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The tan(z/2) substitution, also called the Weierstrass substitution, is one method currently used
by computer algebra systems for the evaluation of trigonometric integrals. The method needs
to be improved, because the expressions obtained using it sometimes contain discontinuities,
which unnecessarily limit the domains over which the expressions are correct. We show that the
discontinuities are spurious in the following sense. Given an integrand and an expression for its
antiderivative that was obtained by the Weierstrass substitution, a better expression can be found
which is continuous on wider intervals than the first expression, and yet is still an antiderivative
of the integrand. The origin of the discontinuities is identified, and an algorithm is presented for
automatically finding the improved type of antiderivative. The new algorithm also enlarges the
set of functions that can be used in the substitution. The algorithm works by first evaluating the
given integral using the Weierstrass substitution in the usual way, and then removing any spurious
discontinuities present in the antiderivative.
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1. INTRODUCTION.

Computer algebra systems integrate expressions that contain trigonometric functions using
a variety of algorithms, including table look-up, the Risch algorithm, and substitutions such
as those in section 2.50 of Gradshteyn and Ryzhik [1979]. One standard substitution used
by all systems is u = tan %LL' (assuming the integrand is a function of z), first suggested
by Weierstrass [Stewart 1989]. This substitution converts a rational function of sinz and
cos x into a rational function of u, and the rational function so obtained can
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be integrated using algorithms such as those by Hermite, Horowitz and Rothstein—Trager
[Geddes et al. 1992]. Even for integrands that are not rational functions of sinz and
cos z, the transformed integral in v can sometimes be evaluated by the system. Although
the substitution is a well-established topic in calculus textbooks, all published accounts
of it — and hence almost all implementations in computer algebra systems — are essen-
tially incomplete, because they fail to address discontinuity problems in the antiderivatives
obtained.

The unsatisfactory aspect of the existing theory can be quickly established by an
example. Consider the problem of integrating 3/(5 — 4 cos z). This function is continuous
and positive for all real =, and so its integral should be continuous and monotonically
increasing. However, by letting u = tan %;z:, we obtain

d d
/3730 = / _6du = 2 arctan(3 tan %1’) , (1)

5 —4coszx 14 9u?

the constant of integration being taken as understood. This result is unsatisfactory because
the right-hand side of (1) is discontinuous at odd multiples of 7, in spite of the fact that
we just established that the integral should be continuous for all x. This is illustrated in
Figure 1, where the right-hand side of (1) is plotted together with the integrand.
Expression (1) is a potential source of error for a computer-algebra system and for its
users. For a start, the fact that (1) is discontinuous could easily be missed by a user who
is not an experienced mathematician. Furthermore, if (1) were used in a routine unseen
by the user, for example, in a differential-equation solver, there would be no warning of
possible errors. It is also a source of inefficiency, because the only way to prove that

27 dL
/ 3 o (2)
0

5—4cosx

using (1) is to split the range of integration at * = m. Several systems, for example Maple V
release 2, Mathematica 2.1 and Macsyma 417.125, have special checks in their definite
integration routines to detect equations such as (2) and give them special treatment, but
clearly a more efficient alternative would be to replace (1) with a continuous expression,
making the extra code unnecessary.

The issue is not confined to computer algebra systems, because the substitution is the
subject of misleading statements in all calculus books. Standard references that give the
result (1), or something similar to it, include Gradshteyn and Ryzhik [1979, entry 2.553.3],
Burkill [1962], Greenspan et al. [1986], Adams [1990], and Thomas and Finney [1984].
None of these books (nor any others known to the authors) points out that the right-hand
side of (1) contains discontinuities that require special attention.

The problem addressed by this paper can be posed precisely by stating the algorithm
for applying the Weierstrass tan(z/2) substitution, as it is universally
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Fig 1. The integrand and integral given in eq. (1). — — — integrand. ———— integral.

taught in calculus books and commonly implemented by computer algebra systems.
Standard algorithm. Given an integrable function f(sinz,cos z) whose indefinite in-
tegral is required, make the transformation

‘ 2u 1 —wu? 2
/f(mna:,cos:z:)da?:/f(l_l_ugv1_|_u2> 1+ u2 du.

Evaluate the right-hand side using standard algorithms and substitute u = tan %CL‘ into the
expression obtained to get the final result.

Here we modify this algorithm so that the result does not contain spurious disconti-
nuities (spurious in the sense defined above).

