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Abstract: Two standardpbhysicsproblemsare solved in termsof the LambertW function,

in orderto shav the applicability of this recentlydefinedfunction to physics.Other
applicationsof the function are cited, but not describedThe problemssolved concernWien'’s
displacementaw andthe fringing fields of a capacitor the latter problembeing representate
of someproblemssolved using conformaltransformationsThe physicalcontentof the
solutionsremainsunchangedbut they gain a nen eleganceand convenience.

1. Introduction

Many physicistshave experiencedduringtheireducationthe surpriseof seeingaknown mathematical
functionappeaiin a new physicalcontext. An examplein elementaryphysicsis onethatariseswhen
studentarefirst taughtaboutsimpleharmonicmotion. We hopethatsomereadersanremembetheir
amazemenbn learningthat the motion of objectsbobbingon springs,or moving in circles,canbe
describedusingtrigonometricfunctions.At the time, they might have wondered; The functionssine
andcosineareusedfor all of thosetriangleproblemsn geometryclassitherearenotriangleshere”. A
recentexampleof thesamephenomenors thediscoverythatafunctioncalledthe Lambertl function
hasapplicationsn anumberof areaf physics gventhoughit wasfirst definedby acomputerscientist
for the purposeof countingsearchrees Severalwell-known problemsn electrostaticendin quantum
mechanicganbesolvedwith greaterfacility usingit. In additionto presentingheseproblemswe give
referenceso other, lesselementaryapplications.

Mathematicafunctionsdo not by themselesuncover new physics— ratherthey assistthe physi-
cistby facilitatingnumericalandalgebraiccomputationsA physicistthereforedemandseveralthings
of ary new function beforetaking the time to learnaboutit. Thefirst featureit shouldhave is thatit
is likely to have somegeneralapplicability Abramawitz & Stegun[1] is full of functionsthatmostof
uswould prefernotto know anything about;we only wantto know aboutfunctionsthatwill probably
proveuseful.Eachpersonwill draw theline betweerusefulandnotusefulatadifferentplace.Thesec-
ondfeatureis thatthereshouldbe convenientacces$o numericalevaluationandto pertinentalgebraic
propertiesA functionthatcannotbeworkedwith easilyis notmuchuse.Many readerswill befamiliar
with the conferencescenein which a colleagueasksyou whetheryou know of a computerprogram
to calculatevaluesof the Chepookaunction'. You probablyreply thatyou yourselfneeda reference
on the asymptoticpropertiesof the Horrorshav function, at which point the two of you changethe
topic of conversation.Until the advent of the scientific calculator even trigonometricfunctionsand
logarithmswerenot soeasyto evaluate.

TheLambertW functionis a functionthatmeetsthe criteriajustlisted. It first receizeda namein

1 Thenamesof thesefictitious functionsareinspiredby thenovel A Clockwork Orange
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the early 1980s,whenthe programMaple defineda functionthatwasnamedsimply W. An historical
searchgonductedvhile writing anaccountof this function[4], foundwork by the eighteenttcentury
scientist]. H. Lambertthatforeshadwedthe definition of the function; eventhoughhis work did not
actuallydefinethefunction, W wasnamedn his honour The samesearctuncovereda fortuitousrea-
sonfor calling thefunction W, in thatE. M. Wright, a mathematiciarkknown for his bookwith Hardy
onpuremathematicsstudiedthecomplec valuesof thefunction,againwithoutnamingit. Thefunction
is notconnectedvith the Lamberttransformof afunction,which hasbeendefinedindependently13].
Thedefinitionof W is thatit is thefunctionthatsolvesthe equation

weV =z, Q)

wherez is acomplex number This equationalwayshasaninfinite numberof solutions,mostof them
comple, andsoW is amultivaluedfunction. Thedifferentpossiblesolutionsarelabelledby aninteger
variablecalledthe branchof . Thusthe properway to talk aboutthe solutionsof (1) is to saythat
they areWy,(z), for ary k = 0, £1, £2, etc. Thereis alwaysspecialinterestin solutionsthatarepurely
real,andsowe noteimmediatelythatwhenz is arealnumber equation(1) canhave eithertwo real
solutions,in which casethey areWy(z) andW_(z), or it canhave only onereal solution, this being
Wo(z) [with W_1(2) now beingcomple], or norealsolution.Evenif z is real,thebranchestherthan
k = 0,—1 arealwayscomplex. Admittedly, W doesnot yet appeaion ary pocket calculator but it is
known to the computingsystemaViaple Macsymaand Mathematicdin the caseof Mathematicathe
functionis calledProductLog). Thereforeassoonasa problemis solvedin termsof W, numerical
values plots,derivativesandintegralscanbe easilyobtained.

