row
echelon reduction’ with a factorization which preserves
special-case information.

We also take the opportunity to write fraction-free
Gaussian elimination (see e.g. [5]) as a factorization. This
offers similar advantages in the case of parameters, but is
more useful conceptually in that we feel this is a simpler
presentation of the fraction-free algorithm, which avoids
determinants and Sylvester’s identity.

2 Row Echelon Reduction

We begin by discussing the difficulties associated with the
traditional row-echelon reduction. This is taught to stu-
dents as the transformation of a given matrix A into a
succession of equivalent matrices by the use of row oper-
ations. The transformations stop when the unique row-
echelon form R is reached. The shortcomings of this ap-
proach are illustrated by the following problem, adapted
from a widely used textbook [12].

P.1) The matrix below is the augmented matrix for some
system of equations:

1 -2 3 sin x
1 4cosz 3 3sinz (2)
-1 3 cosx—3 cosz

Find the values of the parameter x for which the
system has no, one, and infinitely many solutions.

Every CAS has a command to obtain the reduced row-
echelon form of a matrix. In Maple, the command is
linalg[rref](4). In Maple V Release 3, this gave the
error message ‘matrix entries must be rational polynomi-
als’. In Maple V Release 4, this gave the error message
‘unable to find a provably non-zero pivot’.

This message shows the dichotomy between the ana-
lytic and algebraic viewpoints. If you replace cosz with
¢ and sin z with s, then Maple V Release 4 will compute
the row echelon form without a murmur, taking the al-
gebraic viewpoint that the user is working over rational
polynomials in indeterminates s and c¢. But given the in-
formation that s was sin z and ¢ was cos x, then the code
recognized that the problem is analytic in nature, not
algebraic, and refused to give a possibly wrong answer.
This behaviour is not a very satisfactory way of handling
the difficulty of discontinuities, and thus was changed for
Release 5.

In Maple V Release 5, rref (4) gives

21

2 cos(x) sin(z)—3 sin(x)—6 cos(z)—3

100 2 cos(z)+1

R(z)=|0 1 0 2 csonsl((;))+1
2 cos(z)+2 sin(z)+1

0 0 1 2 cos(z)+1

(3)
So now Maple takes the algebraic viewpoint that sinz
and cos z are ‘indeterminates’.

If, however, the user takes the analytic viewpoint, diffi-
culties arise. By inspection it is clear that 2cosz+1 =10
is a special case. For illustrative purposes, only one root
of 1 + 2cosz = 0 need be considered, so substituting
x = 27/3 into (2) and re-issuing the command rref gives

10 2 0
R(27/3)=|0 1 —-1/2 0 (4)
00 o0 1

Inspection of R(z) in (3), however, gives no clue that
there 1s a second special case, x = 6, for which the row-
echelon form is

R(6) ()

o = O
o O W
o = W

1
0
0

Identifying the appropriate value €, which we will need in
a later section, is left as an exercise for the reader. Note
that this last row echelon form is necessary to answer the
last part of the original textbook question.

Turing’s idea of resolution of matrices into factors is
now a mainstay of the modern view of linear algebra,
with most of the important constructs being expressed
this way (e.g. the FFT [17]). Row reduction stands out
as an exception in being a transformation. Therefore, po-
tentially zero divisors can be seen only by inspecting the
intermediate working. The central difficulty, however, is
the normalization required by row-echelon form in order
to make it unique; this is a key property because many
proofs in linear algebra rely on it. One way to tackle the
problem would be to change the definition of row-echelon
form to remove the need to normalize to 1, for example,
by changing to the Hermite normal form for matrices of
integers or univariate polynomials (see e.g. [11, p. 15]).
However, the Hermite normal form is not defined for the
general algebraic objects we wish to consider, such as our
example above. In any event, the same difficulty of ‘los-
ing’ a division by a parameter can be constructed for this
normal form by considering polynomials with parameters
in the coefficients.

By generalizing LU factoring to include the row-
echelon form, we can resolve the difficulties described

above. Any terms that would be divisors in a reduction
to row-echelon form will appear somewhere in the fac-
tors, and therefore a computer system does not have to
watch during the reduction to identify special cases for the
user. Moreover, all information about the original matrix
is preserved in a convenient form for the investigation of
special cases.