2. AN EXAMPLE OF A CONTINUOUS ANTIDERIVATIVE.

In this section, we introduce the algorithm by showing that we can derive a replacement for
(1) that is continuous everywhere on the real line. We first replace the indefinite integral
in (1) with a definite integral, because indefinite integrals do not show the domain of the
integration variables. Thus we consider

()_/I 3d6
IWEI = <D —4dcosf

By rewriting Weierstrass’s substitution for this integral in the form

@ =2arctanu ,

and recalling that the range of arctan is the interval (— %ﬂ', %’R’), we see that we must restrict

6 to lie in the interval (—m, 7), and this requires that the integral be restricted to |z| < =. To
evaluate the integral for |z| > 7, we find an integer n such that (2n —1)r < z < (2n+ 1)~7.

Then ‘
/f 3d6 /<2"—1>” 39 /f 3d6
. 5—4dcosf J_ 5—4cosb (2n—1)x O — 4cos b '

™
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Fig 2. The discontinuous expression (1) and the continuous expression (3) for the integral
in eq. (1). ———, integral (1). — — —, integral (3).

The first integral on the right-hand side can be simplified using the periodicity of the
integrand and the second can be evaluated by modifying the Weierstrass substitution to
6 =2nm + 2arctanu. Then

r 3d8 g 3d8
/7r T icod = n/ﬂm —|—2arctan[3tan(%:z: —nrw)|+7

= 2n7 + 2arctan(3 tan %”L‘) + 7.

The intermediate quantity n can now be removed by using the floor function |z], which
returns the nearest integer less than or equal to z. By noting that n = |(z 4+ 7)/27],
we can revert to indefinite-integral notation and replace (1) with a continuous expression.
The result is

(3)

where the unnecessary constant 7 has been dropped. For the points © = (2n + 1)7, this

5—4dcosx 2 2

d
/371; = 2arctan(3tan Sz) + 27 V: + WJ ,

expression must be interpreted using a limit (from either side since the function is now
continuous). In Figure 2, the discontinuous expression (1) and the continuous expression
(3) are plotted on the same axes. A particular point of contrast between (3) and (1) is the
fact that (1) is periodic in z whereas (3) contains a secular term.

3. EXAMPLES SHOWING THE SCOPE OF THE PROBLEM.

In the previous section, we showed that a continuous alternative could be found for our
opening example, but we did it by reworking the entire integration. This approach is
clumsy and difficult to automate in a computer algebra system, so here we look for an
alternative. We start by considering some examples that establish the following four points.
First, the Weierstrass
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substitution is better considered as a family of substitutions; secondly, the discontinuities
that we need to remove are introduced by the method of integration, and are not a property
of the integrand; thirdly, not all discontinuities are spurious; and lastly, the discontinuities
can be present even in expressions that do not contain arctangents.

So that there is no possibility of the equations that follow being misunderstood, we
shall adopt the following notation. When an integral is simplified to a form containing
spurious discontinuities, we shall use the symbol = to remind the reader that the equality
is unsatisfactory, and reserve the proper = for equations in which the discontinuities have
been removed.

Any algorithm must take into account the possibility of variations on the basic substi-
tution. For example, although many systems evaluate the integral of 3/(5 + 4sin z) using

the standard v = tan %x to obtain

Hsinx +4cosz +4
3+ 3cosx

: (4)

3d
/ Mﬁ = 2arctan(§ tan %;z: + %) = 9arctan

some systems prefer the substitution v = tan(%x + iﬂ') which gives

3d: 3 cos
/ _ 0 - 2arctan(3 tan[%x + iﬂ']) = 2arctan L.ST . (5)

5+4sinz 1 —sinz

Some systems consider (5) to be simpler than (4), and therefore any algorithm must support
both choices. We note that the discontinuities present in both (4) and (5) are at different
values of x. In the same way, /1 — cosz integrates most easily using u = cot %x, while
1/(1 + sin® z) is best integrated using u = tanz.

The key to the automatic procedure is the fact that the discontinuities are conse-
quences of the method of integration; they are not properties of the integrand. In the
next section we give a theorem to this effect; here we give an example. Integrating
sec? x/(1 + tan? z) using the substitution u = tan z gives the discontinuous result

/ sec? zdx | tan(t ) (6)
————— = arctan(tan ) ,
1+ tan®z

instead of the obviously correct continuous result x. The two results are equivalent for
—%77 <z < %ﬂ', but only the second is correct otherwise. It might appear that (6) could
be corrected easily by transforming arctan(tanz) to z. This, however, is just a fluke and
cannot be generalized to other integrals: it is shown below in (8) that the same hopeful
transformation can lead to completely incorrect results.

