Function evaluation on branch cuts

Albert D. Rich and David J. Jeffrey
Soft Warehouse, Honolulu, Hawaii

Dept Applied Maths, U.W.O., London, Canada

SIGSAM Bulletin, June 1996, Issue 116, pp 25-27

1 Introduction

Once it is decided that a CAS will evaluate multivalued
functions on their principal branches, questions arise con-
cerning the branch definitions. The first questions con-
cern the standardization of the positions of the branch
cuts. These questions have largely been resolved between
the various algebra systems and the numerical libraries,
although not completely. In contrast to the computer
systems, many mathematical textbooks are much further
behind: for example, many popular textbooks still spec-
ify that the argument of a complex number lies between 0
and 27. We do not intend to discuss these first questions
here, however. Once the positions of the branch cuts have
been fixed, a second set of questions arises concerning the
evaluation of functions on their branch cuts.

In [2], Kahan considered the closure problem from sev-
eral points of view and discussed different possible solu-
tions. One of his proposals was a principle called counter
clockwise continuity (CCC) for the determination of the
closure of the elementary functions. To determine clo-
sure for any branch, one imagines circling the branch
point counterclockwise (anticlockwise in the British hemi-
sphere) and the closure is on the side one arrives at by
this process. Thus, one decides arctan(5i/3) = 17 +1In2
and arcsin(5/4) = 7 — iIn2. This convention has not
been followed by all systems. In particular, DERIVE de-
fines inverse tangent using clockwise continuity (CC), and
therefore obtains arctan(5i/3) = —im + iIln2. There are
many other cases within the current CAS of non-CCC
closures.

Examining the reasoning behind the DERIVE selection
of the closure of arctangent introduces the reasons for
many of the departures from CCC in other systems. If
both arcsine and arctangent are closed CCC, then the
relation between them that is valid over the whole of € is
arctan

—7K(=In(1+ 2))

arcsinz = \/17——%
+7K(—=In(1 = 2)) , (1)

where K is the unwinding number [1]. Another way to

express this uses complex conjugation:

—)
1—22)"°

where Z is the complex conjugate of z. In contrast, if
arctangent is defined as clockwise continuous (CC) the
relation is

(2)

arcsin z = arctan (

% . (3)

1—2z

arcsin z = arctan

This last relation is of prime importance within DERIVE,
and overrides the importance of maintaining CCC.

Kahan recognized the importance of algebraic identities
and their dependence upon closure definitions. For this
reason, he also discussed the idea of a signed zero. We
shall discuss both ideas here.

2 Closure by CCC

We start by considering whether CAS should follow Ka-
han in making all their functions CCC. The principles
seem to be as follows.

1. Standards are good. We should like all our arctan-
gents to simplify to the same thing on all systems.

2. CCC looked the best candidate for a standard. Be-
fore settling on CCC, Kahan had reviewed the im-
plementations existing at the time of his article. As
we have noted above, time has not established CCC
as the standard, certainly within CAS, although it
continues to exert a strong influence.

3. The standard allows the closure of new functions to
be determined automatically. It should be noted that
a finite branch cut cannot be CCC at both ends,
unless it has a singularity in the cut. Therefore this
principle will not always apply.

4. Any convention will allow some algebraic relations
and invalidate others. This point has two conse-
quences. First, one should not waste time searching

Function evaluation on branch cuts 26

for the perfect scheme, because it does not exist; sec-
ond, selecting one relation as the basis for criticizing
a particular closure scheme will not be conclusive,
because supporters of other schemes will always be
able to find similar relations that are favoured by
their schemes.

Given these principles, why is CCC not universally
used? The main reason is probably that algebraic re-
lations and numerical relations are not all equally im-
portant. For different areas of mathematics, and even
for different CAS, the algebraic relations can be roughly
ranked in order of importance. (This ranking may be con-
scious or unconscious.) The scheme that gives the best
form to the relations at the top of the list is the scheme
selected. It may be that no universal order of priorities
can be agreed on, in which case we shall have to live with
different definitions in different areas of mathematics.

