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1 It’s so simple!

This paper discusses one of the prettiest pieces of ele-
mentary mathematics or computer algebra, that we have
ever had the pleasure to learn. The tricks that we discuss
here are certainly “well-known” (that is, in the litera-
ture), but we didn’t know them until recently, and none
of our immediate colleagues knew them either. Therefore
we believe that it is useful to publicize them further. We
hope that you find these ideas as pleasant and useful as
we do.

We show how to use a computer algebra system (or
even a purely numerical graphing package) to graph the
Riemann surfaces of various elementary functions. We
first noticed the technique in Cleve Moler’s MATLAB pro-
grams cplxroot, cplxgrid, and cplxmap, which are part
of the MATLAB 5.1 DEMO package (in plots of complex
functions). The command type cplxroot in MATLAB
shows you the following.

function cplxroot(n,m)
%CPLXROOT Riemann surface for the n-th root.

%  CPLXROOT(n) renders the Riemann surface for the
% n-th root.

% CPLXROOT, by itself, renders the Riemann surface
% for the cube root.

% CPLXRO0T(n,m) uses an m-by-m grid.

% Default m = 20.

% C. B. Moler, 8-17-89, 7-20-91.

%  Copyright (c) 1984-97 by The MathWorks, Inc.

%  $Revision: 5.2 $§ ¢$Date: 1997/04/08 05:31:36 $

% Use polar coordinates, (r,theta).
% Cover the unit disc n times.

if nargin < 1, n = 3; end
if nargin < 2, m = 20; end
r = (0:m)’/m;

theta = pi*(-n*m:n*m)/m;

z
s

r * exp(i*theta);
r.”(1/n) * exp(ixtheta/n);

surf (real(z) ,imag(z) ,real(s),imag(s));

11

This piece of code contains all the ideas that we shall
explore in this paper, namely

1. if there is a 1-1 correspondence between the 3-d plot
of (z,y,Sf(x +iy)) and the Riemann surface of f,
then we can plot the Riemann surface with little in-
tellectual effort; alternatively, we can exploit any cor-
respondence between (z,y, Rf(x + iy)) and the Rie-
mann surface;

the plots can be performed most easily with a para-
metric representation of the surface;

the 3-d plot can be coloured with the variable not
used in the plotting (that is, the other one of Rf (z+
iy) and S f(z +14y)) to give a true 4-dimensional plot
of the complex-valued function.

So, if Cleve’s piece of code contains all these ideas, why
should we write this paper, and why should you read it?
The main reason is that there is something to say about
the 1-1 correspondence business, and this is not discussed
anywhere that we have seen. Without discussing this, it
is not obvious (at least to us) that the code really does
produce a graph of the Riemann surface: a priori, why
should a complex plot of the function give you the Rie-
mann surface? The notions are not the same!

Incidentally, all the elementary complex variables texts
that we have seen define Riemann surfaces only by exam-
ple, in the usual cut-and-paste fashion. We believe the
ideas of this paper can be used to flesh out those exam-
ples.

After the publication of the last issue of the Bulletin,
where it was mentioned that this present article was com-
ing, Michael Trott sent us a copy of his paper [6], and the
Mathematica notebook that it was generated from. We
recommend his paper to you: he produces many beautiful
graphs of Riemann surfaces, using many variants of these
ideas, including numerical computation. More articles by
Trott on the subject are forthcoming.



However, we believe that this present article has some-
thing to contribute: namely, the emphasis on the 1-1 cor-
respondence proof necessary to know that you are really
looking at a faithful representation of a Riemann surface.

2 The logarithm

We begin with the Riemann surface for the logarithm
function, as the simplest possible example. We will plot
w = Inz, where w = u + v and z = z + iy. If we plot
the 3-d surface (z,y,u) we do not get a representation of
a Riemann surface.

> w = u + Ixv;
w:=u+ITv
> z := evalc(exp(w));
z 1= e" cos(v) + I " sin(v)

> x := evalc(Re(z)):
> y := evalc(Re(2)):
> plot3d([x,y,ul],

u=-6..1,

v=0..10%Pi,

orientation=[-22,48],
labels=["x " , ny "oy

II] ,

view=[-1..1,-1..1,-4..1],
grid = [50,50],
style=PATCHNOGRID,
axes=FRAME,

colour=v);

Figure 1: Not the Riemann surface for In z.

