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The paper presents four rectifying transformations that can be applied to the integra-
tion of a real rational expression of trigonometric functions. Integration is with respect
to a real variable. The transformations remove, from the real line, discontinuities and
singularities that would otherwise appear. If the integration is with respect to a complex
variable, the transformations remain valid. In that case, they move singularities from
the real line to elsewhere in the complex plane.

1. Introduction

Let ¢, ¢ € R[z,y] be polynomials over R, the field of real numbers. A rational trigono-
metric function over R is a function of the form

T(sin 2, cos z) = LLEN 20052

(1.1)
The problem considered here is the integration of such a function with respect to a real
variable, in other words, to evaluate f T(sin z,cosz) dz with z € R. The particular point
of interest lies in the continuity properties of the expression obtained for the integral.

d(sinz,cos z)

General discussions of the existence of discontinuities in expressions for integrals have
been given by Jeffrey (1993) and Jeffrey (1994). Those discussions were restricted to
integration with respect to a real variable, but it is useful to extend them to the complex
plane for the following reason. Given a function f : R — R and an integration problem
[ f(z)dz with z € R, almost all computer algebra systems (CAS) require that this
problem actually be addressed as [ f(z)dz for z € C (the field of complex numbers),
whether the user requires this generality or not. Therefore, we begin by reconsidering an
example that has been previously discussed in the context of real variables (Jeffrey and

Rich 1994), namely,

3d
Li(z) = / i = 2arctan(3 tan 12) . (1.2)

5—4cosz 2

For z € C, consider the singularities and branch cuts possessed by the quantities appear-
ing in (1.2). By periodicity, a discussion restricted to —m < $(z) < & suffices, where
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R(z) is the real part of z. The integrand has simple poles when cos z = g, at the points

z = +iIn2. Corresponding logarithmic singularities must therefore be present in the
expression on the right-hand side of (1.2). This is verified by observing that arctangent has
logarithmic singularities at +¢ and that 3 tan %(:l:iln 2) = =i. Also, since it is standard
for arctangent to have branch cuts from +i along the lines {+iy,y € [1,00)}, and since
3tan%(:l:iy) = #3itanh %y, the right side of (1.2) has branch cuts along the set of
lines Ly = {#iy,y > In2}. These branch cuts, being associated with the logarithmic
singularities, are unavoidable. However, there are other singularities and branch cuts
present in the same expression. Since 3 tan %(ﬂ' + iy) = 3icoth %y, the right-hand side of
(1.2) has singularities at +7 and branch cuts extending from these along the set of lines
Ly = {+7+1iy,y € R}. Figure 1 shows this information graphically; the singularities are
indicated by triangles and diamonds, the branch cuts L; are shown using heavy wavy
lines, and the branch cuts Ly are shown using hatched lines. The figure uses periodicity
to extend beyond the interval discussed above.
Now consider the equation

- 3dz sin z
Il(z):/m:z—}-?arctanm . (13)
The right side of this equation has singularities at the points z = +¢1n 2 and branch cuts
along the lines L1, but it does not have singularities at £, nor branch cuts along L.
Therefore, if the integral were to be evaluated along a contour that cut one or more lines
in Ly, the evaluation would be more efficient and reliable using (1.3). For contours along
the real axis, (1.3) satisfies the definition of an integral on the real domain of maximum
extent (Jeffrey 1993). The present paper gives an algorithm for obtaining (1.3) in place
of (1.2).

Other examples show different forms of the problem. Consider

b(z) / (cosz+2sinz + 1) dz
z) =
2 cos2z —2sinzcosz 4+ 2sinz + 3

In the complex plane (again using periodicity to simplify the discussion), the integrand
has poles at z = 2arctan (—% + 11/1 £ 41). The right-hand side of (1.4) has logarith-
mic singularities at the same points, and in addition singularities at z = 4. The lines
{2arctan (—% &+ 1/T £ 4iy), for y € [1, 00)} are branch cuts running between the singu-
larities. For integrals along the real line the singularities appear as removable disconti-
nuities. Thus any definite integral along the real line with an end point at (2n + 1), for
n an integer, must be evaluated using the fact that lim,_ (2,41)x Iy(z) =
Next, consider

= arctan(tan2 %z + tan %z) . (1.4)

Ly
I(2) / (24 5sinz + cos z) dz
z =
3 dcosz +sinzcosz — 2sinz — 2sin? 2
= —In(2tan %z — 1) = In(1 + tan %z) + ln(tam2 %z + tan %z +2). (L.5)

The right side of (1.5) contains singularities at z = —%ﬂ' and z = 2 arctan %, correspond-
ing to singularities in the integrand. It also contains singularities at z = £, which are
avoidable. For integrals along the real line, these singularities appear as spurious discon-
tinuities in the imaginary part of the integral at +m. For example, I3(m) is undefined,
while lim;  r4 I3(2) = —In2—27i but lim,,._ I5(z) = —In 2. Algorithms are given here
that remove the avoidable singularities.

