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Introduction

The reader probably thinks that �nding the turning points of a quartic polynomial is a `solved

problem', so the �rst thing to establish is the possibility of improving on the standard method,

which is taken to be the calculus one. Thus, given a real polynomial

P (x) = a

4

x

4

+ a

3

x
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+ a
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x
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+ a

1

x+ a

0

; (1)

whose turning points are required, one sets the derivative to zero and solves the cubic

P

0

(x) = 4a

4

x

3

+ 3a

3

x
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+ 2a

2

x+ a

1

= 0 : (2)

This will have 1 or 3 real roots; if there are 3 real roots, one must test each one separately to

ascertain the nature of the turning point, and hence �nally obtain the global extremum. The

process of �nding extrema has been automated by several computer algebra systems (CAS), to

a greater or lesser extent.

So what is there to improve? If the coe�cients are known numerically, then not very much,

but suppose that some of the coe�cients a

i

are known only symbolically. Consider the ways in

which mathematicians give solutions to problems containing symbolic parameters. The �rst way

is to give a formula, meaning an explicit function of the parameters. This is the method �xed

in the popular imagination: spies in espionage stories have always chased after the formula. For

example, the in�mum of a quadratic polynomial, a result used below, is given by the following

formula. If a

2

> 0, then

inf(a

2

x

2
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0

) = a

0

�
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1
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2

; (3)

and, moreover, the value of x that gives this in�mum is x

f

= �

1

2

a

1

=a

2

, another formula. We

recall that this well-known result can be deduced without calculus by completing the square.

Among CAS, Maple is able to return (3) through its minimize command, although it has no

syntax for returning the position x

f

.

In contrast to the solution of the quadratic problem, the solution of the quartic problem was

given above in the form of a procedure or algorithm, not a formula.

Theorem 1 Formulae are better than algorithms.

Proof: There has never been a story or �lm in which rival groups of spies chase, explode and kill

each other in order to gain possession of an algorithm. For a formula, on the other hand, they

will \stop at nothing". Q.E.D.

Of course, many think that spy stories rely too much on formulas, but that is a di�erent

topic. Certainly computer algebra systems prefer formulae, and their syntax
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has to be stretched in order to accommodate algorithms. Maple does this when the command

minimize(P (x); x) returns

1
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4
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)X
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+ (12a
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)X � a

3

a
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�
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0

;

with

X = RootOf(4a

4

Z

3

+ 3a

3

Z

2

+ 2a

2

Z + a

1

; Z) :

The �rst argument of the Maple function RootOf is the equation to solve, and the second ar-

gument is the variable to solve for; then X can be any one of the roots of the given equation.

Notice, in passing, that Maple has used the properties of X to reduce the quartic (1) to a

quadratic expression.

We can now pose the problem to be considered: can the algorithm (1) and (2) be replaced by

a formula, or at least some formulae. Not only is the answer yes, but you will not have to brave

a single scorpion to learn it (just perhaps a few cobwebs).

Formula one

As an opening, we can reduce the number of unknowns we have to face by taking out a few

coe�cients. Dividing through by a

4

makes the polynomial in (1) monic, and one term can be

disposed of by shifting to the variable y = x+

1

4

a

3

=a

4

. Actually, a

3

and a

4

are like minor spies

at the start of the movie: they were included so that you would be impressed by their swift

elimination. Any constant terms simply raise or lower everything and can be added on at the

end. Cast into formal language, these transformations become a lemma.

Lemma 2 Provided a

4

> 0, the in�mum of a general quartic is given by

inf(a
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;

where the factors 3 and 2 simplify later formulae, and

b
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=
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:

The derivation of the minimum of the reduced polynomial y

4

+ 3b

2

y

2

+ 2b

1

y has to treat the

cases b

1

= 0 and b

1

6= 0 separately. So starting with the more general case b

1

6= 0, we can plant

our �rst formula in a theorem.

