J. Symbolic Computation (1996) 11, 1-17

Two perturbation calculations in fluid mechanics
using large-expression management

R. M. CORLESS!, D. J. JEFFREY!, M. B. MONAGAN?, AND PRATIBHA!

! Dept. Applied Math, University of Western Ontario, London, CANADA
2 Dept. Math € Statistics, Simon Fraser University, Burnaby, B. C., CANADA

(Received XXXX)

Two fluid-flow problems are solved using perturbation expansions, with special emphasis
on the reduction of intermediate expression swell. This is done by developing tools in
Maple that contribute to the efficient representation and manipulation of large expres-
sions. The tools share a common basis, which is the creation of a hierarchy of represen-
tation levels such that expressions located at higher levels are expressed using entries
from lower levels. The evaluation of higher-level expressions by the algebra system does
not proceed recursively to the lowest level, as would ordinarily be the case, but instead
can be directly controlled by the user.

The first fluid-flow problem, arising in lubrication theory, is solved by implementing a
technique of switch-controlled evaluation. The processes of simplification and evaluation
are controlled at each level by user-manipulated switches. A perturbation solution is
derived semi-interactively with the switch-controlled evaluation being used to reduce
the size of intermediate expressions. The second fluid problem, in convection, is solved
by extending a perturbation series in several variables to high order by implementing
techniques for the automatic generation of hierarchical expression sequences.

1. Introduction

We discuss here the application of Maple to the solution of two problems from fluid
mechanics. Both problems are solved as regular perturbations in a small parameter, and
the main challenge is the handling of intermediate expression swell. For each problem, the
leading terms were first computed ‘by hand’, i.e. without the help of a computer algebra
system, by Cooley and O’Neill (1969), Jeffrey (1982) and Mack and Bishop (1968). Those
older solutions had to be extended in order to obtain expressions accurate for higher
values of the expansion parameters. The original derivations had stopped when expression
swell prevented further progress by hand. The problem of expression swell is well known
to mathematicians, and they have developed many strategies for carrying a perturbation
calculation forward in spite of the daunting sight of equations growing ever longer as they
feed on their predecessors. The literature contains many heroic perturbation solutions to
high order (Van Dyke 1974, Delaunay 1867, Deprit et al. 1970) and their existence, and
correctness, is a testimony not only to human endurance but also to the efficacy of the
strategies that the calculators used to manage their intermediate expressions.

Since one of the attractions of computer algebra systems (CAS) is their ability to

0747-7171/90/000000 + 00 $03.00/0 © 1996 Academic Press Limited

2 R. M. Corless, D. J. Jeffrey, M. B. Monagan, & Pratibha

manipulate long expressions, it is natural to turn to them to continue calculations that
stopped because of expression swell. However, simply transferring perturbation calcula-
tions to a CAS does not automatically mean that they can be extended to the required
order. In particular, the problems studied here lead to expressions that increase in size so
rapidly that they exhaust the memory of any present machine. For this reason, we have
considered how the successful strategies of the pre-computer age can be adapted for use
in computer algebra systems, specifically Maple.

In addition to the straightforward problem of memory, another problem of importance
to mathematicians is the comprehension of large expressions. A recent description of using
Maple in the classroom (Boyce and Ecker 1992) commented that students laughed while
an unexpectedly large expression scrolled across the screen. The reaction of the class is
indicative of the discomfort many users feel with very large expressions. Current systems
offer some assistance in this area: Mathematica will hide the expression from youT, and
Maple will search for subexpressions that can be printed separately; we, however, would
like a means for displaying the mathematical skeleton of an expression, in a way that the
examples below will make clear.

This paper presents several tools that have reduced expression swell in the solution
of problems arising in fluid mechanics. They are all based on one key idea, which here
we call hierarchical representation. Related ideas have appeared in the literature and in
software systems already, under a variety of names, such as computation sequences and
straight-line programs.

Some of these related works, such as (Freeman et al. 1986) and (Diaz and Kaltofen
1995), concentrate on the manipulation of computation sequences or straight-line pro-
grams to compute (e.g.) greatest common divisors of polynomials defined by such se-
quences. Zippel (1993) shows how to use sparse interpolation to convert a computation
sequence into a more standard representation of a polynomial. Other work, such as is
embodied in Maple’s ‘optimize’ command or the special purpose programs of Budgell
and El Maraghy (1990), shows how to turn very large expressions, once generated, into
more compact and useful computation sequences.

This paper concentrates instead on interactively generating an appropriate computa-
tion sequence from a natural hierarchy of the problem, which is discovered as the com-
putation proceeds. This new approach has the advantage that the sequences are natural
to the problem at hand, and their forms can be controlled by the user.

Also, because the simplifications are introduced early in a calculation, their benefits,
particularly with regard to quicker processing and smaller memory requirements, can be
felt throughout the rest of the calculation. Further comparisons with existing ideas are
left to the final section of the paper.

Definitions. A hierarchy is an ordered list [Sp, S1,...] of symbols, together with an
associated list [Dy, D1, . ..] of definitions of the symbols. For each s € S; with ¢ > 1, there
is a definition d € D; of the form s = f(o1,03,...,0k) where f is some well-understood
function such as an elementary function and each o; is a symbol in [Sp, S1,...,S;-1] and
is thus lower in the hierarchy than s.

