Appl. Math. Lett. Vol. 7, No. 6, pp. 59-63, 1994

Pergamon Printed in Great Britain. All rights reserved
0893-9659/94 $6.00 + 0.00

Copyright©1994 Elsevier Science Ltd

Asymptotic analysis of interactions between
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Abstract—We consider the conduction of heat or electricity between a pair of equal, touching
cylinders embedded in a matrix. We solve exactly a problem in which each cylinder contains a heat
source, and analyse the solution asymptotically for the case in which the conductivity of the fibres
is much greater than that of the matrix. Using this analysis, we assess the accuracy of approximate
schemes for calculating the interactions between the fibres of a composite material. We conclude that
the approximate solutions are better at predicting global quantities, such as total flux, than they are
at predicting pointwise quantities such as the temperature field.

INTRODUCTION

A fibre-reinforced composite material has an effective conductivity that depends both on the
conductivity of the fibres and on their arrangement. The conductivity can be to heat or electricity;
we use the language of heat conduction. We are interested in the case of highly conducting
cylindrical inclusions embedded in a matrix. Two asymptotic limits have been investigated using
approximate techniques: perfectly conducting cylinders that are nearly touching [1], and touching
cylinders that are nearly perfectly conducting [2]. We are interested in the latter case. O’Brien
calculated the conductivity of a composite material by concentrating his attention on the narrow
gap separating two typical cylinders. He analysed the temperature field in the gap and in the
parts of the cylinders adjacent to the gap and made assumptions about the behaviour of the field
far from the gap, specifically, that the temperature in the cylinders would be asymptotic to a
constant value. As a result of this procedure, he obtained the leading term for the total heat
flux from a relatively simple calculation confined to the neighbourhood of the gap region, and his
assumptions, and result, are what we test.

Some support for O’Brien’s work has already been published. Perrins, McKenzie & McPhedran
[3] calculated numerically the conductivities of square and hexagonal arrays of circular cylinders
for cases in which «, the ratio of the conductivity of the cylinders to that of the matrix, lies in the
range 2 < a < 50. The numerical calculations became difficult as o was increased, but reasonable
agreement was obtained. McPhedran and Milton [4] studied the conduction between a pair of
touching cylinders in a temperature gradient, and for that problem confirmed the asymptotic
expression for the heat flux.

The new tests of the approximation described here clarify the scheme in several ways. First,
we obtain the size of the terms neglected in the approximation, and thereby establish the speed
with
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Figure 1. Two touching cylindrical fibres in a composite material.

which the problem approaches the asymptotic result. Secondly, we can test the temperature field,
as well as the heat flux, and thus test not only an integrated quantity (the flux), but also a field
quantity. Thirdly, because we are able to vary the conditions far from the gap in a simple way,
we can demonstrate the degree to which the gap conditions dominate the results. Our method
is to study a problem that both has an exact solution, and obeys the conditions necessary for
O’Brien’s assumptions to be valid. We then analyse the solution in detail and see how closely it
obeys the assumptions of the approximate theory. The problem is constructed by focusing our
attention on just two cylindrical fibres in a composite material. Figure 1 shows the situation.
Heat enters the right-hand cylinder through some part of its surface that is far from the gap, then
crosses the gap region to enter the left cylinder, and then leaves this cylinder through a part of
its surface that is also far from the gap. We simplify this situation by considering only touching
cylinders, and then we model the inward flux of heat by placing a line source at a point inside
the cylinder, but far from the gap. Similarly, the outward flux of heat from the second cylinder
is modelled by a line sink.

When interpreting the solution of the above problem, we must bear in mind that the variables
are set up differently from the way in which O’Brien imagined the problem. In applications to
composite media, the temperature difference between the cylinders is considered to be the given
quantity, and the heat flux is what is calculated. In our problem, the heat flux is specified, and
the temperature field is the unknown. This difference in point of view is easily adjusted for,
however.

SPECIFICATION AND SOLUTION OF THE PROBLEM

We consider a pair of touching cylinders, each of thermal conductivity a and unit radius, placed
in a medium of unit conductivity. We take a Cartesian rectangular coordinate system with the
origin at the point of contact, the x-axis along the line of centres and the z-axis parallel to the
axis of each cylinder. The first cylinder is then in the right half plane z > 0, and the second in
z < 0. A line source of strength q is placed inside the cylinder at £ = z; on the x-axis. Similarly,
a line sink is placed at * = —x;. The temperature T satisfies the usual Laplace’s equation with
the boundary conditions that the temperature and the normal heat flux are continuous at the
surface of each cylinder. Since the problem clearly obeys

T(z,y)=T(z,~y)  and T(z,y) = -T(-2,y) , (1)

we need only discuss the solution for z > 0.
We solve this problem using tangent-circle coordinates, defined by

E+in= r4iy
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In these coordinates, the surface of the (first) cylinder is given by &€ = 1. The boundary conditions
become

T(£ = 1_’77) = T(g = 1+’77) ) (3)
o) T
0 le=1— “ on

It is easily verified that inside the cylinder; & > 1, the solution is

e=1+

q (5—2/rs)2+772] /°° s
T¢,N=——In|>—ur———| + A ds, 5
(& n) S [ 1 1 q i (s)e™ % cossnds (5)
where o
A(s) = ¢ (cosh szsinh s — a~!sinh sz cosh 3) , (6)

scosh s 4+ sasinh s
and where z = 1 — 1/z,. Outside the cylinder, ¢ < 1, the solution is