3 The Turing factorization

Theorem 1:
exists a permutation matrix P, a unit lower triangular
matrix L, a nonsingular diagonal matrix D, and a unit
upper triangular matrix U such that

If A is an m x n matrix over C, there

PA=LDUR, (6)

where R is the (unique) row-echelon form of A. Though
it is not very different from standard LU factoring of
square matrices, we feel that the differences are important
enough to give equation (6) a name. We call this the
Turing factorization of A.

Proof: Noble and Daniel [12] prove that there exists a
nonsingular matrix /' such that

A=FR.
Apply Turing’s LDU resolution [6, 16] to F', so we have
PF =LDU .

Note that since F' is nonsingular, D is nonsingular. The
Turing factorization (6) follows. b

We remark that if A is invertible then R = I. In this
case, if we combine the factors D and U, then (one kind
of) standard LU decomposition is obtained. If instead we
combine the factors L and D, we get another standard. In
the first combination, the nonsingularity requirement for
D becomes a nonsingularity requirement for Uy = DU
and this is what is implemented in the Maple routine
LUdecomp?. It is worth noting that LU factoring requires
no more computation than row-echelon reduction itself;
all that is required is that the steps in the calculation be
stored.

Our main theorem addresses the continuity of the row-
echelon form. To motivate it, we return to the example
problem and examine the row-echelon forms (2)-(4). If
we take any point x = a which is removed from the special
cases, we clearly have

lim R(z) = R(a) .

r—a

2The routine LUdecomp was written by Michael Buckley, and was
based in part on the program RowEchelon [4] from the share library.
The paper [4] was never published in a journal, owing in part to the
untimely death of Paddy Nerenberg. This present paper updates
and corrects [4].

22

If, however, @ = § = 7/2 (this is the answer to our earlier
exercise for the reader) we find

1 00 -6
1o 1|,
01 3

lim R(z)=10
T—o7)2 0

which clearly does not equal R(7/2), which is given in
equation (5). Thus the row-echelon form is discontinuous
at this special case. Moreover, this is the essential fea-
ture we are looking for. Because the leading elements of
each row have been normalized to 1, any change in the
qualitative nature of the system, such as its rank, will be
equivalent to a discontinuity. Finally, we notice that the
original matrix is continuous at z = n/2. We thus need
a theorem characterizing when the row-echelon form of a
matrix is discontinuous, even though the matrix itself is
continuous.

Definition. A matrix A(z) is continuous at = a if each
of its elements 1s continuous at x = a.

Theorem 2: Let A(z) be a matrix depending upon one
or more variables or parameters x, and let A be continu-
ous at a point = a. For any fixed z let A(z) have the
Turing factorization P(z)A(z) = L(z)D(2)U(z)R(z). Tf
det D(z) # 0 in some neighbourhood of z = a, then R(z),
L(z), D(z), U(z) are all continuous at £ = a and more-
over P(z) may be taken constant in a neighbourhood of
r = a.

Proof. We may choose P(z) so that all denomina-
tors of L(z) introduced by the factorization—that is, not
present already in A(z)—are factors of det D(z). This is
a consequence of the construction of P, L, D, and U by
Gaussian elimination of F'(z) with partial pivoting.

Since det D(z) # 0 in a neighbourhood of z = a
by hypothesis, D! exists and is continuous in a (pos-
sibly smaller) neighbourhood of z = a because D~!
is made up of rational polynomial combinations of el-
ements of A(z), which are continuous at z = a and
hence in some neighbourhood of = a. Similarly since
det L(z) = det U(z) = 1, we have that L=! and U~ exist
and are continuous in a neighbourhood of z = a.

Now P(z) may be taken constant in a neighbourhood
of £ = a because the pivots that arise in Gaussian elimi-
nation with partial pivoting can have only a finite num-
ber of zeros in a small enough neighbourhood of z = a,
because otherwise by continuity of A(z) we would have
det D(a) = 0 which contradicts the hypothesis.