Not all discontinuities are spurious. If the integrand is not integrable at some points,
then singularities will be present in the integral, and such singularities must be accepted
and cannot be removed. An example that combines genuine discontinuities due to the
integrand and spurious discontinuities due to the method of integration is

15dzx tan 1z + 1
=3ln —2—— + 8arctan(3tan 1x) . 7
/cos z(b —4cosx) " tan Tr—1 + 8arctan(3 tan 5) (7)
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The discontinuities at * = (n + %)ﬂ' cannot be removed, while those at z = (2n + 1)7
should be.

The final point we wish to make concerns the form of the integrals. The above exam-
ples give the impression that only integrals expressed using the arctangent function will
be discontinuous, but the next example shows that algebraic simplification can remove the
arctan functions from view.

2sin
1 dz = 2v/25si tan(tan 1 = 8
/\/ + cosx dx \/_sm(arc an(tan 2:1;)) T eos (8)

We mention in passing that the incorrect simplification of (8) to 21/2sin %CL‘ is returned by
some computer algebra programs.

4. BASIS OF THE ALGORITHM.

The basis of the algorithm is the following theorem. A similar theorem justifying
integration by substitution can be found in most calculus textbooks, but they state it only
for definite integrals, and here we need a statement for indefinite integrals.

Theorem. Given a function f that is continuous on an interval [a,b] and a function
¢ that is differentiable and monotonically increasing on the interval [¢~'(a), ¢! (b)], the
function

¢_1(1’) z
s = [ semgma= [ o

is continuous for x € [a, b].
Proof. The function

oe) = [ fa

is continuous by the fundamental theorem of calculus. The two integral representations of
g are equal by theorem 6.19 in Rudin (1976).

Our interest in this theorem lies in the conditions under which it fails. For the algo-
rithm, we need to know that the expression

¢~ (x)
/ F(6(£)d' (1) dt
¢~ 1(a)

can only be discontinuous at points where f is not integrable or at points where ¢ is not
differentiable. There is nothing we can do about points where f is not integrable, so we
focus on what happens when ¢ is singular. Suppose f is integrable on an interval [, ¢|, and
¢ is differentiable and monotonically increasing at all points in [a, ¢] except the isolated
point b. On such an interval, the function we wish to find is g, defined by

oo = [ f)a
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and it will be continuous by the fundamental theorem; the function we actually find,

— [ #6()e (@) da

So long as = < b, the function g can be expressed, by the above theorem, in terms of g.

g(x) = g(z) = g(a) .

For x > b, the connection between ¢ and § is obtained as follows.

/f ds_/f ds—/f ) ds
/ feras— [ (()) F(6(0)8' (1) a

—g(c) +4(z) .

To eliminate g(c¢) from this equation, we calculate

however, is g.

~

lim g(x) — lim g(z) = lim (g(z) +g(a)) — lim (g(z) —g(c) +g(c))

r—b— r—b+ r—b— r—b+
=g(c) —g(c) + g(a) ,

where the limits have been evaluated using the continuity of ¢ at b. We can combine the
expressions for ¢ in the intervals [a, b] and [b, ¢] into a single equation using the Heaviside,
or step, function H.

g(z) = §() = g(a) + H(z —b) | lim g(z) — lim (z)
This gives a continuous expression for the desired function g in terms of the computable
function ¢. In graphical terms, the functions g and ¢ will separate from each other by
a series of jumps at isolated points. The continuous function ¢ can be built from ¢ by
cancelling the jumps.

For the case of the substitution ¢(z) = tan %x, the isolated points at which the sub-
stitution might introduce discontinuities are those where the tangent becomes unbounded,
namely ¢ = (2n + 1)7, n being an integer. Thus integrals obtained using this substitution
need to check the continuity only at = (2n + 1)x. In addition, since tan %w has period
27, the substitution can only be applied to integrands having the same period, meaning
that all jumps will be equal. Thus we need to examine only one point, say © = 7, to
obtain the size of the jump. Because of the periodicity, the jumps can be cancelled using
the floor function |z|. If §(z) is a provisional antiderivative that has been obtained using

the tan %:1: substitution, we calculate

K= lim g(z)— lim g(z) . (9)

r—mT— r—mT+

The function g(z)+ K |(x + 7)/27| is then a corrected antiderivative of the given function
that contains no spurious discontinuities and is discontinuous
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Table 1. Functions u = ¢(z) used in the Weierstrass algorithm and their corresponding
substitutions.