Theorem 3 If the coe�cient b

1

6= 0, the quartic polynomial

P

4

(y) = y

4

+ 3b

2

y

2

+ 2b

1

y (4)

has an in�mum on the real line given by

inf P

4

=M (b

1

; b

2

) = �

3

4
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f

� b

2
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f
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2

) ; (5)

where

k

f

= s

1=3

+ b

2

2

s
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2

; (6)

s = b

2

1
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3

2

+

q

b

4

1
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1

b

3

2

; (7)
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Figure 1: The splitting of the quartic into two parts. The fourth-degree part (solid line) is

symmetric. The positions of the minima vary with k. As k decreases, the parabola (dashed)

moves out. For the value of k that makes the two minima coincide, the minimum of the original

quartic is obtained.

and s

1=3

and s

�1=3

are always interpreted as the principal values of the powers. Moreover, the

in�mum of P

4

is located at y = y

f

= �b

1

=k

f

.

Proof: The idea is to break P

4

(y) into two pieces in such a way that each piece can be minimized

easily. Then one uses the fact that any two polynomials f(y) and g(y), both bounded below,

obey

inf(f(y) + g(y)) � inf f(y) + inf g(y) ;

with equality holding when the same value of y minimizes both f and g. When we split P

4

into

two polynomials, denoted P

(1)

4

and P

(2)

4

, we also introduce a parameter k, which is assumed to

satisfy k > 0.

P

4

= [y

4

+ (3b

2

� k)y

2

] + [ky

2

+ 2b

1

y] = P

(1)

4

+ P

(2)

4

:

So long as k is positive, the parabola P

(2)

4

has a minimum. Figure 1 illustrates the splitting of

P

4

. The turning points of the two parts can now be found without calculus. Completing the

square can be used to rewrite P

(1)

4

as

P

(1)

4

= y

4

� (k � 3b

2

)y

2

=

�

y

2

�

1

2

(k � 3b
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)

�
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1

4
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2

)

2

:

If it is additionally assumed that k � 3b

2

> 0, then P

(1)

4

has the minimum �

1

4

(k � 3b

2

)

2

at the

points where y

2

=

1

2

(k � 3b

2

). The in�mum of P

(2)

4

is �b

2

1

=k, by (3), and therefore

inf(P

4

) � �b

2

1

=k �

1

4

(k � 3b

2

)

2

: (8)

If a value of k can be found that forces the two points where P

(1)

4

and P

(2)

4

have minima

to coincide, then we have also located the in�mum of P

4

. Of course, any such value for k will

also have to satisfy our accumulated assumptions k > 0 and k > 3b

2

. The turning point for

P

(2)

4

, being at y = �b

1

=k, moves closer to the origin as k increases, while that of P

(1)

4

, being at

y

2

=

1

2

(k � 3b

2

) moves away. So they will coincide when k takes a value such that

1

2

(k � 3b

2

) = (�b

1

=k)

2

:
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Figure 2: A graph of the auxiliary cubic for b

2

> 0. It can be seen that the root k

f

is positive

and greater than 3b

2

as required. The quantity D = b

2

1

+ 2b

3

2

is positive.

k

C(k)

−2b1

2

−2D

2b23b2 −b2

k
f

Figure 3: A graph of the auxiliary cubic for b

2

< 0. The quantity D = b

2

1

+ 2b

3

2

is positive, so

there is only one real root.

This is equivalent to the cubic equation,

k

3

� 3b

2

k

2

� 2b

2

1

= 0 : (9)

I shall call C(k) = k

3

� 3b

2

k

2

� 2b

2

1

the auxiliary cubic. Another way to get this equation is

to use calculus to maximize the right side of (8) directly. The cubic equation (9) has a unique

positive solution. The intermediate value theorem could be used to show this analytically, but

the equation plays a central role in what follows, so it is better to understand its properties

graphically. Figures 2 { 4 show plots of C(k) for the di�erent ranges of the parameters. The twists

in the plots can be understood by noticing that C(0) = C(3b

2

) = �2b

2

1

and C

0

(0) = C

0

(2b

2

) = 0.

