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Abstra
t

A new treatment is given of the elementary inverse fun
tions. The new approa
h addresses the di�eren
e

between the single-valued inverse fun
tion de�ned by 
omputer systems and the multi-valued fun
tion whi
h

represents the multiple solutions of the de�ning equation. The approa
h takes an idea from 
omplex analysis,

namely the bran
h of an inverse fun
tion, and de�nes an index for ea
h bran
h. The bran
h index then

be
omes an additional argument to the (new) fun
tion. A bene�t of the new approa
h is that it helps

with the general problem of 
orre
tly simplifying expressions 
ontaining inverse fun
tions, whi
h has always

been diÆ
ult both for humans and for 
omputer algebra systems. The new approa
h also 
an be extended

to non-elementary inverse fun
tions su
h as the Lambert W fun
tion, whi
h otherwise 
annot be handled.

The di�eren
e between this approa
h and that of Riemann surfa
es lies in the fa
t that Riemann surfa
es

distinguish between bran
hes by dividing the domain of the fun
tion into sheets, whereas here the range of

the fun
tion is indexed.

1 Introdu
tion

Two developments in mathemati
s suggest the need for a new treatment of multi-valued fun
tions, in
luding

the elementary inverse fun
tions. The developments are, �rst, the implementation of inverse fun
tions in


omputer-based mathemati
al systems and, se
ond, the appearan
e in the literature of new inverse fun
tions.

The 
omputer systems have struggled for years to �nd the best way to handle possible simpli�
ations su
h

as

(z

n

)

1=n

? =? z ; ar
sin(sin z) ? = ? z ; ln(e

z

) ? =? z ; (1)

as indeed have mathemati
ians [5, 7℄. Numeri
al 
ounter-examples are

((�1)

2

)

1=2

6= �1 ; ar
sin(sin 2�) 6= 2� ; ln(e

3�i

) 6= 3�i :

In the 1980s, mistakes like these 
ould 
ommonly be found in 
omputer algebra systems

1

. The new treatment

o�ers one way of looking at su
h problems. The other motivation is the study of the Lambert W [6℄ and

other inverse fun
tions, whi
h have no trivial relation between their bran
hes, in 
ontrast to the elementary

inverse fun
tions.

There are, in addition, �stheti
 reasons. Anyone who has taught inverse trigonometri
 fun
tions, or the


omplex roots of a number, knows how diÆ
ult students �nd the idea of multi-valued fun
tions. One of the

reasons is that there is not really a single uniform treatment. For example, every 
al
ulus textbook introdu
es

inverse fun
tions with a dis
ussion of multi-valuedness and then ignores it when justifying equations su
h as

Z

dx

1 + x

2

= ar
tanx

(Abramowitz & Stegun [1℄ do this in the same 
hapter). Of 
ourse there will always be di�erent treatments

of the subje
t, be
ause of the mathemati
al desire for a di�erent point of view. Mathemati
al topi
s are

to mathemati
ians rather like antique vases are to vase 
onnoisseurs. The 
onnoisseurs are not 
ontent to

look at their vases only from the front; they want to pi
k them up and admire them from all angles. In the

same way, the mathemati
al pleasure of a topi
 is not exhausted by any single treatment, however thorough.

Perhaps there is something of this in the present treatment, but it is argued that there are pra
ti
al reasons

to 
hange, and pra
ti
al bene�ts to gain.

1

Let's not point �ngers at parti
ular systems.
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2 A question of values

The �rst question in any treatment of multi-valued fun
tions 
on
erns their representation; the question


an be dramatized as follows. Does ar
tan(1) represent the single number �=4, or does it represent all the

solutions x of the equation tanx = 1, as the set f�=4+k� j k 2 Zg, or does ar
tan(1) represent some quantity

in between, perhaps the single number �=4 + k� but with the value of k being de
ided later? One point of

view was expressed by Carath�eodory, in his highly regarded book [4℄. Considering the logarithm fun
tion in

the 
omplex plane, he addressed the equation

ln z

1

z

2

= ln z

1

+ ln z

2

; (2)

for 
omplex z

1

; z

2

. He 
ommented [4, pp. 259{260℄:

The equation merely states that the sum of one of the (in�nitely many) logarithms of z

1

and one

of the (in�nitely many) logarithms of z

2


an be found among the (in�nitely many) logarithms

of z

1

z

2

, and 
onversely every logarithm of z

1

z

2


an be represented as a sum of this kind (with a

suitable 
hoi
e of ln z

1

and ln z

2

).