Therefore we have

R(z) = U_l(I)D_l (I)L_l(I)P_lA(CL‘)

and everything on the right hand side is continuous at
T =a. .
Corollary 1: The only places where R can be discon-
tinuous are those where det D = 0.
We now illustrate some of the theorem’s consequences.

3.1
3.1.1

Examples
Example 1.

Parameterized matrices arise naturally in eigenvalue
problems, such as the following. The example is chosen to
illustrate that, even if an individual element of D is zero,
it is only when det I = 0 that discontinuous changes in
the row echelon form may occur.

For ease of typography in this two-column format we
combine D and U and use U7 = DU.

Consider
2 0 0
B = 2 3 1
—4 -2 0

To find its eigenvalues and eigenvectors, we examine the
row-echelon decomposition of A(A) = B — AI. We have
TA(N) =

1 0 0 2—-2 0 0

=2 1 0 0 3-2X 1 I.
A2—3X42

7 3o L 00 SR

In the case A = 2, the first diagonal element of U is zero,
and when A = 3 the second diagonal element is zero.
However, to find eigenvalues, we must test det A(A)
det Uy = (1= A)(2—A)%. Thus A = 3 is not an eigenvalue
and not a case in which the row-echelon form changes;
instead, when A = 3, a row exchange could be intro-
duced when calculating the decomposition to obtain the
same row-echelon form as above, but with non-zero diag-
onal entries in U;. For each distinct eigenvalue we must
re-factorize. Further, the row echelon form allows im-
mediate calculation of the desired eigenvectors, because
(A— Az =0 if and only if Rz = 0, since P, L, and U
are nonsingular. For A = 2 the row-echelon form of A())
is

1 1/2 1/2
R2)=[0 0 o0
0 0 0

showing that there are two linearly independent eigenvec-
tors for this eigenvalue. The case A = 1 is treated sim-
ilarly. This example was constructed using the method

of [13].

3.1.2 Example 2.

This example shows that even when det /1y = 0 the row-
echelon form might still be continuous. Consider

1 a
I-Af(a,bye)=11 b
1 ¢
1 0 0 1 a 0 1 0
=11 1 0 0 b—a O 0 1
1 2= 1 0 0 1 0 0

23

Clearly detUUy = 0 when b = a. When, however, we
recalculate the decomposition, we find Pa3A(a, a,c) =

1 0 0 1 a 0 10
1 1 0 0 c—a 0 0o 171,
1 01 0 0 1 0 0

where

1 0 0
Ps=10 0 1
0 1 0

The row-echelon form is unchanged unless also ¢ = a, in
which case we get

10 0 10 0 1
I-A(a,a,a)=11 1 0 01 0 0
10 1 0 0 1 0

o O Q

This example shows that our theorem is as strong as pos-
sible, in that parameter values rendering U; singular can
only be said to “need further investigation”.

4 The Moore-Penrose Inverse

Different methods for computing generalized inverses are
discussed in [10]. We begin our treatment by following [6].
Given the SVD of the m by n matrix A, namely

A=USV*, (7)

with ¥ = diag(o1,02,...,0.,0,...,0) we may define the

n by m pseudo-inverse At by
AT = yuty* (8)

If

where Xt diag(1/o1,1/09,...,1/04,0,...,0).
rank(A) = n, then AT = (ATA)~1AT while if m
n =rank(A) then A* = A~

The pseudo-inverse satisfies (and is in fact defined by)
the four Moore-Penrose conditions:

AATA A (9)
AtAAt = At (10)
(AAT) = AAt (11)
(ATA) = AtA. (12)

The definition (8) is very useful for computing the
Moore-Penrose inverse of a matrix A containing numeri-
cal entries. But it is of occasional interest to compute At
for a matrix containing symbolic entries, and the compu-
tation of explicit formulas for the entries of the SVD of a
symbolic matrix is usually impossible.

The following formula, which is based on a regulariza-
tion procedure associated with the name of Tihonov [7],
is more suited to symbolic computation (although as we
will see it has severe limitations of its own):

AT = lim A*(AA* +tI)71 . (13)
t—0
This formula follows easily from (8), because the right
hand side of (13) may be written

VEUT (U2 +t0HU") 7 (14)
and from here it becomes
Vdiag (o1/(07 +1),...,0./(c7 +1),0,...,0)U*. (15)

and it is clear that £ — 0 in this will give AT.