Choice o(x) sin x cos T dz b P
(a) ton ] 2u 1—u? 2 du 5
a an=x — — v T
2 1+ u? 1+ u? 1+ u?
u? —1 2u 2 du
() tan(ze +37) 3T w1 T 7 7
2u u? —1 —2du
1
(c) cot 3¢ T2 T2 1 0
d tan x v L du 1r 7
(d) 2

V1t u? Vitu? 1+ wu?

only when there is a singularity in the integrand. If either of the limits fail to exist, then
a singularity of the integral coincides with the point, and no correction is needed.

5. COMPLETE STATEMENT OF THE ALGORITHM.

A complete statement of the modified algorithm, taking into account the points es-
tablished in section 3 now follows. We start by defining a Weierstrass substitution to be
one that uses a function appearing in table 1. There are other trigonometric substitutions
used by computer algebra systems, sine and cosine being the obvious examples, but since
these are never singular, they cannot lead to the problems addressed by this paper, and
hence we have not included them in our definition.

Given an integrable function f(sin z, cos x) whose indefinite integral is required, select
one of the substitutions listed in table 1. The choice will be based on heuristics and since
it affects only the form of the final result, it is not important to develop an extensive set
of heuristics. However, we can note that choice (a) is good for integrands not containing
sinz, choice (b) is good for integrands not containing cosz, (¢) can be useful in cases in
which (a) gives an integral that cannot be evaluated by the system, and (d) is good under
conditions described in Gradshteyn and Ryzhik (1979, section 2.50). The integral is now
transformed using the entries in the table. For example, for choice (¢) we have

/f(sm:z;,cosx)d:l::/f<1_|_u271_|_u2> 14+u?

The integral in u is now evaluated using the standard routines of the system, and then u
substituted for. Call the result g(z). Next we calculate

K = lim g(z)— lim g(z),

r—b— r—b+
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where the point b is obtained from the table. The correct integral is then

g(z) = /f(sin:z;,cos:z;)d:z; = §(z) + K V;bJ :

where the period p is taken from the table.

6. EXAMPLE APPLICATIONS.

We now rework the examples given earlier in the paper to show the algorithm in action.

Starting with (1), we have seen that the integration gives §(x) = 2arctan(3tan ;z) and

therefore K = 27. Hence we obtain

d J—
/L = 2 arctan(3 tan %CL‘) + 27 V; ﬂ-J 5 (10)

5—4dcosx 2

which differs from (3) by the constant 2x. For (5), we use choice (b) and obtain

3dx r—7/2
/m — 2arctan(3tan[%x + iﬂ']) + 27 { . J ) (11)

For (7), we use choice (a) and obtain K = 8w, giving

15dx tan 1z + 1 r—7
= 3Iln —>—— + 8arctan(3tan Jz) + 8 : 12
/cosw(5—4cos:1:) ntan%a;—l—l_ are an( anzzz:)—l— WL 2 J ( )
This expression is still singular at © = (n + %)77, but, with the correction, any definite

integral which is well defined, i.e. whose limits lie between adjacent singularities, can be
evaluated by substitution in the antiderivative. Next, equation (8) is corrected using choice
(a) to obtain

2sinx o
val de = —— +4vV2 | ——| . 13
/ + cosx dx T cons + \/_{ oy J (13)

The related integral of /1 — cos z is interesting, because if choice (a) is used, we obtain

[ 2u?  2du
/\/1—COS(ECLT:/ mm, (14)

and most systems cannot integrate this correctly. On the other hand, using choice (¢) we
obtain

2  —2du 1 T
/\/l—cosxdx—/ﬂmm——2cot§$\/1—cos:1:—|—4\/§L%J ) (15)
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Finally, we do not need to correct (6), but if choice (d) were used, however unwisely, we
would obtain K = 7 and

sec? z dz r—7/2
———— = arctan(tanz) + 7 | ———— | ,

1+ tan®z v

which is equivalent to x — 7, and this is the proper way to remove the discontinuity.
7. CONNECTION WITH ALGORITHMS BY RIOBOO AND OTHERS.