A computation sequence c is recursively defined as an expression ¢ = g(s1, 82, - - . , Sk)
containing symbols s; from a known hierarchy, together with the computation sequences
defined by the associated definitions di,ds,. .., d) of the symbols appearing in ¢. Obvi-

1 Mabple’s share library routine sprint will also do this.

Large-expression management 3

ously a computation sequence defined in terms of symbols in Sy, the set of atoms of the
system, is just an expression.

Intuitively, the hierarchy is the framework for constructing computation sequences,
and a computation sequence is an expression defined in terms of simpler expressions.
In mathematics, the hierarchy is rarely explicitly discussed (it is usually unique to the
problem at hand), and the computation sequences are usually written in the recursive
form mentioned above, separated by the word ‘where’. For example, suppose our hierarchy
is [{z},{s1}, {52}, {831, 832}] together with definitions {s; = 1/(1 + z)},{s2 = 2 +
s1},{ss1 = W(s1/s2),832 = s1 + tan(s2)]. Then a mathematician would write y =
(1/(1 + z) + tan(x? + 1/(1 + z))) + 1/(1 + z) in the economical reprepresentation

S32 + 81
where
S32 = 81 + tan(ss),
So = z2 + 51,
and

s1=1/(1+42x).

A computer programmer would of course reverse the order to get the following straight-
line program or computation sequence.

s1 = 1/(1+x)

s2 = x*x + sl

832 = s1 + tan(s2)
y = 832 + si

We will refer to computation sequences and straight-line programs (in whatever order
presented) as hierarchical representations, and indeed will often use the terms inter-
changeably.

2. A lubrication calculation using switch-controlled evaluation

The equations governing fluid flow in the region between two close rigid spheres were
solved in Jeffrey (1982) using a perturbation scheme derived from lubrication theory. The
solution printed in the paper is expressed in a compact form, with intermediate variables
used judiciously, while in contrast a straightforward implementation of the same scheme
in Maple gives a larger and less intelligible solution. Our aim here is to solve the equations
with Maple in a way that incorporates the strategies of the pre-computer solution.

2.1. SOLUTION BEFORE COMPUTER ALGEBRA

First we sketch the origin of the set of equations and then describe the method of so-
lution, which in the present context is the object of interest. We calculate the fluid flow
between two spherical surfaces, when one is at rest and the other approaches it at veloc-
ity V. The spheres have radii a and b and are separated by a gap h. The nondimensional
parameter € = h/a is taken to be much smaller than 1, corresponding to a small relative
gap between the spheres. The ratio of the sphere radii & = b/a can be any positive value,

4 R. M. Corless, D. J. Jeffrey, M. B. Monagan, & Pratibha

but we assume that kK = O(1) as € goes to zero. We use cylindrical coordinates (r, 6, z)
to express the velocity field in terms of a stream function ¥ as

w=U(r"19,,0 —r 1¥,). (2.1)
The equation for ¥ is
2 9 19\’
_ZZ) = 2.2
(8z2+6r2 r@r) 0, (2.2)

with boundary conditions ¥ = r2/2 and ¥, = 0 on the moving sphere, and on the other
sphere ¥ = ¥, = (. The perturbation solution is based on the observation that when the
nondimensional gap width £ between the spheres is small, the equations and boundary
conditions can be approximated as follows.

We stretch the coordinates r, z locally in the gap using (Z, R) = (z/(ag),r/(ag'/?)).
This stretching reflects the physical observation that effects across the gap are more
important that effects along the gap; see O’Neill and Stewartson (1967) for the first use
of this stretching. The surface of the sphere with radius a is described by

(eZ —e—1)24+eR>=1,
and the solution of this can be expanded as
Z=H + teR'+ LR + O(%) (2.3)

where H; =1+ %Rz. Similarly the surface of the sphere with radius b can be expanded
as

Z=H, - ter’R* — £’6°R° + O(&°) , (2.4)

where Hy = —%/@Rz, and we recall k = b/a.

We give separate names H; and Hj to the leading order approximations (which are
paraboloidal approximations to the surfaces of the spheres) because it is on these surfaces
that we shall apply all the boundary conditions later. The boundary conditions are ap-
plied here rather than at the exact surfaces because our approximations are simple power
series in € and the exact equations for the surfaces contain square roots. Figure 1 illus-
trates some of the approximation scheme. Sections of the paraboloidal approximations
H;, and H> are shown as dashed lines.

We now look for a solution for ¥ in the form of the expansion

=00 100 4 28® 1 0?2, (2.5)

and derive equations for the ¥(9, These quantities define a natural solution hierarchy,
the members of which we shall calculate successively. The result will be a computation
sequence for ¥ with this hierarchical structure.

To express our equations in compact form, we introduce an operator

o 10
~ OR? ROR’
and then it can be shown (Jeffrey 1982) that
64
g g _ 2.
7Y 0, (2.6)
4 2.3 (0)
6_\1;(1) = _gral , (2.7)

oz4 022

Large-expression management 5

!