Instead, we get the single funnel seen in Figure 1; more-
over, we have asked Maple to colour the surface with the
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value of v, but Maple’s plotting algorithms get confused
and we see “stripes”. The plot in Figure 1 is somewhat
different from the Maple session version, but still bad.
The stripes probably occur because although the real part
u = In(z* + y?)/2 is always the same, no matter what v
is, rounding errors may cause the plotting software to get
confused. In any event, this shows that plotting (z,y, u)
does not give us the Riemann surface for the logarithm
function. So why should plotting (x,y,v) instead do so?

Carathéodory [1] defines the Riemann surface of loga-
rithm by considering the map w — expw =: z and piec-
ing the sheets together. We do the same thing by plotting
z = & + iy computed from an array of (u,v) values where
w = u + 1v. But, since this is very similar to what failed
earlier, we shall have to explain its success.

> w = u + I*xv;
w:=u+Iv
> z := evalc(exp(w));
z 1= e" cos(v) + I " sin(v)
> x := evalc(Re(z)):
> y := evalc(Re(z)):

> plot3d([x,y,v],
u=-6..1,
v=-3*Pi..3%Pi,
orientation=[-56,72],
labels=["x" , uyu v " s
view=[-1..1,-1..1,-3*%Pi..3*Pi],
grid = [50,50],
style=PATCHNOGRID,
axes=FRAME,
colour=u) ;

Figure 2: The Riemann surface of In z.



There are three subtleties in this short piece of code:
the first is that we have changed to Cartesian coordinates,
so we need not do the “@/n trick” that Cleve uses in
his MATLAB code; the second is that we write the equa-
tion backwards, putting z = exp(w) = exp(u + )
exp(u)(cosv + isinv), which gives us a parametric rep-
resentation for the surface (u and v are our parameters);
and the third is the real trick.

The real trick is to prove that, given (z,y,v), we can
solve for u uniquely. If we can do this, then the pic-
ture is in 1-1 correspondence with the Riemann surface
for the logarithm. In this case, this is trivial: we have
that v = In(z? + y?)/2, thus uniquely determining the
logarithm given v. Because each point on this surface is
associated with one and only one point on the Riemann
surface for the logarithm, this surface is a representation
of the Riemann surface.

This was too easy: let’s look at a more interesting ex-
ample.

3 The Lambert W function

Our main interest here is plotting the Riemann surface
for the Lambert W function [2, 3, 4]. The first attempts
at this were done by hand some years ago, following the
‘piece together the cut planes’ approach commonly dis-
cussed in textbooks. A Maple program to graph the
sheets three-dimensionally produced moderately pleasing
results (an Axiom version was better because, at the time,
Axiom’s graphics were considerably superior to Maple’s).
The following few lines of Maple code make all that work
redundant (though it is gratifying to see that the pictures
are qualitatively the same).

> w = u + Ixv;

w:=u+Tv
> z := evalc(uxexp(w));

z:=ue"cos(v) —ve*sin(v)
+ I (ve* cos(v) + ue¥sin(v))

> x := evalc(Re(2)):
> y := evalc(Im(z)):
> plot3d([x,y,v], u=-6..1,

v=-5..5, axes=FRAME,
orientation=[-110,73],
labels= ["X" s uyn , "y u] ,
style=PATCHNOGRID,
colour=u,
view=[-1..1,-1..1,-5..5],
grid=[50,501);

13

1
0
Y58 a6 04 02

Figure 3: The Riemann surface of W(z).

3.1 1-1 correspondence proof
Given z, y, and v, we have to solve for u. We have
(u+iv)e" ™ =z + iy, (1)
which gives
ue® +ivet = (x4 iy)e ™
= (z +iy)(cosv —isinwv) . (2)
Therefore
ue® +ive" = (xcosv+ysinv)
+i(ycosv — zsinw) . (3)

If v # 0, and moreover ycosv — xsinv # 0, then by
dividing the real part by the imaginary part we have the
following equation defining v in terms of z, y, and v:

v(z cosv + ysinv) )
ycosv —rsinv

Moreover this solution is unique. Investigation of the ex-

ceptional conditions v = 0 or ycosv — xsinv = 0 leads

to uexpu x, which has two solutions if and only if

—1/e < z < 0, in the case v = 0, and to the singular

condition u = —o00 and z =y = 0.

This is precisely what we observe in the graph: two
sheets intersect only if —1/e < z < 0 (note the colours
are different and hence the corresponding sheets on the
Riemann surface do not “really” intersect), and all sheets
except the central one which contains v = 0 have a sin-
gularity at the origin. This is as good a representation of



the Riemann surface for the Lambert W function as can
be produced in three dimensions.

Remark. The above static representation of the Rie-
mann surface is really nowhere near as intelligible as the
live Maple plot (OpenGL), which can be rotated to give
a good sense of what it is really like.