Many of the examples above contain arctangents, and since the integral with respect
to u is often a rational function of u, the algorithm of Rioboo [Geddes et al 1992] comes
naturally to mind. This algorithm is relevant to the present one in several respects. The
problem it addresses is similar, namely spurious discontinuities in integrals expressed using
the inverse tangent function, but the origins of the discontinuities are quite different. The
discontinuities of concern to Rioboo are the result of converting complex logarithms to
arctangents, whereas here the discontinuities are the result of unavoidable limitations in
the substitution process. In addition, Rioboo’s algorithm is based on certain properties
of the inverse tangent function, but the Weierstrass substitution does not always lead to
inverse tangents, as we saw in example (8). The present algorithm continues to work even
when there are no arctangents in the final result. Therefore, although the two algorithms
have similar aims, Rioboo’s algorithm cannot be used in the present context.

There is another connection between this work and Rioboo’s algorithm. After the
present algorithm has transformed the initial integral in = to one in wu, it relies on the
system to evaluate the transformed integral with respect to u. The algorithm assumes
that this will be done correctly, and that no spurious discontinuities will be introduced by
the integration routine. If the algebra system returns a result that is not continuous, then
the present algorithm fails. Here is an example. Using substitution (a), we see that

2\/—/1—|—cos;z; :4\/5/ du
1+ ut

14 cos?zx

Before Rioboo’s algorithm, many systems integrated the last integral incorrectly, returning
the discontinuous

+ 2 arctan

N U-l-\/_—l- uy/2
4\/_/l—l—u‘l_ \/_—I— 1—wu?’

(We revert to the = notation for this integral.) If we now substitute u = tan %:z: into the
last expression, we find that the result has a spurious discontinuity at * = 7/2 instead of
at r = 7 as the algorithm expects. With a correct,
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continuous result for the integral (using Rioboo’s algorithm or another method), we obtain

1 1
2\/7/ 14+ cosz :lntan2§$+\/_tan§:z:—|—1
1 + cos? :r: tan21 \/_tané"l;—l—l

+2 arctan(\/_tan 5T + 1)+ 2a1‘ctan(\/§tan %:r: — 1) +4r|(x —®)/2r] .

This reminds us that the Weierstrass algorithm is not the only one that can introduce
spurious discontinuities into expressions for indefinite integrals. All such algorithms should
be corrected if computer algebra systems are going to deliver reliable results to users, with
their varying levels of mathematical ability.

8. REMARKS UPON IMPLEMENTATION.

The algorithm described in this paper has been implemented by Derive (Rich and
Stoutemyer 1988) to some extent, but not at present by any other system. There are no
cases for which the algorithm does not work in theory, but the supporting functions of the
algebra system may not be adequate to implement it in practice. One of the requirements
for implementation is support for the floor function, or an equivalent such as the round
function. Some systems do not have good treatments of these discontinuous functions.
Another requirement is that all other routines return correct integrals, since this algorithm
will fail if the integral in u is incorrect. Finally the limit packages must be able to handle
the limit calculations required. If the integral in question contains symbolic entries, then it
is possible that the limit package of the algebra system will fail. As an example, consider

/ dz
a—+ coszx '

The first stage of the present algorithm gives the expression

2 . a2—1t 1
———arctan | ——— tan sz
Vaz -1 a+1 2

Therefore, the required limit calculation is

. 2 Va? —1 1
1:1_1>I7l;l_ \/ﬁ arctan ﬁ tan E.f

If @ > 1 then all quantities are real, and most systems can do this, but if a < 1, then
the limit requires the correct treatment of arctangents of complex arguments, which few
systems are able to do. We emphasise, however, that the limits are indeed computable,
and not difficult in spite of being beyond many systems. For example, the correct value of

the above limit is
T az—1
————csgn| — | ,
a2 —1 a+1
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provided the arctangent is defined according to Kahan, and

1, for R(z) >0 or (R(z) =0 and I(z) > 0)
csgn(z) = ¢ —1, for R(z) <0 or (R(z) =0 and I(z) < 0)
0, for z = 0.

As a result of recent changes in textbooks on introductory calculus, which now omit
the Weierstrass substitution, users will be less likely to know the substitution. This may
not be such a bad thing, since the treatment in the books was always misleading. Not
only did the question of the continuity of the integral pass unmentioned, the exercises
always avoided situations which might alert the reader to the flaw in the treatment. Users
of computer systems who check results obtained from their systems against the standard
published tables of integrals should be aware that the tables continue to contain incorrect
entries.
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