Therefore, if agreement is ever to be reached, a compre-
hensive list of algebraic identities would have to be drawn
up, showing the forms of the identities under different clo-
sures. The equations above constitute an example of one
entry in this list. The CAS would have to agree on an
order of importance and then agree on the scheme that
put that list in its best form. If this does not lead to CCC
for every function, then one potential advantage of CCC
will be lost, namely, the ability to predict closure in the
absence of tables of properties. However, even with CCC,
one cannot avoid tables of properties. Few people would
be able to quote equation (1) without referring to a table.
Users of algebra systems spend most of their time work-
ing with functions, rather than defining them, so simple
consequences should take priority over simple definitions.

3 Signed zero

Kahan made a more radical proposal also [2]. The IEEE
standard for floating point arithmetic contains separate
encodings for +0 and —0. Therefore it is possible to
evaluate differently arctan(bi/3 + 0) =CCC-RESULT and
arctan(5i/3 — 0) =CC-RESULT.

Para-conjugation is defined to be z* = A func-
tion f(z) is said to have para-conjugate symmetry if
f(z*) = f(2)*, which is to say it is symmetric about the
imaginary axis. A function has near para-conjugate sym-
metry if f(z*) = f(z)*, provided %(z) # 0. Likewise,
conjugate symmetry means f(z) = f(z) and near conju-
gate symmetry means f(z) = f(z), provided (z) # 0.
For example, because square root has a branch cut along
the negative real axis, it has only near conjugate sym-
metry, and this under any closure scheme. However with
Kahan’s signed zero, we can gain full conjugate symme-

try, because v/ —1+ 0z = v/—1 — 01 = —i.

—Z.

The problem with a signed zero is the interpretation
of an unqualified point on the branch cut. Thus if a
user types arctan(bi/3), what does this mean? The sys-
tem would have to assume arctan(bi/3 £+ 0) and return
:i:%ﬂ' + 2zIln2. It is this observation that leads us to a
variation on Kahan’s proposal. For each function having
a branch cut, we avoid the question of closure by inter-
preting arguments on the cut as being indeterminate as
to side, and returning both values. Provided the branch
cuts are selected so that the indeterminacy manifests it-
self as an ambiguity in sign, then the system could return
simplifications using some implementation of the + sym-

bol.

4 A proposal

We make the proposal that multivalued functions do
not return unique values for arguments that lie on their
branch cuts. In DERIVE, the idea that a function need
not return a unique value has already been used in the
implementation of the signum function. Consider the fol-
lowing ways of defining sgn(0).

1. Define sgn(0) to be 1 or —1. If this is done, the
identity sgn(—z) = —sgn(z) is not true at z = 0. On
the other hand, the identity |sgn z| = 1 is obeyed.

2. Define sgn(0) to be 0. In this case the anti-symmetry
relation is valid but | sgn z| # 1.

3. Let sgn(0) be an unspecified point on the unit circle
of the complex plane. Both of the above identities are
now retained. Notice that we are not proposing that
sgn(0) be undefined or remain unevaluated. Having
a natural representation for an arbitrary point on the
unit circle turns out to be quite useful, for example,
the solution of the equation |z| = 1 is sgn(0).

Reasoning similar to that just given for the signum sin-
gularity leads us to conclude that multivalued functions
should not be given unique values along their branch cuts,
but instead the functions should simplify to an arbitrary
element of the set consisting of the values of the func-
tion on either side of the cut. In this way, identities are
not invalidated by the assignment of unique values on the
branch cuts. Consider as an example the logarithm func-
tion. The identity that is lost by specifying values on the
branch cut is

InZ=1Inz. (4)

Enforcing CCC for logarithm and trying to retain the
identity leads to the contradiction

Function evaluation on branch cuts 27

Thus we propose that In(—1) simplify to +m¢ instead of
mi. Notice that we are not proposing to return a set of val-
ues, elementary functions do not return sets. Rather, the
value returned can be operated on by mathematical op-
erators the same way numbers can: for example, (+im)?
simplifies to —m2.