4 The Arcsin function
Thus emboldened, we look at the Riemann surface for

Arcsin. One new twist is that we plot (z,y,u), because
the sin function has real periods.

> w o= u + Ixv;
w:=u+Iv
> z := evalc(sin(w));
z := sin(u) cosh(v) + I cos(u) sinh(v)
> x := evalc(Re(z)):
> y := evalc(Re(2)):
> B := 3:

> plot3d([x,y,ul,
u=-Pi..Pi,
v=-B..B,
orientation=[-127,52],
1abels=["x”,"y","u u]’
view=[-B..B,-B..B,-Pi..Pi],
grid=[50,50],
axes=FRAME,
color=v,
style=PATCHNOGRID) ;

Figure 4: The Riemann surface for w = arcsin z.
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4.1 1-1 correspondence proof

This is trivial here: sinhwvcosu = y implies that v =
sinh™(y/ cosu), uniquely whenever cosu # 0. Again,
this is what we observe in the graph: the only apparent
intersections occur when u = (2k +1)7/2 for some k, and
y = 0. The other equation (z = sinv coshu) then gives
two p?ssible values of u, from the two real branches of
cosh™.

5 The Arctan function

The surface for Arctan is a bit more complicated, and we
see that Maple introduces spurious flat sheets across sin-
gularities in the surface (much as the old 2-d plots would
“connect the dots” across a singularity, one expects). To
combat this, we plot using the POINT style. We see twin
helices, wrapping around the logarithmic singularities at
41 in opposite directions.

> W o= u +Ixv;

w:=u+ITv
> z := evalc(tan(w));

sin(u) cos(u)
cos(u)? + sinh(v)?

I sinh(v) cosh(v)
cos(u)? + sinh(v)?

evalc(Re(z)):
evalc(Im(z)):

\4

plot3d([x,y,ul,
u=-Pi..Pi,
v=-2..2,
view=[-4..4, -4..4, -Pi.
grid=[200,2001,
style=POINT,
axes=FRAME,
labels=["x" , nyu ' " s
orientation=[50,86],
color=v);

.Pi],

5.1 1-1 correspondence proof

If we divide y by z (provided 2 # 0) we get
sinh(2v)/sin(2u) = y/x, so v = sinh~*(ysin(2u)/x)/2,
uniquely. The only intersections possible would have
z = 0 and sin2u = 0, and the y-equation then would
give y = sinhw coshwv/(t* + cosh® v) which has a unique
solution no matter whether ¢ = cosu is zero or one, its
only possibilities. Thus, this plot is exactly the Riemann
surface for arctan.
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Figure 5: The Riemann surface for w = Arctan z.

6 nth roots

Now we look at the Riemann surface for nth roots; more

specifically we will look at w = 21/3.
> w = u + Ixv;
w:=u+ITv
> z := evalc(w"3);
z:=u?—3uv?+I(Bu?v—10?)

> x := evalc(Re(z)):
> y := evalc(Re(2)):
> plot3d([x,y,v],

u=-2..2,

v=-2..2,

view=[-1.5..1.5,-1..1,-1.2..1.2],
grid=[50,50],
orientation=[-41,70],
style=PATCHNOGRID,
color=u,

labels= ["X" s uyu s "V"] ) ;

6.1 Proof of 1-1 correspondence

Considering first the case v = 0, we have u = z!/3

uniquely (using the real cube root). On the other hand
we have that u? = (y + v®)/(3v) if v # 0, and since
z = u(u? — 3v?) we have

= y+ 03
a 3v '
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Figure 6: The Riemann surface for w = z'/3.

If  # 0, then we must have

_ 3aw
Sy A+’

uniquely. This leaves the case z = 0. If z = 0, then
either v = 0, which gives y = —v? and in any event is
unique since v # 0 by assumption, or else y = 8v3 which
leads to u? = 3v? which has two possible solutions. This
agrees with the graph; the only apparent intersections
we see have ¢ = 0 and as usual the colours are different
on each intersecting sheet. Thus this graph is as good a
representation of the Riemann surface as can be found.

7 More on fractional powers

We look at a simple example, w = 22/3. It turns out
that the Cartesian coordinate approach used heretofore
doesn’t work very well, and indeed Maple will force polar
coordinates on us (in disguise) anyway. This is shown
by the code fragment below, which gives an incomplete
plot (not shown) because the arctan (v,u) which shows
up uses the principal branch.