V74 N\ H2

/ \

/

Figure 1. Cross-section of one sphere approaching another. The top sphere has radius a and the
bottom one has radius b. The dashed lines show paraboloidal approximations to the spheres. H; — Ha
is the total distance between the approximations.

* oy o*w)
W\IJ = =27 572
and similarly for higher orders.

The solution of the first differential equation contains four arbitrary functions of R,
which we label Ag(R), Bo(R), Co(R), and Do (R). These functions of R will be determined

by the boundary conditions. The solution for ¥(©) is then

—12g© (2.8)

0O = 4,73 + ByZ?> + CoZ + Dy . (2.9)
We find from the boundary conditions that

Ay = —-R*/H?,

By = 3R*(H,+ H,)/H?,

Co = —3R*H,H,/H*®,

Dy = LR°H}(B3H, - H,)/H?.

While solving the linear system to obtain Ag—Dy we noticed that the matrix was a
confluent Vandermonde matrix (see e.g. (Higham 1990)) with determinant (H; — H>)*.
We therefore introduced the name H = H; — H,. Notice that H? is the denominator of all
the solutions. As well as reducing the size of the solution, H has a geometrical significance,
being the total distance between the parabolic approximations at any distance R (recall
that Hs < 0, so H; — Hs is the total distance).

At the next level in the solution hierarchy, we find

oW = - LZ5Y Ay~ LZ'YBy + A1 Z° + BiZ* + C1Z + Dy (2.10)
where the arbitrary functions A; (R), ..., Di(R) depend on Ay, ..., Dy, and involve Y. As

6 R. M. Corless, D. J. Jeffrey, M. B. Monagan, & Pratibha

before these arbitrary functions are determined by the boundary conditions (and indeed

as usual the matrix is the same as it was for the zeroth order). At this point an important

aspect of simplification becomes evident. The expression for Ay, when it is first derived,

contains several terms built from the coefficients Ag and By. Specifically, the expression
is

A = (SHT+:2H\H, + SH3)Y Ao+ (3Hy + 3Hy)YB, (2.11)

1R4 Bg + 3A0H1 + I-’\)3Bo + 3I€SA0H2
H} —2H,H, + H3 '

(2.12)

In the original paper, however, the second line of the above expression is simplified further
and A; is published as

A = 5(3HY +4HHy + 3H3)Y Ao + S(H1 + H2)YBo + 3(1 - 6*)R /H* . (2.13)

In some parts of this expression, the coefficients Ay and By have been simplified away,
while in other parts they have been left untouched. This kind of flexibility, instinctive to
a mathematician, must be allowed in any CAS implementation. It would be difficult to
anticipate this kind of simplification automatically, so it is important to include facilities
in a CAS for allowing the user to evaluate subexpressions selectively.

Examining now the structure of the solution just derived, we see that the quantities
R, Z, € and k are the independent variables. Some systems call them atoms, but we
shall call them level 0 in a hierarchy. We can further divide this list into the primary
independent variables R and Z, and the parameters € and . Thus we prefer to write
H,(R) rather than the more explicit Ha(R,). The quantities H; and H» are defined in
terms of the level 0 variables, and hence form level 1 of the hierarchy. Then H is defined
at level 2, in terms of H; and Ha,, and finally Ay, ..., Do form level 3 while Ay,...,D;
form level 4. The solutions ¥(? form a parallel hierarchy which is built up with the aid
of the quantities in the first hierarchy. In addition there are assorted other quantities
introduced for convenience, such as the operator Y.

2.2. THE SOLUTION USING MAPLE

In order first to derive and then to extend the solution above, we implemented a
switch-controlled evaluation process in Maple, so that the quantities defined above can
be reproduced in the system. This is done by replacing Maple expressions with Maple
procedures that behave like the subexpressions above. As each procedure is defined, a
Boolean-valued table entry is created whose value determines whether the procedure,
when evaluated, returns simply its name, or the expression it represents. For example,
we type

> let(H[1]J(R) = 1 + 1/2%R"2);

The procedure ‘let’, automatically creates by side effect the new procedure ‘H[1]’, which
we present in Figure 2.

Large-expression management

H[1] := proc()
if assigned(allow_simplify[H[1]]) and allow_simplify[H[1]] or
assigned(allow_simplify[’H[1]’(args)]) and
allow_simplify[’H[1]’(args)] then
(R -> 1+1/2%R"~2) (args)
else
’H[1]’ (args)
fi
end

Figure 2. The procedure created by let for Hi(R) =1+ R2?/2.

Any reference to H[1] (R) will be left unevaluated until we issue the reveal command

to reveal its contentsT.
> H[1] (R)"2;

H,(R)*
> reveal (H[1]): H[1]1(R)"2;

(1+iR?)?

We illustrate the use of the let command with the following short Maple session, in
which ¥y is calculated. We assume that H; and H> have been defined, as above, earlier
in the session. The first line of the code below lets us use the single letter names ¥ and

D without interference from Maple.