The first physicsproblemto be solved explicitly in termsof W wasonein which the exchange
forcesbetweertwo nucleiwithin thehydrogermolecularion (H;") werecalculated11]; this, however,
is alonganddifficult calculation(andit hasalreadybeenpublishedsoinsteadf describingt, we have
takentwo muchsimplerproblemsfrom standarghysicstextbooks,problemsthatmary studentsneet
in their physicseducationandwe have expressedhe solutionsin termsof W. As mentionedabove,
the physicalcontentdoesnot changepnly the easeof working. An additionalpoint of interestis the
factthatthe electrostati@pplicationhelpsto justify a mathematicatlecisionconcerninghedefinition
of W thatwasoriginally takenentirelyon aesthetigin a mathematicabensejrounds.

2. Wien’s displacement law

The spectraldistribution of black body radiationis a function of the wavelength\ andabsolutetem-

peraturel’, andis describeddy p(A, T'), definedsuchthat p(A, T') d\ is the power emittedin a wave-

lengthinterval dA perunit areafrom a blackbody at absolutedemperaturd’. ThewavelengthAmax at

which p is a maximumobeys Wien’s displacementaw An,.T = b, whereb is Wien'’s displacement

constan{3]. This law wasproposedy Wien in 1893from generatthermodynami@argumentsOnce

Plancks spectradistribution law is known, Wien'’s law canbe deducedandthevalueof b determined.
The PlanckSpectraldistribution law is

8rhe/\°
exp(he/AET) — 1~

p(AT) =

The valueof X for which this function is a maximumcanbe obtainedby solving 9p/dX = 0. After
simplification,this leadsto theequation

—5e e +5+e he ) e 0
P\ T PANT ) €T ~
which, onthesubstitutionz = he/AkT, canbewritten conciselyasthetranscendentaquation
(x —5)e® =—5. 2
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This equationhasthetrivial solutionz = 0 andthe nontrivial one
=5+ Wo(—5e™?).
ThereforewWien's law is obtainedwith anew expressiorfor Wien'’s displacementonstant:

he/k

b= ————
54+ Wo(—5e9)

=2.893 x 107% mK. ()
In the past,one would have obtainedthe numericalvalue of the law by programminga Newton-
Raphsoror similar solver on equation(2); now one canstartup a computerpackageand obtainthe
valuewithout programming.Time is saved not only becauseo programmings neededput alsobe-
causehe systemdevelopershave implementedhe fastesendmostaccuratenethodof evaluation.

3. Capacitor fields and conformal mapping

The equipotentialines that areto be calculatedare shovn in figure 1 in the top setof axes.We see
therethefringing field attheedgeof atwo-dimensionaparallel-platecapacitorTheplatesareassumed
to be semi-infinite,and at potentialst V. The coordinatesof ary point in the plane are expressed
asacomplec number:{ = & + in. The planeis thereforecalled the {-plane,and what is required
is a function ®(¢) giving the electric potentialat any point. This functionis usually obtainedusing
conformal-mappingechniqueg12]. In generalconformaltechniquesolve a problemby relatingits
geometryto a simplergeometryin which the governing equationsare easily solved. In the present
case,the simpler geometryis shovn at the bottom of figure 1 and consistsof two parallelinfinite
planesWhatwe aregivenis a transformation = f(z) andasolution¢(z), valid in the z-plane.To
staywith generalitiefor a moment,beforegiving the specificdetailsof this problem,we noticethat
the transformatiorhasbeenwritten { = f(z). This meansthat the solutionis obtainedasa pair of
equations:

(¢) = ¢(2),
¢ = f(»)-

In orderto obtainthedesired®({) explicitly, onemustinvertthetransformationf to eliminatez. This
is usuallynot easyto do.
We now give the detailsof the problemat hand.The conformaltransformatiorthatis usedis [12]

(=1+z+eé". (4)

This is a memberof the Schwarz-Christofel family of transformationg8]; also((z) obeys a differ-
ential equationof Bernoulli type. The z-planeis showvn in figure 1, filled with horizontallines. Each
line hasthe (complex) equationz = x + i K, wherez variesand K is the constantlescribingheline.
Theplatesaregivenby K = +. The effect of the transformatioris to mapthe straightlinesin the
bottom setof axesto the curvesin thetop setof axes.If z = x + iy, the potentialin the z-planeis
¢ = Vy/m = VSz/m, whereSz meansmaginarypartof z. Therefore givena point z betweerthe
infinite plates,we canfind the corresponding coordinateandthenknow the potentialthere.