In this statement, Carath�eodory �rst sounds as though he thinks of ln z

1

as a symbol standing for a set

of values, but then for the purposes of forming an equation he prefers to sele
t one value from the set.

Whatever the exa
t mental image he had, the one point that is 
lear is that ln z

1

does not have a unique

value, whi
h is in strong 
ontrast to every 
omputer system. Every 
omputer system will a

ept a spe
i�


value for z

1

and return a unique ln z

1

.

Noti
e a further impli
ation of equation (2). If ln z

1

means a single value, then that value is no longer

determined solely by the value of z

1

: the value to be given to ln z

1

is also determined by the 
ontext. For

example, in the equation

3 ln(�1) = ln[(�1)

3

℄ = ln(�1) ;

if the �rst ln(�1) obeys ln(�1) = i�, then the last one must obey ln(�1) = 3i�. It is 
ompletely impra
ti
al

to require a 
omputer system to analyze the 
ontext of ea
h fun
tion before evaluating it. This example

uses the 
omplex plane, but real-valued examples 
an be given also.

The referen
e book edited Abramowitz & Stegun [1, Chap 4℄ is another authoritative sour
e, and it 
an be

used to provide a real-valued example. It de�nes the solution of tan t = z to be t = Ar
tan z = ar
tan z+k�.

It then gives the equation

Ar
tan(z

1

) + Ar
tan(z

2

) = Ar
tan

z

1

+ z

2

1� z

1

z

2

:

For z

1

= z

2

=

p

3, we have Ar
tan

p

3 + Ar
tan

p

3 = Ar
tan(�

p

3). This is satis�ed if Ar
tan

p

3 = �=3,

and Ar
tan(�

p

3) = 2�=3, but that means we no longer have the relation Ar
tan(�z) = �Ar
tan(z). By


omparing the Abramowitz & Stegun de�nition with the statement of Carath�eodory, we 
an see that as

far as equations are 
on
erned, all authors favour an interpretation based on judi
iously sele
ting one value

from the possible ones.

A 
ompletely di�erent approa
h is taken by Adams [2℄. He makes the inverse fun
tions single valued by

restri
ting the domain of the de�ning fun
tion. Thus he de�nes

Sinx = sinx ; only if� �=2 � x � �=2 :

He then dis
usses the inverse of Sinx, and not that of sinx. Thus in this approa
h there is no doubt about

the inverse fun
tion being unique, be
ause Sinx = y has only one solution. Sin
e his book is a 
al
ulus

textbook, the solution of sin x = y is not addressed.

In mathemati
al software, the interpretation of an inverse fun
tion as having a single value is the best

one. Indeed it is the 
ontention here that su
h an interpretation is always the best. Further, the single value

of a fun
tion should be determined by the arguments to the fun
tion and not by the 
ontext in whi
h it

is pla
ed. All 
urrent 
omputer systems return a single number when asked to evaluate, at some spe
i�ed

point, a multi-valued fun
tion. Therefore 
learly for 
onsisten
y any unevaluated symboli
 quantity should

also represent a single value.

3 The Lambert W fun
tion

This fun
tion is an inverse fun
tion with properties that di�er from the elementary inverse fun
tions. It

�rst re
eived a name in the early 1980s, when Maple de�ned a fun
tion that was named simply W . An

histori
al sear
h, 
ondu
ted while writing an a

ount of this fun
tion [6℄, found work by the eighteenth

2




entury s
ientist J. H. Lambert that foreshadowed the de�nition of the fun
tion; even though his work did

not a
tually de�ne the fun
tion, W was named in his honour. The same sear
h un
overed a fortuitous reason

for 
alling the fun
tion W , in that E. M. Wright, a mathemati
ian known for his book with Hardy on pure

mathemati
s, studied the 
omplex values of the fun
tion, again without naming it.

The de�nition of W is that it is the fun
tion that solves the equation

We

W

= z ; (3)

where z is a 
omplex number. This equation always has an in�nite number of solutions, most of them


omplex. There is always spe
ial interest in solutions that are purely real, and so we note immediately that

when z is a real number, equation (3) has no real solutions when z < �1=e; it has two real solutions when

�1=e < z < 0; and it has one real solution when z > 0. Even if z is real, there are still 
omplex solutions.