> w = u + I*v;
w:=u+Iv
> z := evalc(w"p);

2 = e(1/2PI(w’ %) cog(p arctan(v, u))

+ I /2P +v") gin (p arctan(v, u))
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evalc(Re(z)):
evalc(Im(z)):

\%
»
1]

v
<
i

> plot3d(subs(p=3/2, [x,y,v]),
u=-2..2,
v=—2%Pi..2*Pi,
grid=[50,501,
colour=u,
axes=FRAME,
orientation=[150,40],
style=PATCHNOGRID,
1abels=["x",“y","v u]);

The plot in Figure 7 uses polar coordinates explicitly,
giving us a good parameterization of the Riemann surface.
It turns out that we can use either the real part of w or
the imaginary part of w as the height.

> w := rxcos(theta) + I*r*sin(theta);
w = rcos(d) + I rsin(f)

> x := r-p*cos(pxtheta);
x = rP cos(ph)

> y := r-p*sin(p*theta);

y :==rPsin(ph)

> plot3d(subs(p=3/2,[x,y,evalc(Im(w))]),
r=0..1.5, theta=-2*Pi..2xPi,
grid=[50,50],
style=PATCHNOGRID,
view=[-1..1,-1..1,-2.
colour=evalc(Re(w)),
orientation=[36,66],
1abels=["x","y","v u]’
axes=FRAME) ;

.2],

7.1 Proof of 1-1 correspondence

Here we do not wish to identify r and 6 uniquely, but
rather, given x, y, and either of rsinf or rcosé, find
r cos 8 or rsin 6 respectively. Thus the equations that we
have to solve are

rPcospd = =z (5)
rPsinpd = y. (6)

This gives immediately that r = (22 4+ y2)'/(?) the
unique positive root. Then knowing rsinf gives us
rcos = +ry/1 — sin? §, and all that remains to be deter-
mined is the sign (similarly if r cos € is known and rsin 8
desired). This shows that at most two sheets can intersect
in any one place.

Let us now look at the case p = 3/2, which corre-
sponds to w = 22/3. Thus we know sin 36/2 and cos 36/2

Figure 7: The Riemann surface for w = z2/3.

and wish to identify cosf given sinf. The following trig
identities give us what we want.

sin 26 sin @ cos £0 + cos 0 sin 0
cos 26 cos 16 + sin 26 sin 16
(1 — 2sin” @) cos 360

+2sin 6 cos @ sin %6 ,

3
cos 50

which gives
cos 3 — 2sinfsin 20 = (1 — 4sin® ) cos 16..

This determines cos(6/2) uniquely unless sinf = +1/2;
and once we know cos(f/2) we can find cosf =
2 cos?(0/2) —1 uniquely. After this calculation, you might
be puzzled because the graph clearly shows intersections
at 45 degrees, not at 30 degrees. However, everything is
correct: we plot x = rP cos pd, y = rP sin pf, which means
if p = 3/2 that the intersections occur at 3/2 %30 = 45
degrees. Thus our calculation is in agreement with the
graph, and the graph really shows the Riemann surface
for the 2/3 power of z.

8 A final example: the “Dilbert A
function”

In [5], Bill Gosper suggests that instead of using the Lam-
bert W function, we could instead use the function A(z)
which satisfies

A =2,

(7)



The chief advantage of this function is that it is single- cuts to i/v/2e and 0 from +iocc along the imaginary axes
real-valued for real z. See [5] for details. Here we shall and to 0 and —i/+/2e from Fico respectively; finally the

look at its Riemann surface.
> w u + I*v;
wi:=u+Iv
evalc( wxexp(w™2) ) ;

z

z:=u%lcos(Quv) — v %lsin(2uv)
+I (v %1cos(2uv) + u%lsin(2uv))
%1 = e(w*~v*)

> x := evalc(Re(z)):
> y := evalc(Re(2)):
> B := 2:

> plOtSd([X:YsV] >

u=-2..2, v=-B..B,

axes=FRAME,

grid=[40,40],
view=[-1.5..1.5,-1..1,-B..B],
style=PATCHNOGRID,
orientation=[151,77],
labels=["x" s uyn M " ,

color=u);

Figure 8: The Riemann surface for the function A(z)
which solves Aexp(A\?) = z.

We leave the proof of 1-1 correspondence to the reader.
This Riemann surface plot shows that it would be natural
to index the sheets for the domain of A(z) so that Aq(z)
has branch cuts along the imaginary axis from =+i/+/2e
out to infinity, which means that the real axis does not
cross a cut; Aq(z) and A_1(2) are then symmetric, with
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cuts on the domains of Ag(z) for |k| > 2 go from +ico
to 0. Counter-clockwise continuity is always possible.
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