Remark 1. The above computation shows that the
limit does not have to be taken one-sided, because all the
entries in $% (¢) are well-defined for [t]| < 0.

Remark 2. It is very important to notice that this
formulation starts with a constant matrix A. But the
pseudo-inverse 1s not continuous, and so if we try to find
the pseudo-inverse of a parameterized family of matrices,
A(z) say, the family of inverses might contain gaps or
‘holes’.

Consider the following simple example:

A:[if;].

The Moore-Penrose inverse is, if e £ 1,

(16)

1 1 —e
+
A_l—ez[—e 1]’

which is of course just the ordinary inverse of A. But if
e = 1, we have

[!

411 1 |°

Notice that the limit as e goes to 1 of the general form (17)
does not exist. This example demonstrates that

(lim A)+ v

e—1

(17)

At = (18)

lim AT .
e—1

(19)

Therefore, the Moore-Penrose inverse of a symbolic ma-
trix will have ‘specialization’ problems—we may expect
that a routine that computes the general form will give
us an answer that is not necessarily correct for all values
of the parameters. The following theorem addresses this
issue in a constructive way, using provisos.

Theorem 3: The following are equivalent.

1. A*(z) (where A: D C R® = M, (R)) is continuous
at zx=a€ D.

24

2. rank(A) is constant in a neighbourhood of z = a,
and the AT given by formula (13) is correct in this
neighbourhood.

3. det(D(z)) # 0 in a neighbourhood of z = a, where
A(z) = PL(z)D(z)U(z)R(z) is the Turing factoriza-
tion of A(z). Again, the AT given by formula (13) is
correct in this neighbourhood.

Proof: Consider the Singular Value Decomposition
of A(z), namely A = U(z)X(2)V*(z). The only re-
quirement for the Tihonov formula to be correct, by
reasoning similarly to the constant matrix case, is that
01> 09> -0, >0=0,41=-0,. This is equivalent
to saying that rank A(z) = r. Finally, rank(A) is con-
stant whenever det(D) # 0 by the Turing factorization
theorem. il

4.1 Maple Code

The following Maple subroutine computes the Moore-
Penrose inverse and its proviso.

MoorePenrose := proc(A::matrix, proviso::name)
local T,t, Ah;
Ah := map(r->evalc(conjugate(r)),
linalg[transpose] (4));
linalg[LUdecomp] (A, ’det’=proviso);

T := evalm(Ah &* (A4 &* Ah + tx&*x())~ (-1));
map(limit, eval(T), t=0, right)

end:

It wuses the long names 1linalgl[transpose] and

linalg[LUdecomp] so the routine will work even if
linalg is not loaded in. Names are assumed to be real-
valued by evalc, by default. The shorthand notation
&*() 1s Maple’s syntax for an appropriately-sized iden-
tity matrix.

4.2 Examples

It turns out to be convenient to verify that our
computed Moore-Penrose inverse satisfies the the four
Moore-Penrose conditions, by using the following pro-
cedure. [It was very useful in debugging, for example.]

> B := trix(2,2,[1 11);
MoorePenroseConditions := matrix(2,2,[1,e,e,11);
proc(A::matrix, Ap::matrix) 1 e
local herm; B =
herm := m -> map(r->evalc(conjugate(r)), e 1
linalg[transpose](m));
print (map(normal,evalm(A &* Ap &* A - A))); > M := MoorePenrose(B, prB’);
print(map(normal,evalm(Ap&*A&+*Ap - Ap))); 1 .
print (map(normal@evalc, —
_ . —14+e2 —1+é€2
evalm(herm(A&+*Ap) - A &* Ap))); M =
print (map(normal@evalc, ¢ _ 1
evalm(herm(Ap&+*A) — Ap &* A))); —1+ €2 —14e2
end:
. > PrB;
The idea is that this procedure prints out four possibly) 5
—e

differently-shaped zero matrices; if any of these matrices
contains a nonzero entry, there may be a bug (but most
probably just a weakness in zero-recognition). The fol- > MoorePenroseConditions(B,M);