A numeri
al example is We

W

= �0:1. The two real solutions are W = �0:1118326, and �3:577152 as

well as an in�nite number of 
omplex solutions, the smallest of whi
h are W = �4:449098� 7:307061i. The

two real solutions were labelled W

p

and W

m

by [3℄; however, the labelling using an integer introdu
ed in [6℄

is preferable, be
ause it in
ludes the 
omplex 
ase.

For present purposes, the important property W has is the la
k of a trivial relation between the di�erent

values is takes for the same argument.

4 The issues are 
omplex

The �rst multi-valued fun
tions shown to mathemati
s students are the inverse trigonometri
 fun
tions,

be
ause their multi-valued behaviour 
an be demonstrated using real numbers. (The square root fun
tion is

probably the very �rst, but the terminology multi-valued is not deployed at that stage.) This is in 
ontrast

to the logarithm fun
tion, whose multi-valued behaviour appears only in the 
omplex plane. A treatment of

multi-valued fun
tions that extends easily into the 
omplex plane, while remaining 
omprehensible to those

who work only on the real line is the target we aim for.

The existen
e of 
omputer algebra systems makes the 
omplex plane relevant even to mathemati
s

tea
hers who never tea
h 
omplex numbers. In a textbook, the author 
an 
ontrol the environment of

the reader, and therefore ex
lude 
omplex numbers 
ompletely if that is 
onvenient, but 
urrent 
omputer

systems (parti
ularly algebra systems) work on a broader mathemati
al base. The pra
ti
al requirements of

developing a 
omputer algebra system, and the for
es of the market pla
e, drive developers into the 
omplex

plane, regardless of the domain implied by some user's problem. Complex numbers are needed be
ause the

shortest route from a problem posed on the real line to its answer on the real line is sometimes through the


omplex plane. The 
ubi
 equation, the study of vibrations and Ris
h integration are examples that 
ome

to mind. The example above of the bran
hes of the Lambert W fun
tion shows the in
onvenien
e of solving

a problem on the real line �rst and then having to revise the solution for the 
omplex plane.

5 A new treatment of inverse fun
tions

In addition to the elementary inverse fun
tions, for whi
h a variety of standard notations are available

2

,

some non-elementary inverses are 
onsidered below. To avoid 
onfusion over notation, we shall use a new

s
heme for denoting inverses.

5.1 Notation for inverses

The existing notation divides into several 
lasses. The �rst 
lass uses the general notation of f

�1

as an

inverse of a fun
tion f , and so we obtain sin

�1

, 
os

�1

, and so on. The se
ond 
lass builds new names for

the inverse fun
tions by modifying the original fun
tion name. Thus the names ar
sin, ar

os are standard

names, as are the forms asin and a
os used by 
omputer languages. There is more 
onfusion with the inverse

hyperboli
 fun
tions, be
ause the pre�x `ar
' has no geometri
 signi�
an
e. Most systems use ar
sinh or

asinh, although Gradshteyn & Ryzhik [9℄ use Arsh and Ar
h, although with no signi�
an
e atta
hed to the


apital letter. A third 
lass simply 
reates a name unrelated to the original fun
tion. Thus logarithm has

no 
onne
tion with the name of its inverse, exponential; the Lambert W fun
tion is the inverse of a fun
tion

that has no spe
ial name. In addition to the names, there is the fa
t, already mentioned, that upper and

lower 
ase initial letters are used; sometimes these 
arry signi�
an
e with respe
t to multi-valuedness and

2

\The ni
e thing about standards is that you have so many to 
hoose from; furthermore, if you do not like any of them, you


an just wait for next year's model."[13, p. 168℄
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A B

CD

Re(z)

Im(z)

Figure 1: The z-plane labelled with bran
h 
ut and points for mapping to the p-plane.

sometimes not, and when authors intend to indi
ate multi-valuedness it goes without saying that there is

no agreement on the notation.

Even if we did not need to extend the de�nitions of these fun
tions, the existing notations have drawba
ks.

First, the f

�1

notation 
lashes with the other uses of supers
ript, and the 
onfusion this produ
es in students

is well known to all tea
hers. If sin

2

z means (sin z)

2

, and y

�1

= 1=y, but sin

�1

z means inverse sine, does

sin

�2

z mean 1=(sin z)

2

or (inverse sin z)

2

? Regarding the notation of pre�xing `ar
', it has a geometri
al

justi�
ation that does not generalize outside trigonometry. No one writes ar
f for the inverse of f . Using

a di�erent name, like logarithm, gives no hint of the inverse nature of the fun
tion. It would be useful and


onvenient if there existed a notational 
onvention that did not 
lash with other uses and whi
h reminded

readers of the 
onne
tion between an inverse and its de�ning fun
tion.