> alias(Psi=PSI,D=DD):
> Psi[0]:= A[0] (R)*Z~3+B[0] (R)*Z~2+C[0] (R)*Z+D[0] (R) ;

Q?O = 110(]2)£Z3~+-130(}%)£Z2 +—(1)(}2)£Z*+'1)0(}2)

bcl:= subs(Z=H[1] (R) ,Psi[0])=R"2/2:

bc2:= subs(Z=H[1] (R) ,diff(Psi[0],Z))=0:

be3:= subs(Z=H[2] (R) ,Psi[0])=0:

bcd:= subs(Z=H[2] (R) ,diff(Psi[0],Z))=0:
sol:=solve({bcl,bc2,bc3,bcd},{A[0](R),B[0](R),C[OJ(R),D[OJ(R)}):

V V.V VvV V

{ 4o(R) = -2 ;;—j, Bo(R) = 3) *;1[2(1%)) B to(r) =
R? Hy(R) Hy(R) _ R?H>(R)* (—H,(R) + 3 Hi(R))
STy D)= %1 J

T The reveal command simply assigns the value true to the appropriate table entry, which allows

Maple to see the definition of the symbol.

8 R. M. Corless, D. J. Jeffrey, M. B. Monagan, & Pratibha

where
%1 = H,(R)® —3H,(R)” Hy(R) — H»(R)® + 3 H»(R)* H,(R) .

We suspect that the expression denoted by %1 could be simpler, so we try to factor it.

> factor(%1);

(Hi(R) — Hz(R))’

This is why we decide to include a separate name for H(R) = H1(R) — H2(R). We here
omit details of how we replace Hy(R) — H2(R) with H(R). We then define procedures
for Ay, By, Cy, and Dg by the following command.

> map(let, sol);

{AO(R)a BO(R)a CO(R)a DO(R)}

We have given a more detailed discussion of the technicalities of the let command in a
note submitted elsewhere (Corless et al. 1996). To see the details of the Maple solution
extended to higher orders, see Pratibha (1995).

To illustrate the reveal command, we give a Maple session that verifies the boundary
conditions ¥g = R%?/2 on Z = Hy, and 0¥¢/0Z = 0 on Z = H;. We start with the
second condition.

> bc2 := subs(Z=H[1] (R) ,diff(Psi[0],Z));

340(R)H}(R) + 2Bo(R)H1(R) + Co(R)

The command reveal sets the value of the requisite Boolean-valued table entries so that
the arguments of reveal are replaced by their defining expressions.

> reveal ([A[O], B[0], C[0]]):
> simplify(bc2);

0

Notice that in this example the contents of H, H; and Hs did not have to be revealed
in order to verify the boundary condition. Thus if the system had worked with the longer
expressions implied by the level 0 variables, it would have been doing unnecessary work.
The verification of the boundary condition®q = R%/2 on Z = Hy, in contrast, requires
one more simplification switch to be turned on.

> bel := subs(Z=H[1] (R),Psi[0]): reveal(D[0]): simplify(bcl);

R2(Hy(R)? — 3H,(R)2Hy(R) + 3H>(R)2Hy (R) — Ha(R)®)
2H(R)?

Large-expression management 9

> reveal (H): simplify("");

R?/2

A comparison of the computing resources required to compute the solution to second
order in ¢ show that in spite of the extra overhead associated with procedure calls, both
time and memory requirements were reduced by roughly 50% over the naive approach.
Of course, the benefits multiply as the order increases. As well as the straight gain in
resources, there is a gain in intelligibility of the output. This is important to a mathe-
matician, but it is harder to measure. However, the solutions produced in this way are
more compact, more readable, and offer more physical insight than the naive solutions.

3. A convection calculation using expression sequences

The problem of calculating the convective flow in the annular region between two
cylinders is studied by Mack and Bishop (1968) and Corless and Naylor (1991). Similar
work for porous flow, using a seminumerical approach, was done by Himasekhar and Bau
(1988). The problem is to find the temperature field T and the streamfunction ¢ (related
to the velocity field) in terms of the polar coordinates (r,8) and the non-dimensional
parameters R, the radius ratio, P the Prandtl number and A the Rayleigh number.

Mack and Bishop (1968) derived equations valid in the semi-annular region 1 < r < R,
0<o<m.

4, . OT cos@OT] | 1 [OVPpOy VP oy
V= lsmbe Y =5 | TP | Tor 06 o6 or (3-1)
oy L[0T 20 0T 3
viT= r|0r 80 00 or (3-2)
The equations are subject to the boundary conditions:
T(1,0)=1 T(R,0)=0 (3.3)
_ _% e _
U(1,6) = b(R,6) = SE(1,6) = T2 (R,0) =0 (3.49)
oT 0%y
%(Ta 0) - 1/)(7’, 0) - W(Ta 0) =0 (35)
oT 0%y
5 nm) = v m) = ZE(rm) =0 (36)

Mack and Bishop solve these equations by expanding all quantities in terms of the
Rayleigh number A first and then expanding those coefficients themselves in Fourier
series. Thus the first expansions are

T=3 A'Ty(r,0), =1 Ay(r,0). (3.7)

k=0 k=1

10 R. M. Corless, D. J. Jeffrey, M. B. Monagan, & Pratibha

Then the Fourier series, which are actually finite, are given by

k
Ti(r,6) = > Ti(r)cos(mb), (3.8)
m=k mod 2

and

k
Yr(r,0) = Y ¢F(r)sin(mf) . (3.9)
m=k mod 2
At this point we note that the chosen method of solution has imposed a hierarchy on the
problem already. The method of computing the solution that we describe below exploits
this natural hierarchy.