As foreshadwved,the unsatisctorypart of the solutionis the factthatwe do not getthe solution
asafunctionof ¢. Givenapoint ¢, we mustsolve (4) to find z. In general conformaltransformations
do not have simpleinversesandthe computationsnustbe programmedisa root-findingexercise.In
thepast,the problemat handwasonemoreexampleof this, but now thedefinitionandimplementation
of LambertW have madeit possibleto invert (4) explicitly. During the solution,anarbitraryinteger k
is introducedo indicatethe existenceof multiple solutions.We proceed:

(-1 = z+4+¢€*,
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Physicalplane:

(The(-plane) _— |

(=14+2z+¢€"

Startingsolution:

(The z-plane)

—2

3

Fig. 1. Thetopsetof axes(the({-plane)shav theedgeof aparallel-platecapacitorTheplatesaretheheavy lines.
The equipotentialines of thefringing field areshavn andarecalculatedasimagesof horizontalgrid linesin the
z-plane.The bottomsetof axesshaw the z-plane,whichis mappedo the(-planeby { =1 + z + e*.
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e(—l — ezee’ ,
ef = Wk(ec_l) ’
C(—1—2z = Wi(e™h),
z = (—1-Wi(eh). )

Somefurtheranalysignotgivenhere)shovsthattherestriction—n < 3z < 7 impliesthatthebranch
index k is alsospecifiedpnce( is known; moreover, we cangive ananalyticformulafor this, in terms
of K, the unwindingnumber5, 7]. Theexpressions

SC—m
2m -‘

k=K = | ©)
Herethe symbol [ 7 denoteshe ceiling function, which is the integer obtainedby roundingup (as
opposedo floor whichis obtainedby roundingdown).

Figure2 shavs how theinversetransformatiorworks.Recallingthenotation, = £+in, wedivide
the ¢-planeinto strips of width 2. The main strip betweenthe plates,and extendingto theright, is
—7 < i < « andis shovn containingsolid lines. The strips—37 < n < —7 andw < n < 37 are
shavn containingdashedines. Eachstrip is transformedusinga differentbranchof W, the onewith
index k = K(¢), onto a distinct portion of the strip —7 < 3z < . The portionsof the strip thus
mappedare symmetric,in the sensethat W_;, and Wy mapinto regions symmetricaboutthe real z
axis.

In summarywe have derivedthefollowing new analyticalformulafor thesolutionfor thefringing
fields of a semi-infinitecapacitor The potentialatthe point ¢ is

= (V/mS[¢—1=Wi) ()] - 7)

As statedin the introduction,for this formulato be actually useful,it mustbe easily evaluated.
Although the numberof computerpackageghat contain¥ built-in is still small, the packagesre
amongthe mostpopularonesat the moment.Thereforethis formulais genuinelycomputational.

Thisapplicationto conformalmappingsaddsaninterestingpostscripto thehistoryof thedefinition
of W. Theequation(1) doesnot by itself completelydefinethe brancheof W [4, 6], asexplainedin
the next section.The definition finally chosenin [4] andimplementedn the variousmathematical
packagesvaschosemurelyto obtainsimpleasymptoticexpansiongor W (z) for large z. The present
physicsapplicationconfirmsthe utility of the choicemade,becauseary other choicewould force
a more complicatedexpressionto be usedin placeof (7). Onceagain,asin the past,physicsand
mathematicagreeon the bestdefinitions.

4. Further properties of W

Ratherthan continuewith more descriptionsof problems(morereferencesre given below), we as-
sumein this sectionthat the casefor knowing somethingaboutW hasbeenmade,andamplify the
introductorydescriptionof its properties An obvious startingpointis a graphof its real values.The
two realbranchesreshavn in Figure 3, the principal branchiWy () is the solid line, andthe branch
W_1(z) is thedashedine. Somenumericalvaluesarealsogivenin table 1.

Most readerswill notbesurprisedhatW canbedifferentiated?¥’ = e=" /(1 + W), but maybe
surprisedhatfunctionscontainingit canbeintegrated.