There are two possible solutions to notational problems like this. One solution is to examine the existing

sets of notations and sele
t one subset from them. One then hopes that by shouting louder than anyone

else, preferably in an international 
ommittee, this notation is adopted as standard. The trouble with this

is that when I write `ar
sin', it is not 
lear whether I am using the new internationally approved de�nition

or my old one. This is parti
ularly diÆ
ult here, where the old style has a parti
ular meaning. The other

solution is to 
reate a new unambiguous notation that does the job, and hope that people see the advantages

of swit
hing. The disadvantage is the inertia represented by existing textbooks, but this latter 
ourse is,

nonetheless, followed here.

Two notations are used below: for any fun
tion, but parti
ularly those with multi-
hara
ter names, the

pre�x `inv' is added to the name. Thus the inverse of sin(z) be
omes invsin(z) (the name ar
sin is not quite

a synonym be
ause of the bran
h information that will be added below). The logarithm has the alternative

names exp

�1

and invexp (whi
h will not a
tually be used

3

). For fun
tions denoted by a single 
hara
ter, let

us say f , we 
an 
onstru
t the name invf for its inverse, but a pi
turesque alternatively borrows the ha�
ek

a

ent from the Cze
h language and uses

_

f . The ha�
ek reminds us of the `v' in inverse.

5.2 Adding bran
h information

It was noted above that Abramowitz & Stegun [1, Chap 4℄ de�ned Ar
tan z = ar
tan z + k�. The new

treatment simply follows what must be done for Lambert W and makes the unknown k an argument of the

fun
tion. As with W , the k 
an be written as a subs
ript. Thus in the new treatment we de�ne the inverse

tangent as being expli
itly the kth bran
h of inverse tangent, and denote it a

ordingly as invtan

k

z. The

details for this fun
tion are given in the next se
tion.

In the 
omplex plane, the multiple bran
hes of a fun
tion are geometri
al regions. For ea
h of the

elementary fun
tions, the number of regions is 
ountably �nite and therefore 
an be labelled by an integer.

For example, the bran
hes of the logarithm 
an be understood with the aid of �gure 1 and �gure 2. We

think of the fun
tion p = ln z as mapping a point in the z-plane (�gure 1) to a point or points in the p-plane

(�gure 2). Under multi-valued interpretations of ln z, one point maps to many images in the p-plane; under

the `prin
ipal bran
h' interpretation, one point maps to one point, and that point is lo
ated within the

prin
ipal bran
h. Under the new interpretation, one point z is mapped by p = ln

k

z to one unique point

lo
ated in bran
h k. All of the points along the bran
h 
ut map to points on the division between the

3

Not to mention ar
exp, whi
h we do not use either.
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Bran
h 1: p = ln

1

z

Bran
h 0: p = ln z

Bran
h �1: p = ln

�1

z

−3π

−2π

−π

π

2π

3π

A

A

A

B

B

B

C

C

C

D

D

D

Principal

Branch
Re(p)

Im(p)

Figure 2: The bran
hes of the fun
tion p = ln

k

z.

bran
hes. Noti
e that along the bran
h 
ut, any one bran
h of logarithm is not 
ontinuous, thus

lim

y#0+

ln

k

(�1 + iy) 6= lim

y"0�

ln

k

(�1 + iy) :

However, 
ontinuity is obtained by bran
h swit
hing:

lim

y#0+

ln

k

(�1 + iy) = lim

y"0�

ln

k+1

(�1 + iy) :

The generi
 situation under the new s
heme is that for any single-valued fun
tion f , su
h as sine, 
osine,

exponential, the equation f(z) = y has solution z =

_

f

k

(y), for k an integer. If one wishes to talk vaguely

about all values at on
e, then one 
an leave the subs
ript out, but the me
hanism is always present to say

pre
isely what an equation means, rather than the 
onfusing statements in referen
e books at present.

6 Parti
ular fun
tions

In this se
tion, the elementary fun
tions and their inverses are reviewed in the new notation.