Extending the work of Mack and Bishop (1968) by naive use of computer algebra
systems runs into the problem of combinatorial growth in the solution. A straightforward
use of Maple results in a nearly 3000-term expression for a single coefficient in the fourth-
order term of the solution. Computation sequences must be used to permit reasonable
extension of the hand calculations. We note that the hand calculation of Mack and Bishop
(1968) also produced a computation sequence for an answer. This type of solution occurs
often in applied mathematics.

Substituting equations (3.7-3.9) into the governing equations (3.1-3.2) gives a sequence
of equations at each order in A. If we define P, and @ by

. 6Tk_1 cos @ 6Tk_1 1 avzi/lz 8’(!1] 6Vz’([}, 8’(!)]
Qr(r,0) = sin6 + +-5 HJZ:;C (= =

or 06 06 81") (3.10)

or r o0
and
_1 OTi 0y _ OTi 9¢;
Py(r,0) = iﬂz_k (50~ 20 o) (3.11)

then the coefficients of A* in governing equations become (using [A’“] f to denote the
coefficient of A* in the expression f)

[A*] (3.1) := V*4u(r,6) = Qu (3.12)

and
[AF] (3.2) := V?Ty(r,0) = P, . (3.13)
Similarly using [cos(m#)] f to denote the coefficient of cos(mf) in the expression f, define
Qx'(r) = [sin(mb)] Qx(r,0) (3.14)

and
P (r) = [cos(mB)] Pr(r,6) . (3.15)

Equating coefficients of cos(m#f) in V2T (r,6) and Py(r,§) and coefficients of sin(mf) in
V4 (r,6) and Qy(r,8) gives, then, the following sequence of Euler differential equations
to be solved for the unknown coefficients T} (r) and " (r):

1 (rd% + m) (rd% - m) T (r) = Pi(r) (3.16)

r2

S (m) (r o) (vt -m=2) (rat 4= 2)) = QPO 617

Large-expression management 11

One can easily prove by induction that P and Q7' are always sums of terms of the
form C;r® In* r for some integers « and u. This uses the fact that analytical solutions to
these inhomogeneous Euler equations are available, and the solutions are again sums of
the same type of terms.

For efficiency, special-purpose solvers were written to take advantage of the factored
form of these equations and the known form of the inhomogeneities. This improved the
overall computation time, but further improvements are necessary, because it is the length
of the explicit expressions for the C; which suffer from combinatorial growth. Generation
of these explicit expressions, then, is to be avoided. Use of computation sequences for
the C; is appropriate, as we shall see.

Unknown constants K; are introduced as each equation is solved: two for each tem-
perature equation, and four for each stream-function equation. The constants K; are
identified by using the boundary conditions. Since the boundary conditions (3.3-3.4) are
linear, we must solve a (nonsingular if R # 1) linear system of equations, at each stage,
exactly as was done for the lubrication calculation in the first half of the paper.

The linear system for each T} is 2 by 2, and is 4 by 4 for each }*. If explicit expressions
for the K, in terms of the C;, are generated, then the size of the expressions determining
the K; is approximately doubled, over the length of the expressions arising in the linear
equations defining K;. Leaving the K; defined as “the solutions of such-and-such a linear
system”, then, is a reasonable approach, given that effective means exist for solving
linear systems numerically. This means that our computation sequence uses the solution
of linear systems of equations as a basic operation of the sequence.

The calculation here is broken up into several stages, and it is possible to do some
‘gardening’ or organization at the completion of each stage. What is done is to collect
the solution in powers of r and Inr, and each (moderately complicated) coefficient is then
given an inert label C;, where ¢ is chosen as the least unused integer so far. The solution
is then represented as a sum of terms of this type, and the actual value of this coeflicient
is remembered in an array, called ‘Computation_Sequence’ in our implementation. The
Maple procedures used to do this relabeling are as follows:

flatten := proc(expr) collect(expr, [r,1n(r)],distributed,Weed) end:

This procedure ‘flattens’ an expression by first collecting terms of like powers of r and
Inr, then calls Weed (given below) to replace the coefficients with unevaluated constants,
and record the values of these constants in the expression sequence Computation_Sequence.
This uses the fourth argument of collect, which applies the procedure named in the fourth
argument to each coefficient after it has been collected. The procedure Weed (see Fig-
ure 3) simply replaces its argument with an unassigned constant from the array C, and
remembers in the computation sequence what the actual argument was. Weed leaves
products alone, so as not to introduce new constants for (say) 2Cy and 3C1, which would
introduce unnecessary growth in the number of coeflicients in the computation sequence.
This procedure makes no attempt to identify already-seen subexpressions; experiments
indicate that this is not helpful for the current application.

What follows is a brief overview of the algorithm used for solving this problem.

1 Set T§ = K1 + KaInr, and 49 = 0.
2 for k=1,2,...,N do
(a) for all values of m congruent to k£ mod 2 in 0,1,...,k do

(i) Solve (3.17) for 9}* using the specialized Euler equation solver.