lowing Maple session explores these routines. r 0 0 7
> a := alphal[1] + I*alphal2]; 0 0
a:=ay+1as - -
> b := betal1] + I*betal[2]; 00
b:=p1 + 15 | 00]
> A := matrix(1,2,[a,bl); 0 0
A=|a1+Tay B +1p 0 0
> M := MoorePenrose(A, ’'pri’); I 0 0 T
—ay 4+ Tas
Ao | Pt BT L0 0
' _ —B1+ 10
a2 + as? + B2+ B> > C := subs(e=1,eval(B));
1 1
> MoorePenroseConditions(A, M); C .= -
[0 0]
> MC := MoorePenrose(C,’prC’);
0 1 1
0 JWC = 4 4
1 1
4 4
o]
> prC;
0 0 1
0 0

> MoorePenroseConditions(C,MC);

This yields four 4 by 4 matrices containing only zeros.

25

4.3 Limitations

This routine uses symbolic inversion (of AA* 4+ t]) as a
tool to compute the symbolic Moore-Penrose inverse. As
1s well-known, exact arithmetic solutions, and even more
so exact symbolic solutions, lead very quickly to com-
putationally intractable problems. Nonetheless if your
problem contains only one or two parameters, and isn’t
of too high a dimension, then efficiency and insight can
be gained by using a symbolic inverse or Moore-Penrose
inverse. For more discussion and examples, see [2].

5 Fraction-free LU factoring

In this section we generalize the PA = LU factorization
to the fraction-free case, which appears not to have been
done before. The paper [9] is based on a poster presented
at ECCAD 97, in which they gave something they called
(in quotes) a fraction-free ‘factorization’; we modify this
here to give a true factorization.

However, after writing down the true factorization (20
below), one realizes that the information in the extra fac-
tors F; and Fy are duplicated in the U factor, and hence
there is no need to form them explicitly except for con-
ceptual understanding, and thus we see that while they
do not give a true factorization, the treatment of [9] is
complete and practical.

Nonetheless, while no new information is discovered
this way, this true factorization approach has some ad-
vantages. First, it avoids Sylvester’s Identity, and indeed
avoids determinants altogether. It also, in our view, gives
a clearer explanation of just why we can pull common in-
teger factors out of certain submatrices, which is the key
to the whole algorithm.

We first see a theorem and then work out an example
in detail. The proof of the theorem follows the reason-
ing in the example and is thus omitted. Maple code for
the fraction-free factorization, which works for matrices
with entries from arbitrary integral domains, can be found
in [2].

Theorem 4: Fraction-Free Factorization. Consider the
rectangular matrix A € Z"*™. Then we may write

FWPA=LFU, (20)
where Iy = diag(1, p1,p1p2, ..., p1p2 - pa—1), Pisaper-
mutation matrix, L € Z"*" is unit lower triangular, Fy =
diag(1,1,p1, p1p2, ..., p1P2 - Pn-2), and U € Z"*™ is
upper triangular. The p; are the pivots that arise.

Remarks.

o This factorization (or rather, its construction by al-
gorithm) gives a simple proof of divisibility of the
submatrices by p1, p2, and so on. It becomes clear

26

that since we put the factors in, with Fj, and we
ought to be able to take them out again, with Fs.

We may use either the one-step, or the two-step, frac-
tion free algorithm (see [5] for details) to construct
the factorization, which is the same in either case.
Since the two-step method is asymptotically more ef-
ficient than the one-step method, we should use that.
For clarity, we do not.

Formation of the factors in F; is not actually neces-
sary. We may simply record the pivots p;, ps, and
in fact even this is not necessary, since the pivots are
already recorded in the diagonal entries of U.

The determinants of each side are
n—1_n—2
P1 P ©Pn-1 det(A)

and

PrTpa T3 pa_adet(U)

respectively. This shows that

det(U) = p1pa -+ - pn—1det(A) .

If zero pivots are encountered, or indeed if we wish
to select the smallest pivot so as to encourage the
least growth in the integers that arise (this heuristic
is well-known and works very well), then we must do
row exchanges. By the usual trick, we may pretend
that we knew ahead of time which rows would be
exchanged, and do them all to start with. This is
why the P factor is next to the A factor in the state-
ment of the theorem. The details of the percolation
of the permutations (via column exchanges and row
exchanges) through all the various factors are left as
an exercise.