6.1 Exponential and logarithm

The fun
tion z = e

p

has the inverse p = ln z. It has already been pointed out in [7℄ that the bran
hes of

ln 
an be 
onveniently represented as ln

k

z = ln

0

z + 2�ik, where ln

0

z denotes the prin
ipal bran
h of the

logarithm. The prin
ipal bran
h is de�ned by its range and as �gure 2 shows, the range is �� < =(ln z) � �.

In general use, ln

0

z 
an be shortened to ln z.

Noti
e that one has to use the name ln rather than log, sin
e log

a

already has the 
ommonly a

epted

meaning of a logarithm with base a.

6.2 Sine

The fun
tion z = sin p has the inverse denoted, variously, by z = ar
sin p = sin

�1

p = asin p = invsin

k

p.

The last form uses the new s
heme and shows the multiple solutions expli
itly. Sin
e sin z = sin(� � z) =

sin(2� + z), we 
an write invsin

k

z = (�1)

k

invsin

0

z + k�, where again invsin

0

z denotes prin
ipal bran
h,

whi
h 
an be abbreviated to invsin z. The prin
ipal bran
h has real part between ��=2 and �=2. Noti
e

that the bran
hes are spa
ed a distan
e � apart in a

ordan
e with the antiperiod

4

of sine, but the repeating

unit is of length 2� in a

ord with the period of sine.

4

An antiperiodi
 fun
tion is one for whi
h 9� su
h that f(z + �) = �f(z), and � is then the antiperiod. This is a spe
ial 
ase

of a quasi-periodi
 fun
tion [12℄, namely one for whi
h 9�; � su
h that f(z + �) = �f(z).
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6.3 Cosine

Sin
e sin(p��=2) = � 
os(p) it is obvious that the inverse fun
tion will have a similar bran
h rule to invsin.

In order to ensure the prin
ipal bran
h is bran
h 0 and has real part between 0 and �, we set inv
os

k

z =

� invsin

k

z + �=2. In terms of its prin
ipal bran
h, it is the less attra
tive 2dk=2e� + (�1)

k

inv
os

0

z.

6.4 Tangent

Sin
e tangent has a period of �, the inverse tangent repeats every �. Thus invtan

k

z = invtan z + k�. The

prin
ipal bran
h has real part from ��=2 to �=2. The two-argument inverse tangent fun
tion, implemented

in many 
omputer languages, 
an be des
ribed using the bran
hes as

ar
tan(y; x) =

�

invtan

0

(y=x) ; x > 0 ;

invtan

1

(y=x) ; x < 0 :

6.5 Hyperboli
s

The sinh fun
tion has anti-period �i and hen
e has the inverse invsh

k

(z) = invsin

k

(iz)=i, where the notation

of sh for sinh has been used to 
onstru
t the name of the inverse fun
tion. The inverse tanh fun
tion seems

never to have had a 2-argument version of it de�ned, although it would be possible, but is now unne
essary.

6.6 Powers

The inverse of p

n

= z is p = z

1=n

. If z

1=n

= exp(

1

n

ln z), then repla
ing ln z by ln

k

z gives the bran
hed

fun
tion. The standard notation for roots and fra
tional powers does not leave an obvious pla
e for the

bran
h label. Some possibilities are [z℄

1=n

k

or

n[k℄

p

z. Another notation might be to separate the overline from

the surd symbol, as was done in the 17th 
entury, and write

n

p

k

(z). Another possibility is simply to use a

multi-letter name, as Maple does for its surd fun
tion

5

. Any notation is probably satisfa
tory, be
ause, as

with the other elementary fun
tions, the kth bran
h is expressible in terms of the prin
ipal bran
h:

[z℄

1=n

k

= z

1=n

exp(2i�k=n) ;

and this 
an be used to 
ompute the `n roots of a 
omplex number', as is done in �rst 
ourses on 
omplex

numbers.

The fun
tion z

m=n


an be de�ned several ways. All lead to an m-bran
hed fun
tion, but the numbering

of the bran
hes di�ers between de�nitions. Thus, de�ning z

m=n

= exp(

m

n

ln z) = (z

1=n

)

m

gives one bran
h

labelling, while z

m=n

= (z

m

)

1=n

or as the solutions of p

n

= z

m

leads to another. Consider, for example,

z

3=4

, and 
ompute values for (�1)

3=4

. Using the �rst de�nition, we get

[�1℄

3=4

0

= e

3i�=4

; [�1℄

3=4

1

= e

i�=4

; [�1℄

3=4

2

= e

�i�=4

; [�1℄

3=4

3

= e

�3i�=4

:

Using the se
ond de�nition, we solve p

4

= (�1)

3

= �1 and obtain the solutions (in order)

e

i�=4

; e

3i�=4

; e

�3i�=4

; e

�i�=4

:

Sin
e the prin
ipal bran
h of z

m=n

is de�ned by the �rst de�nition, this de�nition should be used for all

bran
hes.