12 R. M. Corless, D. J. Jeffrey, M. B. Monagan, & Pratibha

Weed := proc(term)
local c,i,s:
global Weed_Index, Computation_Sequence, C;
c := normal(term); # Recognize zero if you see it.
if ¢=0 then RETURN(Q) fi;
i icontent(c);
sign(c);
c s*xc/i;
if hastype(c, ‘+‘) then
Weed_Index := Weed_Index + 1:
Computation_Sequence[Weed_Index] := c:
s*i*C[Weed_Index]
else s*i*c
fi
end:

Figure 3. Maple utility program for automatically generating a computation sequence when used in
conjunction with collect.

(ii) ‘flatten’ the solution for ¢} (i.e. replace the coefficients of all terms with
placeholder constants).

(b) Set up (but do not solve) the linear equations for the unknown K constants
introduced for .
(c) for all values of m congruent to k mod 2in 0,1,...,%k do

(i) Solve (3.16) for T;™ using the specialized Euler equation solver.
(ii) ‘flatten’ the solution for T}".

(d) Set up (but do not solve) the linear equations for the unknown K constants
introduced for Tj,.

Notice that ‘flattening’ is done in the inner loops, keeping expressions as small as possible.
Indeed, we have found that it is yet more efficient to do at least some ‘flattening’ inside
the construction of each ¥}* and T}", though this is not stated in the above algorithm
sketch. As an example of the output of this scheme, we include the computation-sequence
representation for the first two terms of the temperature function and the stream function.

Té) :K1 +K211’1’I‘

Y1 = —Cir® + Ksr + LK3 + L Kor® In(r) + KerIn(r)
T} = —g5C3r°+Kgr—LCs+ 1;—81(52 r® In(r)

— £ Ky K3 In(r) — 1Cy In(r)r + K5 Kgr In(r)®

where the coefficients C; are given by the computation sequence

Ci = Ky—-32K,,

Co = Ky(Ky—32Ky),

C; = 3Ky"+2C»,

Cy = KyK¢g—2K5Ks,and

C; = —-4K;+KxK3.

Large-expression management 13

Table 1. Size of expressions without and with computation sequences

Terms Full Evaluation computation sequence

T 2 2
U 5 5
T} 11 7
V3 34 11
79,72 130 33
V3,93 396 42
13,73 1027 58
¥2, 94 1921 67
19 2786 45

The constants K; are determined by the known linear systems arising from the boundary
conditions. As previously discussed, this determination is left as part of the computation
sequence. Note that the expression for C; contains the expression for C; as a subexpres-
sion. This was not noticed by the program because both the expressions Ky — 32K and
Ky (K, — 32K,) were generated at the same time, in the expression for 9{, before the
name C; was created. Coefficients identified within a single expression are not optimized
with respect to each other. Further, retrospective optimization of the computation se-
quence is not performed. Note also that Cy has in fact disappeared from the expression
for 1, having cancelled out, but was used in intermediate calculations.

Evaluation of these expressions is straightforward, once numerical values for R, the
radius ratio, and P, the Prandtl number, are assigned. The evaluation proceeds in se-
quence, starting at the index 1. When the constants K are encountered, the linear systems
defining them are solved numerically. Thus K; and K, are defined before any C; which
depends on them is computed.

The important gain with this system is seen in Table 1 and in Figure 4. In Table 1, the
number of terms in the expanded solution is compared with the number in the compacted
solution. The significant decrease in the number of terms can be seen both there and in
Figure 4, which plots the number of terms in the solution against the order. The plot
uses logarithmic scales and so it is easy to see that the number of terms grows on average
like n2, or at least not faster than O(n?).

3.1. SIMPLIFICATION OF COMPUTATION SEQUENCES

To verify that the solution as computed does in fact satisfy the differential equation
and the boundary conditions, it is necessary to substitute our putative solution into the
governing equations, and to attempt to simplify the resulting residual expressions to
zero. There are several approaches to this simplification. First, we could simply assign
all the elements of the computation sequence, and rely on the underlying CAS recursive
evaluation of expressions to try to simplify the residual to zero. This works for small ex-
pressions, but actually results in the internal generation of the large expressions avoided
by the process of construction of the computation sequence. Secondly, we could assign

14 R. M. Corless, D. J. Jeffrey, M. B. Monagan, & Pratibha

Growth of Number of Terms
7 . !

log(size)

log(order)

Figure 4. Polynomial growth of number of terms in the solution to the concentric cylinder problem.
The index k is plotted on the (logarithmically scaled) horizontal axis, while the number of terms in

each coefficient of A* is plotted on the vertical axis. The curve is uniformly below 12k2 (not shown),
and quite comparable to 12k (the growth appears to be slightly faster than quadratic, however).

several of the lowest-index members of the computation sequence (e.g. C; = Ky — 32 Ky,
ey Cg = —1—12,8 Ky Kyq+ % K>? + K5, and so on) and try to simplify the resulting resid-
uals, repeating the process with the next-lowest index members assigned, and so on.
Finally, we could assign instead several of the highest-index members of the computation
sequence, then simplify, collect terms, and assign the next-highest elements of the com-
putation sequence. Clearly mixed approaches are also possible, using the let and reveal
commands of the previous sections. It is not clear what strategy is optimal, but there
are some heuristic reasons to prefer the ‘top-down’ strategy. It is entirely possible that
the expressions may simplify to zero before assignment of the lower-index elements takes
place, for a variety of reasons, while in the bottom-up strategy you must make all the
assignments up to the index of the C; with the highest index. This is related to the fact
that most of the C; are defined in terms of “recent” or “local” C;. Experimentation with
this process on this problem showed that when simplifying the residuals computed only
to the third order, the first two techniques, simple assignment and bottom-up assignment
with simplification, failed due to memory limitations, whereas the top-down approach
was successful in verifying that the computed solutions did in fact satisfy the equations.