The factor U is different from that of the Turing
factorization, in that it is not unit upper triangular.

As with the Turing factorization, once the pivoting
strategy has been chosen then the factorization is (up
to ties for pivots) unique.

The integral domain Z is not special; this factoriza-
tion works for matrices over any integral domain.

We may combine the Fraction-Free Factorization
with the Turing factorization to get FiPA =
LFsUF3H, which gives a a factorization for the Her-
mite normal form H.

5.1 Example

We use example 9.1 from [5], which has the augmented
matrix

3 4 =2 1 -2
1 -1 2 2 7
A= (21)
4 -3 4 -3 2
-1 1 6 —1 1

In what follows we appear to temporarily allow divi-
sions. This is a notational device only, for exposition, and
it should be clear how to avoid ever forming any fractions
even temporarily.

Applying one elementary matrix step of ordinary PA =
LU factorization to this matrix would give A =

1 3 4 -2 1 -2
1/3 1 -7/3 8/3 5/3 z
4/3 1 -0 _13/3 14/3

—1/3 1 7/3 16/3 —2/3 1/3

(22)

To remove the fractions, we may rewrite the identity ma-
trix as

1/3 (23)

1/3 3

and insert these two factors in between the two factors
of A we have found so far. Since multiplication by a
diagonal matrix on the right multiplies columns, the 1’s
on the diagonal of the L factor all become 1/3. Once this
happens, we may factor 1/3 out of each row, giving

1 1
1/3 11
A =
1/3 4 1
1/3 ~1 1
3 04 —2 1 =2
-7 8 5 23
X
—25 20 —13 14
716 -2 1

Of course, multiplying both sides by diag(1, 3,3, 3) will
remove the fractions completely. So far, we have not cap-
tured the essence of the Bareiss-Jordan fraction-free al-
gorithm; all we have done is cleared fractions in ordinary

27

PA = LU factorization. Indeed, this is just the begin-
ning of what is called ‘division-free Gaussian elimination’
in [5]. [Apparently, ‘division-free’ is the accepted name for
a slightly different algorithm, which is less clever than the
‘fraction-free’ algorithm. We will not have cause to refer
to ‘division-free’ elimination again.] We need to do one
more step before the idea of ‘fraction-free factorization’
becomes clear. Call the last factor in the above equation,
A We will work just with A(), for easy typography.

We start as before by pretending to use ordinary ratio-
nal LU factorization steps. We may write A1) =

1 3 4 -2 1 -2

1 -7 8 5 23
%5 _60 _ 216 _ 477

7 7 7 7

—1 1 24 3 24

(24)
and again we will wish to clear the fractions (accidentally,
the last multiplier was also 7 and so the entries in the last
row are integers, but in general this will not happen). In
actual fact the pivot was —7, so we’ll adjust the minus
signs above, and use a similar rewriting of the identity
(this time as diag(1,1,—1/7,—1/7)diag(1,1,—-7,-7)) to

arrive at

1 1
. 1 1
A =

~1/7 —25 1
—1/7 7 1

3 4 -2 1 -2

-7 8 5 23

X

60 216 477
—168 —21 —168

The percolation of the diag(1,1,-1/7,—1/7) factor
through the left-hand factors already obtained is left as
an exercise. What concerns us now is the fact that ev-
ery element of the remaining non-triangular submatrix,
namely

60
—168
is divisible by 3.

A moment’s thought shows why this must be so. We
introduced the factor 3 into the entire submatrix when
we multiplied by diag(1,3,3,3). It was needed for the
elimination of the first column, but i1s not needed here.
We may now factor it out, to keep the size of the elements
down.