/W(m) dz
/mW(m) dz

(W2(z) — W (z) + 1)@ + ¢ (8)

%(QW(JJ) C )W (@) + 1)V @ 4 0. ©)
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6 Thesdinestransformed
usingW;

5

Physicalplane: 2]

Thesdinestransformed
-3 -2 -1 0 1 2 3 usingWO

Linesin ¢-plane
wherevaluesof potential
arerequired —27

Thesdinestransformed
usingW_,

2=(—-1=-W(e1)

Lineswhereevaluations
aremadein z-plane

3

Fig. 2. Thetop andbottomsetsof axesagainshav the {- and z-planesNow the transformatiorproceed$rom
top to bottomusingtheinversemappingz = ¢{ — 1 — W,C(O(eg‘l).
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Fig. 3. Therealvaluesof theLambertW function.Thesolid line shawvs W, andthedashedine W_;.

Many otheralgebraicpropertieshave beenfound [4], but we quoteonly one morethat might be
usefulin physicalapplicationsanasymptoticormulafor large (comple) z.

Wi(2) ~Inz 4 2mik — In(ln z + 2wik) , (10)

whereln z is theprincipalbranchof the (comple) naturallogarithm(i.e., thefunctionimplementedn
softwarepackageshatsupportcomplex functions).

Any physicistusingW alsobenefitsfrom lengthystudiesof the quickestway to evaluatethe func-
tion accuratelyThe basicstrateyy is to usethe asymptoticformulato obtaina startingestimatefor an
iterative schemesimilarto Newton iteration.Most physicistavould jump to a Newton schemsef asled
to evaluatethefunctionwithout help,but the packagesave optimizedthis strateyy to ensureaccuray
(alwaysgettingthe branchcorrect,for example)andspeed.

Theliberty in assigninghe brancheof W thatwasreferredto above canbeillustratedusingthe
valuesof W givenin tablel. Thereadelcannoticethatalthoughi +i and% —i arecomplex conjugates,
it is not thecasethatW; (§ + i) andW ( — i) arecorrespondinglgyomplex conjugatesThebranches
of W could be assignedso that this relation becametrue, and indeed,an early versionof Maple
did assignbrancheghat way. Sucha definition, however, would not satisfy the simple asymptotic

relation(10). Our physicsapplicationhasconfirmedthatthe symmetriesasdisplayedin the tableare
the bestonesto have.

5. Concluding remarks

We have discussedwo standardproblemsof physicsin which the LambertW function canbe used.
They arenot the only two problemsin which W arises.For example,Adler and Piran[2] usedW
in their work on effective actionmodelsfor a systemof heary antiquarkandlight scalarquark;they
wereworking aboutthe time whenthefunctionwasnamedandbeforeits propertieshadbeensetout,
andsothey did not benefitfrom the corveniencethey would now have. In their model,aswell asin
nonlinearquantumelectrodynamicsthe nonlineardielectric constanthasa logarithmic dependence
onthe appliedelectricfield, which meantthat W could be usedto describethe electricdisplacement.
MannandOhta[9, 10] have usedWV to elucidatethe physicsinvolvedin their studyof Lagrangiangor
two-dimensionagravity.

NRC Canada



8 Can. J. Phys. Vol. ,

T Wo(x) W_1(z) Wi(z)
e 1 —0.5321 —4.5974 | —0.5321 +4.597¢
1 0.5671 —1.534 — 4.3754 —1.534 +4.3751
0 0 comple infinity comple infinity
—1/e -1 -1 —3.089 + 7.462 1
—1/4 —0.3574 —2.153 —3.490 +7.414+¢
—1/4+4 | 0.3169 + 0.6807% | —0.9667 — 2.532% | —1.843 +6.2414
—1/4—4 | 0.3169 — 0.6807% | —1.843 —6.241¢ | —0.9667 + 2.5324

Tablel. Someexactandapproximatevaluesfor theLambertW function.Of theinfinite numberof branchedVvy,,
we takulate 3 branchesThe entries‘complex infinity’ meanthatthe valuesof W_;(0) andW1(0) have infinite
realpart, but theirimaginarypartsdependuponthedirectionin which 0 is approached.

The LambertW function hasa rich variety of applicationsrangingfrom physicsand computer
scienceto statisticsand biology. Examplesinclude the calculationsof partitionsin numbertheory,
waterwave heightsin oceanographyenumeratiorof treesin combinatoricsanddistribution of cycles
in randommappingsthethrustspecificconsumptiorin aeronauticsgnzymekinetics,exchangdorces
betweertwo nucleiwithin the hydrogenmolecularion H;", movementof waterin soil, detailedstudy
of Newton’s apsidalprecessiortheorem,relatiistic theoriesof gravity, and statisticaldistributions.
Thereis a variety of otherproblemswherethis functionis applicableandwhereit clarifiesaspect®of
the physics.Many moresuchusesarebeingidentifiedin physicsandalsootherfields of ende&our.
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