Zero recognition is especially important. Obviously we wish to avoid division by ele-
ments that are actually zero. Even in the absence of division, such as in this application,
later evaluation of an undetected zero term is possibly subject to catastrophic cancella-
tion error. In view of this, it might seem that an alternative strategy for the generation of
the sequence in the first place would be the substitution of numerical values for some of
the parameters so that the C; and the K; could be evaluated numerically as we proceed.
This can be done, but it does not lead to significant improvement; quite the reverse, be-

Large-expression management 15

cause we encounter a new phenomenon: round-off induced expression swell. Coefficients
that should be exactly zero are not precisely so, and this leads to a greatly increased
number of terms. For example, suppose that the term 1083 In®(r) arises in some part
of Ty. Then in the solution for ¥3 at some point we solve a fourth-order Euler equation
with this small term on the right hand side, producing

> streamsol(10.7(-8)*r"3*1n(r)"3 , 3);

which yields the four spurious terms

—0.2242476852- 107 % ¢® — 0.1736111111- 10 ® In(r)?
—0.7233796296 - 10719+ In(r) — 0.6944444444 - 10~19 2 In(r)3

for inclusion in ¥3. These terms then lead to more terms, and so on. This effect combines
the worst of both numeric and symbolic computation, and hence we recommend the
purely symbolic approach to generate the sequence. Once the computation sequence has
been generated, numerical values may be used for the atoms and the computation may
proceed.

For verification of the solution, we did that, substituting numerical values of R and P
into the computation sequence and seeing if the computed solution satisfied the differen-
tial equation to the correct order in the Rayleigh number A. It did, and the residual was
zero to within roundoff—which decreased as we increased the precision of the calculation,
as it should have.

An alternative approach that we implemented to test if elements of the computation
sequence are zero is to use modular arithmetic (Monagan 1989). By choosing random
integers for each of R, 1/P, and In(R), solving the resulting linear systems for the K;
mod p, where p was a suitably chosen large prime, we generated integer values for the
computation sequence. When we did this, we found that the boundary conditions were
satisfied exactly, mod p, and that the partial differential equations were satisfied exactly,
mod p, up to the order of calculation. This provided an independent verification of the
solution method. We were also interested in whether or not any of the entries in the
computation sequence was zero, which might indicate that the term would be zero for all
R and P. However, no entry was zero, which proves that there are no unnecessary zeros
in the computation sequence (to the computed order).

This raises the question of what the goals of these simplifications should be. Simplifi-
cation of expressions has a rather vague goal, that of producing a more comprehensible
expression; one that is usually shorter, but not necessarily so. Simplification of gener-
alized representations of functions, such as computation sequences, has several possibly
conflicting goals: we wish our representations to be compact, efficient to evaluate, and
numerically stable. Production of such a representation would be likely to give insight
into the nature of the problem, as well, but this may be regarded as a side-effect and
would certainly be hard to quantify. In many cases these are compatible goals, but it
would be very useful to have standardized tools for evaluating the comparative stability
of representations, for example as in (Mutrie et al. 1989).

4. Concluding Remarks

There are three main points of interest in this paper, and a novel phenomenon observed
that may be seen more widely if this type of technique is used more frequently. The main
points are that

16 R. M. Corless, D. J. Jeffrey, M. B. Monagan, & Pratibha

1 We have provided tools for interactive user control of evaluation of expressions.

2 We have demonstrated techniques for the automatic generation of computation
sequences, once a hierarchy has been established interactively.

3 We have shown that apparently minor issues can have a significant effect on system
performance.

The novel phenomenon is that of roundoff-induced expression swell, which may happen
if numerical and symbolic computation are mixed injudiciously in a large problem. This
mixes the worst of both types of computation, and should be avoided wherever possible.

Using two problems drawn from fluid mechanics, both of which suffer from expression
swell, we have demonstrated techniques for reducing the sizes of the computed expres-
sions by changing the way in which the solution is represented and manipulated. We have
developed tools for constructing trees of expressions, ordered hierarchically, together with
tools for simplifying intermediate expressions to whatever level of the hierarchy gives the
best overall result. The tools at present are implemented on top of Maple rather than
within it, and their efficiency and ease of use could be increased by integrating them
more closely into the basic system. We have not considered the symbolic manipulation
of computation sequences themselves, although this is also desirable. In (Freeman et. al.
1986) a package is described which implements several useful procedures for the manip-
ulation of computation sequences, such as computing polynomial GCD’s. Recent work
(Diaz and Kaltofen 1995) shows that this area is still active.