The following table gives, for each of the multivalued
elementary functions, the position of the branch cut, in
DERIVE’s implementation. Other CAS may place some
of the branch cuts in different places. For example, the
branch cuts of acoth were recently changed in Maple. The
branch cuts are specified using z = z + iy. The table
also contains for each function a relation that is valid on
the whole complex plane except on the branch cuts, if a
particular value is selected.

Function Branch cut Symmetry relation
In : r<0,y=0 InZ=Inz
asin : |z]>1,y=0 asinz = asin z
acos : |z]>1,y=0 acos z = acos z2
atan : lyl>1,2=0 atan z* = (atan z)*
acot : lyl>1,2=0 acot z* =

7+ (acot z)*
asec : lz] < 1,y=0 asecZ = asec z
acsc : lz] < 1,y=0 acscz = acsc z
atanh : |z] > 1,y=0 atanhz = atanh 2
acoth : lz] < 1,y=0 acothz = acoth z
asinh : lyl>1,z=0 asinh z* = (asinh z)*
acosh : r<1l,y=0 acoshz = acosh z
asech : z<0,z>1,y=0 asechz = asech z
acsch : lyl< lL,z=0 acsch z* = (acsch z)*
nth root: =< 0,y=0 ()" = 2l

The ramifications on a CAS that systematically imple-
mented this proposal are significant, but we think benefi-
cial. For example, the last line of the above table means
that /=1 should simplify to +i instead of i. Otherwise,
a CAS should not simplify v/Z — \/z to 0, even though z
could be real and negative.

Although our reasoning may be valid, we realize that
simplifying v/—1 to & would have the mathematics com-
munity howling. After all, 7 is widely defined as being
V/—1. The problem comes from trying to define i in
terms of elementary functions of real numbers. Gauss
defined complex numbers as pairs of real numbers (z, y)
that obey various rules. One consequence of these rules
is (0,1)2 = (—1,0). In such a system, since /—1 does not
serve as the definition for i, it can be allowed to simplify
to =+i.

Computer algebra systems can easily store expressions
that represent arbitrary elements of a set, such as +:.
However, strictly numerical programs must return a num-
ber or an error. No one wants their scientific pocket cal-
culator to return an error for arcsin(2). Thus, adopting

a convention for assigning a unique value along branch
cuts may well be appropriate for such programs. As is
well known, there is a tension between symbolic simpli-
fication and numerical computation. Thus most CASs
already have two ways of evaluating mathematical ex-
pressions: exact (i.e. symbolic) mode and approximate
(i.e. numeric) mode. Therefore, we propose that /—1
should simplify to +i and it should approximate to .
What would happen internally is that /—1 would sim-
plify to +i, which is stored as (+1)7 and then +1 would
approximate to 1.

The following table summarizes the consequences of
systematically using this algorithm on branch cuts of var-
ious inverse elementary functions:

Expression Simplifies to Approximates to

V-1 +i i

In(—1) +mi 3.1415...4

arctan(57/3) +w/2+4In2 1.5707...+ 0.6931...¢

arcsin(5/4) w/2+4iln2 1.5707...4 0.6931...
References

[1] R.M.Corless and D.J.Jeffrey, “Editor’s corner:The un-
winding number” | this BULLETIN, pp.28-35.

[2] W. Kahan, “Branch cuts for complex elementary func-
tions” | in The State of the Art in Numerical Analysis:
Proceedings of the Joint IMA/STAM Conference on
the State of the Art in Numerical Analysis, Univer-
sity of Birmingham, April 14-18, 1986, M. J. D. Powell
and A. Iserles, Eds, Oxford University Press.