An algorithm that avoids spurious discontinuities when integrating trigonometric func-
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Figure 1. The branch cuts of (1.2) in the complex plane, indicated by the wavy and hatched lines.
The points A% are at 2nm + 71n 2 and correspond to poles in the integrand. The branch cuts extending
from them are labelled L in the text. The points By, are at (2n + 1)7 and are singular points of (1.2)

but have no corresponding singularity in the integrand. The branch cuts extending from them are
called 5 in the text.

tions was given by Jeffrey and Rich (1994), and applies to integrals with respect to a
real variable. It uses the Weierstrass family of substitutions to convert a trigonometric
integral into an integral of a rational function. The evaluation of this integral, followed
by substitution, gives an antiderivative for the original integrand in a form that might
contain a periodic discontinuity. The size of the possible discontinuity is obtained from
a limit calculation and a final expression for the integral is then constructed by adding
a suitable multiple of a floor function to the integral. For example, the antiderivative in
(1.2) was shown above to contain discontinuities. The algorithm replaces it, for z € R,
with

3d
/ _ 3de = 2arctan(3 tan 1) + 27 [ (1.6)

5—4cosz

CL‘—|—7TJ

2

The reasons for wishing to improve on this algorithm are as follows. First, the floor
function is defined only for real arguments, and therefore (1.6) cannot be used in the
complex plane. Second, there are removable discontinuities in (1.6) at z = (2n + 1),
and therefore a numerical evaluation at these points must use a limit. Third, obtaining a
continuous function by combining discontinuous functions is less elegant than obtaining
it by combining continuous functions. Fourth, the limit computations are time consuming
and a method that avoids these will be more efficient.

2. Rectifying transformations and a new algorithm

The idea of a rectifying transformation was introduced by Jeffrey (1993), but a defini-
tion was not given.
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Definition: Let D C C be a domain in the complex plane. Let a function f : D — C be
defined and integrable everywhere on ID except on a set of isolated singular points S¢. Let
F,G : D — C be primitives of f, which is to say, their derivatives satisfy F' = G’ = f,
and further let them have sets of singular points Sg and S respectively. Necessarily, we
have Sp,S¢ O S;. A transformation 7 is a rectifying transformation on ID if it has the
properties that 7(F) = G and Sg C Sp ; if S¢ = Sp then the transformation is neutral,
and if S D Sp then the transformation is exacerbating.

Ezample: Tt was shown by Jeffrey (1993) that given functions A, B : R = R, and the
integrand f = A’/A+ B’/ B, the transformation 7 (In A+In B) = In(AB) can be rectifying
or neutral on R. In the particular case in which A = sinz and B = cscx — cotz, and
thus f = cot 1z, it is rectifying. In the case A = 1/2 and B = 1/(1 + ), it is neutral.
By reversing the roles of F' and G, a transformation that is neutral or exacerbating is
obtained.

Remark: Typically, the transformation 7 will be defined only on a specific and narrow
class of functions.

The intention is that a rectifying transformation is used within an integration pro-
cedure after a primitive, or antiderivative, has been computed for a given integrand.
The transformation then finds an equivalent antiderivative with better global properties.
Therefore, before a description is given of the new transformations, the algorithm begins
by reviewing an existing method for obtaining antiderivatives of trigonometric functions.

THEOREM 2.1. Let ¢,v¢ € Q[z,y] be polynomials, where Q denotes the field of rational
numbers, and let T(sin z, cos z) = ¢(sin z, cos z) /1P(sin z, cos z) be a rational trigonometric
function over Q. An integral of T' can be computed in the general form

/T(sin z,cosz) dz = R(u) + Z a; Iny;(u) + Z B; arctan Pj(u) , (2.1)
i J

where u = tan %z, R € Q*(u) is a rational function, v;, P; € Q*[u], where Q* C R s an
extension of Q, and a;, 3; € Q*. Moreover, the v; are monic, and the P;(u) have positive
leading coefficients.

ProoOF. The standard substitution u = tan %z, sometimes attributed to Weierstrass,

converts the integral of T" into an integral of a rational function in u. Write this as

2 1 — u? 2
/T(sinz,cosz) dz:/T<1+uu2,1+zz) T du:/f(u) du .

Algorithms 11.1 and 11.2 (Hermite-Horowitz) in Geddes et al. (1992) reduce the integral
to a rational part and a logarithmic part.

[ fdu=rew+ [ 58 au

where a and b are polynomials. Algorithms 11.3 and 11.4 (Rothstein-Trager-Lazard) in
Geddes et al. (1992) evaluate the logarithmic part as

a(u) = a; lny; 2.2
/b(u)du_zi: ilny; | (2.2)




Rectifying Transformations 567

where the v; are polynomials in u, possibly with complex coefficients. Let the functions
v; be ordered so that those with purely real coefficients are numbered from 1 to m,
for some m; these logarithms are then left unchanged. For ¢ > m, the logarithms con-
taining coefficients with nonzero imaginary parts are converted to arctangents using the
rectifying transformation due to Rioboo (1991) that is described by Bronstein (1996)
and also outlined by Geddes et al. (1992) in their exercise 11.18. By using the identity
arctan(—f) = — arctan f, one can ensure that the leading coefficient of each P; is pos-
itive, albeit, determining the sign of the leading coefficient might require considerable
effort. O

Remark: The rectifying transformations that are now described are independent of theo-
rem 2.1, but they are most usefully applied to expressions such as (2.1), whether obtained
by the method given in the proof, or some other. In particular, some CAS may obtain
(2.2) with a partial fraction computation. Also, the theorem is stated for functions over
@, but in many cases, a CAS will be able to integrate functions defined over extensions

of (.