Tools such as Maple’s ‘optimize’ command, or even special-purpose post-processing
software (for example that of (Budgell and El Maraghy 1990)) are not appropriate for
the present application, because the intermediate quantities on which they operate cannot
be obtained, because an out of memory error occurs at the third order. With computation
sequences, we can go at least to eleventh order. It is better to avoid the generation of
large expressions in the first place, if at all possible.

Of course it is clear that the idea of identifying common subexpressions is useful in
several contexts. The Maple pretty-printer uses this idea for presentation purposes, and in
this way identified the expanded form of the subexpression (H; —H>)? for us in section 2.2.
Applied to the computation sequence generated for this example, it can find 257 common
subexpressions even at the 4th order, and it may be possible to take advantage of this
in some fashion to fine-tune this program. The Maple ‘optimize’ command uses the
same idea as the pretty-printer to identify common subexpressions; it then constructs
a computation sequence for the given expression, in order to speed up and/or stabilize
numerical evaluation. We term this strategy a ‘janitorial’ optimization strategy, because
the program is attempting to clean up an existing messy expression. More sophisticated
strategies using automatic code generation as well as janitorial strategies have been
described in (Wang et al. 1986) and applied to finite element calculations. As an aside, in
contrast with the finite element code generation approach, our approach determines the
form of the solution symbolically as the solution progresses, and code is only generated
for the coeflicients of the terms in that symbolic form.

Our approach contrasts with the general idea of a janitorial strategy in that the subex-
pressions are identified as they arise and used as necessary subsequently. We call this type
of strategy a ‘gardening’ strategy, where the analogy is to ‘weeding’ the garden. If you
do a little weeding every day, you never have a massive clean-up job to do.

Large-expression management 17

References

Boyce, W. E., Ecker, J. G. (1992). Revitalising calculus with a computer algebra system. Siam News,
January:12.

Budgell, P. C., El Maraghy, W. H. (1990). Inverse dynamics of the Stanford arm developed with computer
symbolic algebra. In Proceedings CSME Mech. Eng. Forum, volume III. Toronto, Canada.

Cooley, M. D., O’Neill, M. E. (1969). On the slow motion generated in a viscous fluid by the approach
of a sphere to a plane wall or stationary sphere. Mathematika, 16:37-49.

Corless, R. M., Jeffrey, D. J., Monagan, M. B., Pratibha (1996). Substitution in Maple, or, what’s inside
a name? submitted.

Corless, R. M., Naylor, D. (1991). Low Rayleigh number convection between horizontal concentric
cylinders. Technical Report AM-91-02, Dept. Applied Math, University of Western Ontario, London,
CANADA.

Delaunay, C. E. (1867). Théorié du Mouvement de la Lune, volume 1,2. Mallet-Bachelier, Paris.

Deprit, A., Henrard, J., Rom, A. (1970). Lunar ephemeris: Delaunay’s theory revisited. Science,
168:1569-1570.

Diaz, A., Kaltofen, E. (1995). On computing greatest common divisors with polynomials given by black
boxes for their evaluations. In Levelt, A., editor, Proceedings ISSAC ’95, Montréal, pages 232-239.

Freeman, T., Imizian, G., Kaltofen, E. (1986). A system for manipulating polynomials given by straight-
line programs. In Proceedings ISSAC ’86, Waterloo.

Higham, N. J. (1990). Stability analysis of algorithms for solving confluent Vandermonde-like systems.
SIAM J. Matriz Anal. Appl., 11(1):23-41.

Himasekhar, K., Bau, H. H. (1988). Two-dimensional bifurcation phenomena in thermal convection in
horizontal, concentric annuli containing saturated porous media. J. Fluid Mech., 187:267-300.

Jeffrey, D. J. (1982). Low Reynolds-number flow between converging spheres. Mathematika, 29:58—66.

Mack, L. R., Bishop, E. H. (1968). Natural convection between horizontal concentric cylinders for low
Rayleigh numbers. Quart. J. Mech. Appl. Math, 21:223-241.

Monagan, M. B. (1989). Signatures + Abstract Data Types = Computer Algebra — Intermediate Ex-
pression Swell. PhD thesis, Dept. Comp. Sci., University of Waterloo, Waterloo, Canada.

Mutrie, M. P. W., Char, B. W., Bartels, R. H. (1989). A survey of expression optimization in a symbolic-
numeric interface. In Davenport, J. H., editor, Proceedings Eurocal '87, Springer LNCS series nr.
378, pages 64-70.

O’Neill, M. E., Stewartson, K. (1967). On the slow motion of a sphere parallel to a nearby plane wall.
J. Fluid Mech., 27:705-724.

Pratibha (1995). Maple tools for hydrodynamic interaction problems. PhD thesis, Department of Applied
Mathematics, University of Western Ontario, London, CANADA.

Van Dyke, M. (1974). Computer extension of perturbation series in fluid mechanics. SIAM Journal
Appl. Maths., 28:720-734.

Wang, P. S., Tan, H., Saleeb, A. F., , Chang, T. P. (1986). Code generation for hybrid mixed mode
formulation in finite element analysis. In Proceedings ISSAC ’86, Waterloo.

Zippel, R. (1993). Effective Polynomial Computation. Kluwer Academic.