T, n) = q/ooo B(s) sinh s& cos snds | (7)

where

6(22—1)3

B(s) =

(8)

scosh s 4+ sasinh s’

ASYMPTOTIC ANALYSIS OF THE SOLUTION
We approximate the integrals in (5) and (7) asymptotically as & — oo, in order to test O’Brien’s
assumptions. The first test is to calculate the temperature along the z axis, the approximation
predicting that it will be zero at the point of contact £ = 0 and then rise over a distance of order
a~! to a constant value. There will be, in our calculation, a narrow peak around the line source,

=

but that is incidental. Setting 7 = 0 on the z axis, we can write T in (5) as

2q 2 1
T=-—In{1- L —a 'l 9
Fn(1o ) o —ata), Q
where

00 o=5(6=2) cogh inh

e cosh sz sinh s
' /o s(cosh s + asinh s) 5 (10)

0 o=s(6-2) ginh h

e sinh sz cosh s
I, = ds . 1
? /0 s(cosh s + asinh s) s (11)

The qualitative behaviour of the integrands in (10) and (11) is determined by the denominator
cosh s + asinh s. For tanhs << a~!, the integrands are O(1), while for tanh s >> a~! they are
O(a~1t). Therefore we break each integral at fa~! where 3 is a number O(1) to be determined.

Il:/ﬁa_l e—s<£—z)coshszsinhsd8+/°° e €D coshsz (12)
0 B

s(cosh s + asinh s) o-1 sa(l+ a~tcoths)

For 0 < s < fa~!, we expand the integrand as a power series in s around s = 0, and for s > Ba~!
we expand as a series in powers of a~! coth s. Integrating the two series term by term, we obtain

2 3 4
11:é[lna—y—ln(ﬂ({—z))—l—(ﬂ—%-l—%—%—l— ...)+(—%+#
1 1 £ — g g g
—%‘Fw-F ):|+( a2z) I:lnoz—lnﬂ—f-(/))—?“r?—f—‘r...)
1 1 1 1 _3 .
+(—E+W—%+W+...):|+O(a ). (13)
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Figure 2. Comparison of asymptotic and exact solutions for the temperature distribution on the
x-axis when o = 102. The solid line is a numerical evaluation of the solution and the dotted line
shows the asymptotic approximation.

Here ~ is Euler’s constant. The series cancel if § = 1, and so choosing this value and repeating
for I, we obtain

L—a 'l = IHTO[ - %@_Z) + 12—3(5’ —2z) + % [y +In(€ — 2)] + O(a™?) . (14)

The integral for T in (7) can likewise be approximated as

q¢ q¢

T= ?[lna—'y—ln(l—z)]—i—5(1—22)111@—1—0(0[_3). (15)

The expansion is valid outside a radius a~! from the origin, the point of contact, because & — oo
as z — 0, and in this limit the approximate treatment of the integrals breaks down.

We checked our asymptotic solution by evaluating the exact solution numerically. Figure 2
compares the asymptotic and numerical solutions for the temperature on the x-axis in the case
a = 100 , when z; = 1.3 and z; = 1.8. The results agree well.

COMPARISONS

We are now in a position to look at the qualitative behaviour of our solution and compare
it with the assumptions of O’Brien. He supposed that the temperature difference between the
cylinders was fixed, and predicted that the flux between the cylinders would be O(a/Ina) as
a — co. We can rescale the parameters in our problem to make it similar to O’Brien’s by setting
q = a@/Ina. Equation (9) becomes

In o

T/Q:1—L ’y+ln(£—z)+21n<1— 2 >]—|—O(of1). (16)

£xs
This equation confirms O’Brien’s assumption, and his main result. To leading order, the tem-
perature in the body of the cylinders is constant when the flux is O(a/Ine). In addition, we can
see that the temperature and flux are independent of x,, which shows that the exact conditions
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Figure 3. A comparison of results for the conductivity of a square array of cylinders. The solid
line shows the numerical results of Perrinset al., the broken line shows a formula due to Perrinset
al. and the dotted line shows a formula from this work.

far from the gap are not important to leading order. The equation also shows that the error
introduced by the assumptions is O(1/Ina). Unless a is very large, the error will be numeri-
cally significant, and figure 2 shows that, for « = 100, the temperature varies markedly from its
asymptotic value of 1.

Figure 3 shows the conductivities ¢ computed by Perrins et al [3] for square arrays of cylinders
in contact. The solid curve shows their results, and it can be compared with the broken curve
that shows an asymptotic formula

1
€~ iﬂa/lna—}—ﬁ (17)

due to Perrins et al but based on O’Brien’s work. The constant 6.0 was chosen to fit the numerical
data. A better asymptotic formula is based on (15), which suggests that the simple result
a/Ina should be modified by adding a constant to the logarithm. Thus the dotted line shows
¢ ~ ima/(Ina — 0.4), where the constant —0.4 was chosen to fit the data.

The conclusion of this study is that the assumptions of O’Brien’s theory are correct to leading
order in a, but because the errors are O(1/Ina), the asymptotic state is approached slowly.
However, in spite of the fact that at @ = 100 the temperature field still varies significantly in the
cylinders, the heat flux is predicted quite accurately, even for a as low as 10.
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