Also C(2b

2

) = C(�b

2

) = �2b

2

1

� 4b

3

2

= �2D, after introducing the abbreviation D = b

2

1

+ 2b

3

2

.
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Figure 4: A graph of the auxiliary cubic for b

2

< 0. The quantity D = b

2

1

+ 2b

3

2

is negative, so

there are 3 real roots. They are marked on the �gure as k

x

, k

n

and k

f

.

Denote the positive solution of (9) by k

f

. Since k

f

> 3b

2

, the minimum of (4) is obtained

from (8) as

inf(P

4

) = �b

2

1

=k

f

�

1

4

(k

f

� 3b

2

)

2

:

The �rst term of this expression is better transformed so that b

1

does not appear explicitly, for

reasons that will be given below. The transformation is made by rewriting (9) in the form

1

2

k

2

�

3

2

b

2

k = b

2

1

=k ; (10)

and hence (5) is obtained.

It remains to �nd an explicit formula for k

f

. The expression (6) is a standard solution

of (9), but the fact that it gives the positive solution of (9) must be veri�ed. Rewrite (7),

introducing D, as s = b

2

1

+ b

3

2

+

p

b

2

1

D. First, consider the case b

2

� 0 and D � 0; all terms

in (6) are real and positive. Second, consider b

2

< 0 and D � 0, meaning b

2

1

� �2b

3

2

. Then

s > �2b

3

2

+ b

3

2

+

p

b

2

1

D > �b

3

2

, and therefore s

1=3

> �b

2

> 0, and k

f

> 0. Finally, if b

2

< 0 and

D < 0, then s will be complex, explicitly s = b

2

1

+ b

3

2

+ i

p

�b

2

1

D. Squaring and adding the real

and imaginary parts shows jsj

2

= b

6

2

, and so in polar form s = �b

3

2

e

i�

with 0 < � < �, since the

imaginary part is positive and therefore in the upper half-plane. Then

s

1=3

+ b

2

2

s

�1=3

= �b

2

e

i�=3

� b

2

e

�i�=3

= �2b

2

cos

1

3

� ; (11)

and since 2 cos

1

3

� > 1, the value of k

f

is real and positive.

The special case b

1

= 0 must now be taken up, but it is an easy one because there are only

two terms in the polynomial.

Theorem 4 For the case b

1

= 0, the polynomial P

4

(y) = y

4

+ 3b

2

y

2

has the in�mum

inf P

4

= �

9

4

min(0; b

2

)

2

;

at the points y

2

= �

3

2

min(0; b

2

).
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Proof: If b

2

� 0, then clearly the minimum is 0 when y = 0. If b

2

< 0, then completing the

square can be used again to give the minimum as �

9

4

b

2

2

at y

2

= �

3

2

b

2

. The theorem uses the

minimum function to combine these cases.

Now there is an interesting development. One takes formula (5) for M (b

1

; b

2

), forgets that

it was derived for b

1

6= 0, and substitutes b

1

= 0. For the case b

2

> 0, one computes k

f

= 3b

2

and M (0; b

2

) = 0. For b

2

< 0, equation (11) can be reused with � = �, making s = �b

2

and

k

f

= 0. Then M (0; b

2

) = �

9

4

b

2

2

. Thus for these cases, M continues to give the correct result.

This is because of the transformation (10). For b

2

= 0, k

f

contains a term 0=0 and this prevents

a simple substitution from obtaining M (0; 0) = 0, or in other words, M (b

1

; b

2

) has a removeable

singularity at b

1

= b

2

= 0. Unfortunately, this trick cannot be repeated for the position of the

in�mum y

f

, and that has to remain having a piecewise de�nition.

y

f

(b

1

; b

2

) =

�

�b

1

=k

f

; b

1

6= 0,

p

�min(0; 3b

2

=2) ; otherwise.

The positive root has been arbitrarily chosen for de�niteness in the case b

1

= 0.

A secondary formula.