6.7 Ja
obi Ellipti
 fun
tions

The Ja
obi fun
tions sn and 
n are examples of doubly periodi
 fun
tions [12℄, and hen
e their inverses will

have to be doubly labelled. We shall not pursue this large topi
 here, but merely point out that there is a

natural extension of the present approa
h to these fun
tions.

7 Properties revisited

Let us re
onsider some of the simpli�
ation and manipulation problems pointed out above.

5

The surd name 
annot be used, however, be
ause it de�nes one parti
ular (non-prin
ipal) bran
h of the nth root fun
tion.
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7.1 Composition

Let f be a single-valued fun
tion, for example one of those listed in the last se
tion, and let

_

f

k

be its (set of)

inverse fun
tions. It is well known that f(

_

f

k

(z)) = z for all z and k, but

_

f

k

(f(z)) 6= z ex
ept when z lies in

a 
ertain domain. Let the range of

_

f

k

in the 
omplex plane be C

k

� C . Then

_

f

k

(f(z)) = z provided z 2 C

k

.

In this notation, the vague statement Ar
sin(sin z) = z 
an be made pre
ise in two ways. The simple way is

to write 9k; invsin

k

sin z = z; the other way is to say what k is.

For the elementary fun
tions, it is possible to write down a rule for

_

f

k

(f(z)) for any z, using the unwinding

number K(z) =

�

z��

2�

�

, de�ned in [5℄ (rather than in [7℄ where the sign is di�erent). For example, the

equations in (1) be
ome

[z

n

℄

1=n

k

= ze

2�i(K(n ln z)+k)=n

= zC

n

(z)e

2�ik=n

;

invsin

k

(sin z) = z(�1)

k+K(2iz)

� �

�

(�1)

k+K(2iz)

K(2iz)� k

�

;

ln

k

e

z

= z + 2�i(K(z) + k) ;

invtan

k

(tan z) = z + �(k �K(2iz))

For any value of z, there is a value of k whi
h redu
es the 
omposition to the identity. The fa
tor C

n

(z) above

is a generalization of the fun
tion 
sgn(z) that regularly mysti�es users of Maple

6

. In fa
t C

2

(z) =
sgn(z).

For more 
ompli
ated fun
tions su
h as ze

z

and its inverse Lambert W , there are no su
h relations.

If x > 0, then W

0

(xe

x

) = x but in general W

k

(ze

z

) 
annot be simpli�ed unless z is in the range of W

k

.

Although an algorithm 
an be written down to de
ide this for a given z, a simple formula is not available.

Therefore, in general

_

f

k

(f(z)) should be regarded as not subje
t to simpli�
ation.

7.2 Identities: Whose job is it, anyway?

The identity (2) 
an now be interpreted as being a shorthand for

(9k;m; n 2 Z); ln

k

z

1

z

2

= ln

m

z

1

+ ln

n

z

2

: (4)

Another way to look at the problem is to say that when a formula su
h as ln

k

z

1

z

2

= ln

m

z

1

+ ln

n

z

2

is used

for 
omputation, the values of k; l; m must be de
ided on at some stage. Whose job is it to de
ide on these

values and when is the de
ision taken? One 
ould argue that the time to de
ide is when the values of the

z

i

are known, and the person to de
ide is the person who 
hose the z

i

. However this sidesteps the issue

two ways. On the one hand it ignores the fa
t that we 
an with some work say what the values are. For

example, in this 
ase, k = m+ n + K(ln

0

z

1

+ ln

0

z

2

). On the other hand it may result in fa
tors missing

from a 
al
ulation, espe
ially if it is performed inside an algebra system.

Ultimately, however, identities are used in whatever way the author wants and the present notation allows

all possibilities with less possibility of misunderstanding between mathemati
ians using di�erent 
onventions.

The equation is less attra
tive than (2) but it is unambiguous and 
omputational

7

.