It is important to note that we will not need to do GCD
calculations to discover this divisibility; we will know

216
—21

477

—168 (25)

ahead of time that this divisibility will happen. Thus
we may cheaply take advantage of it.
Writing this observation as a factorization, we have

that diag(1,1, -7, =7)A()

1 1
1 1
- -25 1 3

7 1 3
3 4 -2 1 -2
-7 8 5 23

X

20 72 159
—-56 -7 —56

Continuing with one more step, and rearranging all the
factors that we have so far found, we get at last that

1 1
3 1 1
-21 4 = —28 =25 1

—420 140 140 -56 1

1 3 4 -2 1 -2

N 1 -7 8 5 23
3 20 72 159

-21 —556 —1112

6 Concluding Remarks

Recent releases of Maple offer a command LUdecomp that
returns the generalized LU factoring described here. The
proviso det(U7) # 0 allows the user (at least in principle)
to 1dentify the values of the parameters that give excep-
tional row echelon forms, and the program can be called
again with these special values of the parameters.

This idea of a row echelon decomposition may be useful
numerically, as well, if we make the usual shift to looking
at the condition number of U; instead of the determinant.
The reader will be interested to note that the idea of
condition number, and the definition of ‘ill-conditioned’,
was also introduced by Turing, in the same paper [16].
Thus we hope that the name ‘Turing factorization’ for
the result of Theorem 1 is accepted.

Further, the Turing factorization can be used to solve
all the major computational problems encountered in a
first linear algebra course, such as solution of linear equa-
tions, positive definiteness of quadratic forms, Gram-
Schmidt orthogonalization (see [14]), and eigenvalues.
This elegant unity is surely a consequence of Turing’s
mathematical taste; even in the simple fields, he was at-
tracted to the key ideas.

28

References

[1] B. W. Char, K. O. Geddes, G. H. Gonnet, M. B.
Monagan, and S. M. Watt, The Maple V Language
Reference Manual, Springer, (1991).

[2] Robert M. Corless, Symbolic Recipes, Volume I: Ex-
act Computation, Springer, to appear (1998).

[3] Robert M. Corless and David J. Jeffrey, “Well, it
isn’t quite that simple”, SiGsam BULLETIN, Vol. 26,
no. 3, issue 101, pp. 2-6 (1992).

[4] R. M. Corless, D. J. Jeffrey, & M. A. H. Nerenberg,
“The Row Echelon Decomposition”, TR, AM-91-01,
Dept. Applied Math, U. W. O. (1991).

[5] K.O. Geddes, G. Labahn, S. Czapor, Algorithms for
Computer Algebra, Kluwer, (1992).

[6] Gene Golub and Charles Van Loan. Matriz Compu-
tations. Johns Hopkins, 2nd edition, (1989).

[7] C. W. Groetch, Generalized inverses of linear opera-
tors, Monographs and texts in pure & applied math-
ematics, Vol. 37, Marcel Dekker, New York, (1977).

[8] Nicholas J. Higham, Accuracy and Stability of Nu-
merical Algorithms, STAM, (1996).

[9] G. C. Nakos, P. R. Turner, & R. M. Williams,
“Fraction-Free algorithms for linear and polynomial
equations”, this BULLETIN, pp. 11-19, (1997).

[10] M.-T. Noda, I. Makino, & T. Saito, “Algebraic Meth-
ods for Computing a Generalized Inverse”, this BUL-
LETIN, pp. 51-52, (1997).

[11] Morris Newman, Integral Matrices, Academic Press,

(1972).

[12] Ben Noble and James W. Daniel, Applied Linear Al-
gebra, 3rd ed., Prentice-Hall, (1988).

[13] J. M. Ortega, Letters to the Editor, American Math-
ematical Monthly 92, p. 526 (1985).

[14] Lyle Pursell and S. Y. Trimble, “Gram-Schmidt Or-
thogonalization by Gauss Elimination”, American
Mathematical Monthly 98 no. 6, pp. 544-549 (1991).

[15] David R. Stoutemyer, “Crimes and Misdemeanors
in the Computer Algebra Trade”, Notices of the
A. M. S. 38 No. 7, pp. 778-785 (1991).

[16] Alan M. Turing, “Rounding-off errors in matrix pro-
cesses”, Quart. J. Mech. Appl. Math. 1, pp. 287-308,
(1948).

[17] Charles F. Van Loan, Computational Frameworks
for the Fast Fourier Transform, STAM, 1992.