A quartic polynomial can have 3 turning points, corresponding to (2) having 3 real roots. It is

also possible for (9) to have 3 real roots. Is there a connection? At �rst sight, it seems not,

because k was assumed to be positive, and there is only one positive solution of (9). In spite of

this doubt, negative values of k do indeed give the other turning points. First we give a formula

for the secondary minimum.

Theorem 5 If the coe�cient b

1

6= 0, and D = b

2

1

+2b

3

2

< 0, the quartic polynomial P

4

(y) de�ned

in (4) has a secondary minimum N (b

1

; b

2

) equal to

N (b

1

; b

2

) = 3b

2

k

n

�

3

4

k

2

n

�

9

4

b

2

2

;

where

k

n

= s

1=3

e

�2�i=3

+ b

2

2

s

�1=3

e

2�i=3

+ b

2

;

and s is unchanged from equation (7). Moreover, the secondary minimum is located at y = y

n

=

�b

1

=k

n

.

Proof: The only quantity that is di�erent from theorem 3 is k

n

, which is a di�erent solution of

(9). Figure 4 illustrates that it is the root satisfying 2b

2

< k

n

< 0, as we now show. For the given

range of parameters, s = �b

3

2

e

i�

, where 0 < � < �, as in (11). Therefore k

n

= b

2

(1 � 2 cos �),

with �

2

3

� < � � �

1

3

�. Even if the parameter k is negative, it is still true that P

4

= P

(1)

4

+P

(2)

4

,

and the derivatives of P

4

can be calculated by adding those of P

(1)

4

and P

(2)

4

. The derivatives of

P

4

at y = y

n

are thus computed to be

dP

4

dy

(y

n

) = 0 and

d

2

P

4

dy

2

(y

n

) = 6k

n

� 12b

2

� 0 :

Therefore, the point y

n

is a local minimum, but not the in�mum, which corresponds to a positive

value of k.

By now, it is clear that the third root of C(k) gives the relative maximum between the two

minima.
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Theorem 6 With the notation already de�ned, P

4

has a relative maximum when D < 0 and k

x

is the root of C(k) satisfying 3b

2

< k

x

< 2b

2

. The formula for k

x

is

k

x

= s

1=3

e

2�i=3

+ b

2

2

s

�1=3

e

�2�i=3

+ b

2

:

Properties of the solutions

In spy stories, everyone seems to think that possessing the formula is all that is required | a

bit like a weak student facing a mathematics exam. However, one must be able to use it. The

formulae just derived can be used to show that the turning points of P

4

have some interesting

properties. For example, the sign of b

1

is all that decides the side of the origin on which the

in�mum lies; if there is a secondary minimum, then both it and the local maximum are always

on the same side of the origin, and that is the opposite side from the in�mum; the in�mum is

always further away from the origin than the secondary minimum.

After several pages of algebra, it is always comforting to try a few numerical examples and see

that everything works out. No one wants a repeat of the last scenes of The Maltese Falcon. In

addition, the examples here carry some useful lessons of their own. So consider y

4

� 14y

2

� 24y,

which of course has been carefully rigged to have integer turning points. Substituting b

2

= �14=3

and b

1

= �12 into (6) and asking Maple to simplify the result gives

k

f

=

2

�

143 + 180

p

3i

�

2=3

+ 98� 14

�

143 + 180

p

3i

�

1=3

3

�

143 + 180

p

3i

�

1=3

:

All computer systems can approximate this to 4:0000000, but none can automatically simplify

it to the exact number 4. This is an unavoidable di�culty associated with solving a cubic using

the standard formulae. The simpli�cation

�

143 + 180

p

3 i

�

1=3

=

1

2

(13 + 3

p

3 i), which is needed

to obtain the exact result, is not implemented in any present computer system; perhaps not

many humans would make the simpli�cation spontaneously either. Of course most of the time,

no simpli�cation is possible. In any event, the in�mum is at x

f

= 3, and equals �117. In the

same way, and with the same di�culties, k

n

= �6 and k

x

= �12.