7.3 Cal
ulus

Cal
ulating the derivative of an inverse fun
tion is a standard topi
 in 
al
ulus. All bran
hes of an inverse

fun
tion have the same derivative, in one sense, but not in another. If f is a single valued fun
tion as before,

then the derivative of

_

f

k

(z) 
an be expressed impli
itly as a fun
tion of

_

f

k

(x).

f(

_

f

k

(x)) = x ) f

0

(

_

f

k

(x))

_

f

k

0

(x) = 1 )

_

f

k

0

(x) = 1=f

0

(

_

f

k

(x)) :

Sin
e f

0

is independent of k, one 
an say the derivative is independent of k; however, sin
e the

_

f

k

(x) are

di�erent fun
tions of x, then the derivative regarded as a fun
tion of x will depend upon k. As an example,


onsider invsin

k

x.

d

dx

invsin

k

x =

1


os(invsin

k

x)

=

(�1)

k

p

1� x

2

:

Integration by substitution is a well-known appli
ation of inverse fun
tions. A spe
i�
 diÆ
ulty has been

the appli
ation of the substitution u = tan

1

2

x in integrals su
h as

Z

3 dx

5� 4 
os x

=

Z

6 du

1 + 9u

2

= 2ar
tan(3 tan

1

2

x)

6

The C

n

fun
tion has been 
onsidered for implementation in Maple, but only 
sgn is implemented in Maple 7 (J. Carette,

private 
ommuni
ation).

7

Equation (2) is like Mona Lisa's smile: both owe their attra
tiveness to the hiding of details.
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The right-hand side is dis
ontinuous, as has been pointed out in [11, 10℄. The 
orre
tion to the usual

integration formula [11℄ 
an be rewritten in the new notation as

Z

3 dx

5� 4 
osx

= 2 invtan

k

(3 tan

1

2

x) ;

where k = K(2ix).

8 Roots of polynomials

Sin
e inverse fun
tions typi
ally arise in the solution of equations, any nonlinear equation 
an generate

an inverse fun
tion. The purpose of this se
tion is not to analyze this possibility in detail, but rather to

show by one example how multi-valued inverses 
an arise in 
omputer algebra systems in many pla
es. An

interesting study is to re
ognize the Maple fun
tion RootOf as a bran
hed fun
tion. Given a polynomial

w = g(z), Maple will \solve" this equation as follows.

z = RootOf(g(z)� w; z; index = k) ;

Here the integer variable k denotes the `index' of the root, but it 
an also be regarded as a bran
h indi
ator.

This means that regarding RootOf as the inverse fun
tion z =

_

g(w) implies that the w-plane must 
ontain


uts. To see what these 
uts look like, we investigate a parti
ular example.

Consider

w =

1

5

z

5

+ z :

The singular points are given by a singular derivative. Sin
e

dz

dw

=

1

dw=dz

=

1

z

4

+1

, the singular points are

z = e

��i=4

; e

�3�i=4

and these points map to w =

4

5

e

��i=4

, and w =

4

5

e

�3�i=4

. Figure 3 shows plots in the z

plane of z = RootOf(z

5

=5+ z�w; z) =

_

g(w). The 
urves are images of the real axis in the w-plane, i.e. they

are the 
omplex solutions of the equation when it has purely real 
oeÆ
ients. Clearly the bran
h diagram is

more involved than the one in �gure 2, showing again that there is no trivial relation between the bran
hes

of the fun
tion. In the w-plane (not shown) there are bran
h 
uts, whi
h be
ause of Maple's 
hoi
e of index

are straight lines from the origin to the bran
h points w = (4=5)e

�i=4

; (4=5)e

��i=4

. Sin
e the origin is not

a singular point, this bran
h 
ut is unusual, although legal. Mostly bran
h 
uts are 
hosen so that singular

points are joined by simple geometri
al shapes, usually a straight line. (The straight line may in
lude 1.)

This example will not be analyzed further, but it has shown the potential in a bran
h analysis for handling


ompli
ated inverse fun
tions.

9 Riemann surfa
es

A long standing treatment of multi-valued fun
tions is based on Riemann surfa
es. Clearly it is important

to see whether this treatment 
an be used instead of the one presented here. The question is one of �tness

for 
omputation, as opposed to 
on
eptualization. Thus it is true that Riemann surfa
es give a very pi
torial

way of seeing multi-valuedness [14, 8℄, but the question is whether they 
an be used 
omputationally. This

se
tion makes a �rst attempt at su
h a 
omputational interpretation.

Consider f(z) = z

n

and

_

f(z) = z

1=n

as an example. In the Riemann-surfa
e treatment, the fun
tion

_

f(z) 
ontinues to be regarded as a single valued fun
tion, but its argument is now 
onsidered to lie on a

multi-sheeted surfa
e. This is e�e
tively how students in a �rst 
ourse on 
omplex numbers 
ompute the n

values of z

1=n

. They are taught to start with the equivalen
e z = re

i�

= re

i�+2�ik

and then mysteriously

ordered to apply the rule (e

i�

)

1=n

= e

i�=n

to the se
ond form rather than the �rst. Thus they are repla
ing

z with z

k

, an equivalent point on the kth Riemann sheet, and then 
omputing (z

k

)

1=n

.

The di�eren
e between the approa
h of this paper, and the Riemann approa
h 
an be summarized

symboli
ally as

_

f

k

(z) versus

_

f(z

k

). We either distinguish the fun
tion or its argument. Taking the point of

view of a 
omputer algebra system, we 
an noti
e that a 
omplex number z does not reveal its full signi�
an
e

until we know also the fun
tion for whi
h it is an argument. Advo
ates of Riemann surfa
es have never, it

seems, addressed issues of algebra on Riemann surfa
es. Thus, when we write ln(uv), are u and v on the

same sheet? That is, do we 
hange u to u

k

and v to v

k

, where the k is the same for ea
h variable, or are we

allowed to write v

l

? Further, what sheet is the produ
t uv on? Does the sheet of the produ
t depend upon

the sheets of u and v? Moreover, if we write the expression (z � 1)

1=2

+ ln z, the Riemann surfa
e for the


ombined fun
tion is di�erent from either of the 
omponent Riemann surfa
es. How do we label z?

8



–2

–1

1

2

–2 –1 1 2

Figure 3: The bran
hes of the RootOf(z

5

=5 + z � w; index = k) fun
tion. The 
ir
ular ar
s mark the extent of

ea
h bran
h. Crossing the positive real axis is bran
h k = 1, and thereafter pro
eeding anti
lo
kwise we have

bran
hes 2,3,4,5.

We have to distinguish between a 
on
eptual s
heme and a 
omputational s
heme. Computer systems

are about 
omputation. Often 
omputation assists in 
on
eption, but 
omputers must be able to 
ompute.

Riemann surfa
es are a beautiful 
on
eptual s
heme, but at the moment they are not 
omputational s
hemes.

10 Con
lusions

Any attempt to 
hange long ingrained mathemati
al habits must be regarded as largely a Quixoti
 endeavour.

The response of most readers to this paper will be \Why should I 
hange?" or more likely \Damned if I'll


hange". Most readers will defend the notation they use at present as being a perfe
tly satisfa
tory notation

for inverse fun
tions. Of 
ourse, most mathemati
ians would ardently defend XYZZY as being ideal notation

for inverse tangent, if that was what they were �rst taught. But I won't be bitter; after all, I am human

too. Although students 
ontinue to be 
onfused by the di�eren
e between x

�1

and f

�1

, some 
al
ulator


ompanies have a
tually swit
hed from labelling their keys asin and a
os ba
k to labelling them sin

�1

and


os

�1

under pressure from their sales departments.

Until one has wrestled with a 
omputer algebra system or with a non-elementary inverse fun
tion,

the urgen
y, or indeed the need, for new ways of looking at multi-valued fun
tions is not apparent. The


urrent 
omputer algebra systems are only just starting to adopt the de�nitions given here. Maple returns

simpli�
ations 
ontaining the fun
tion 
sgn, and has to some extent trusted that users 
an be edu
ated in

this fun
tion. The unwinding number has been used in 
al
ulations, but is not yet returned expli
itly to the

user by any system. It has been re
ommended for adoption in the Openmath standard [5℄.

For the average tea
her of mathemati
s, the notation o�ered here holds out one immediate advantage.

By tea
hing students the simple rule that y = f(x) implies x =

_

f

k

(y), where k is arbitrary, we 
an hope to

dispel some of the mystery of multi-valued fun
tions. We already tea
h students y = x

2

implies x = �

p

y,

and we tea
h 
al
ulus students dy=dx = 1 implies y = x+ A CONSTANT. So solutions 
ontaining arbitrary

elements are already part of a student's edu
ation. By using bran
h indexing, we 
an bring all the elementary

inverse fun
tions into this pattern.
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