Simply using the formula M given in (5) to compute a numerical minimum is not a very

interesting application. A more challenging question is to �nd the values of p that make the

polynomial x

4

+ 3px

2

+ 2x + 2 positive for all x. This type of problem is a simple example of

quanti�er elimination [1]. The condition is simplyM (1; p) + 2 > 0, which becomes a long messy

inequality when written out explicitly. Plotting the expression numerically shows that the answer

is p > �1=3, but an analytic proof is a real challenge.

The �nal example does not aspire to present a general method for a class of problems, but

the following challenge arose at the time of writing this paper. Given the points (x

i

; y

i

) equal

to (0; 4), (1; 2), (3; 1), (4; 2), (6; 5), �nd a convex polynomial that passes through them. The

Lagrange interpolating polynomial is a quartic:

y

L

=

5

X

i=1

y

i

Y

j 6=i

x� x

j

x

i

� x

j

= �

1

90

x

4

+

4

45

x

3

+

13

45

x

2

�

71

30

x+ 4 :

This does not satisfy y

00

> 0 everywhere. Therefore we investigate whether a sixth-degree poly-

nomial can be found. For unknown coe�cients a and b, we write

y

S

= y

L

+ (ax+ b)

5

Y

i=1

(x� x

i

) :
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For all a and b, this passes through the given points. Two derivatives of this give a quartic

inequality y

00

S

> 0, which will be satis�ed if inf y

00

S

> 0. This reduces to an inequality in the two

variables a and b after using (5). Plotting contours shows that a region exists that satis�es the

constraint, and in particular it includes the rectangle 1=2000 < a � 1=1000, 0 < b � 1=1000.

A computer epilogue

Just when you think it is time to roll the references, a familiar character reappears: the com-

puter. The introduction mentioned that many CAS have routines to minimize functions, so the

programming aspects of Theorem 3 are of interest. It was seen above that if (6) is used with

numerical coe�cients, the system might obtain a result that is correct, but not in the simplest

form. In a similar way, if the evaluation of (6) generates intermediate quantities that are complex,

a small nonzero imaginary part can appear in the �nal result because of rounding errors.

An alternative to the explicit formula (6) is to use a token such as the RootOf o�ered in

Maple V release 4. To the description above, we can add that it also accepts a third argument,

in the form of an interval that brackets the required root. The interval could be speci�ed using

(6), of course, but it is better to surrender precision to gain algebraic simplicity. Now k

f

! 3b

2

as b

2

!1, and k

f

! (2b

2

1

)

1=3

as b

2

! 0, and k

f

!

p

�2b

2

1

=3b

2

as b

2

! �1. An estimate that

takes these limits into account, while staying with integral powers is k

a

= 1+ 3jb

2

j+

2

3

b

2

1

, which

is an upper bound on k

f

because C(k

a

) > 0. Thus, the expression (6) can be replaced by

k

f

= RootOf(k

3

� 3b

2

k

2

� 2b

2

1

; k; 0 :: 1 + 3jb

2

j+

2

3

b

2

1

) ;

where some artistic licence has been taken with Maple's input language. Similar constructions

exist in other systems. The advantages of this approach are that the system has the possibility

of obtaining the best representation of the root directly, and that the case b

1

= b

2

= 0 is no

longer a removable singularity. The disadvantages are that the representation is unfamiliar, and

it may not allow the further analysis that is possible with the explicit form; also the simpli�cation

routines existing for this type of construction are not yet at all strong.

A �nal comment repeats what has been achieved from a slightly di�erent perspective. The

paper opened with a cubic equation (2) whose roots gave turning points. The main theorem

replaced this with a di�erent cubic. One cannot avoid solving a cubic sooner or later, but the

auxiliary cubic in (9) has the advantage that one knows in advance which root to select and

where it will be.
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One of the referees proposed a counterexample to theorem 1: unfortunately my agents have

been unable to locate the movie Sneakers to verify this intelligence report.
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