LEMMA 2.1.1. For a polynomial P € R[u] and u as above, define the transformation &
by
EP(z) = E[P(u)] = (cos 22)%8F P(tan iz) . (2.3)

Then EP(2nm + 7) is finite and EP(z) has the same zeros on C as P(tan %z)

PrOOF. By periodicity, only the domain —7 < 3z < 7 need be considered. Let the
polynomial P(u) = > " p;u’, where m = deg P. Then £P(n) = pm # 0. Further,
P(tan%ﬂ') # 0 because it is unbounded, and so neither P nor £P is zero at z = .
Since z # 7 implies cos 3z # 0, then P(taniz) =0 < &£P(z) =0. O

In terms of this transformation, we now give the rectifying transformations that are
the main results of this paper. First the logarithmic terms in (2.1) are considered.

THEOREM 2.2. For monic polynomials v; € Rlu], let a primitive F(z) = Y a;Inv;(u)

with u = tan %z as before. Then the transformation

TiF(z) =T {Z o; lnl/i(u)} = Zai In&v;(z) — Zai deg v; In cos %z (2.4)

is rectifying on C if 3 a; degv; = 0 and neutral otherwise.

ProoOF. By periodicity, 77 is rectifying on C if it is rectifying when —7 < Rz < 7.
Straightforward computation shows that

d d

For each i, as z — m, y;(tan %z) — (7 — z)~4%8%i because v; is monic. Therefore F(2)
is singular at = w. However, if > a; degv; = 0, then 77 F () is finite, because by the
lemma each Ev;(m) is finite. The zeros of v;(z) are the same as the zeros of £v;(z), and
so 71 F and F have the same singular points in C. Therefore, if Y a; degy; = 0, then

S7.r = Sp\{7}, and otherwise the two sets are equal. U
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THEOREM 2.3. Let P(u) be an even-degree polynomial. Let F(z) = arctan P(u) with

L2, The transformation

u:tan2

kEP(z) — (cos %z)degp
k(cos $z)de8 P + £P(2) '
where k is chosen so that (Yu € R)(P(u) + k) > 0, is rectifying on R.

T2 F(z) = Talarctan P(u)] = arctan (2.5)

ProOOF. Periodicity is again understood. A lengthy, but straightforward, calculation
shows

d d

Further, since tan %ﬂ' is undefined, F(7) is undefined, but 73 F () = arctan k. Since, by
construction, k + P(u) > 0, then Sp = {7} and S7,r = 0.

A constructive proof is also given because it helps in understanding the nature of
the transformation. Since a constant can always be added to an integral, the constant
—arctan(1/k) is added to the expression arctan P obtained from the integration proce-
dure:

P—1/k
14+ P/k

The identity for adding arctangents is only true if the denominator remains positive;
hence the need to choose k as shown. O

arctan P(u) — arctan(1/k) = arctan

For odd degree polynomials, it is useful to have two transformations. First, the special
case of a linear polynomial is given separate consideration, because it allows simplifica-
tions that cannot be used in the general case, but which are useful enough to warrant
special attention.

THEOREM 2.4. Let F(z) = arctan(au + b) with u = tan %z, and a,b € R and also a > 0.
The transformation

2abcosz — (1 + b? — a?)sin z

(1+a)?2+b2+(1+b%—a?)cosz+ 2absinz ’
(2.6)

T3F (z) = Tslarctan(au +b)] = %—1— arctan

1s rectifying in R.

Proor. The same approach as above shows that the derivatives before and after trans-
formation are equal. Since F(z) is singular at z = m, but T3 F (7) = %W—arctan(b/(a—l—l)),
a singularity is removed by 73. Further, since [(1 + a)? + #%]* > (1 + b? — a?)* + 4a%b?,
there are no other discontinuities.
More insight into the transformation is obtained if a constructive proof is considered.
1

The expression 3 z—arctan u differentiates formally to zero, since formally arctan tan %z =

%z = arctan u. Therefore this is added to arctan(au + b) and the arctangents combined.
(a—Du+db
S A T
14+ au?+bu 2

provided the denominator is positive. In general, though, the right side is not continuous
because the denominator can change sign. Therefore a constant is subtracted

arctan(au + b) — arctan u + %z = arctan

)
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from 1it.

(a—Nu+b
1+ au? + bu

b— K+ (a—1— Kbu— Kau?
14+ Kb+ (Ka— K +bu+au®’

z z
o) + arctan — arctan K = o) + arctan
A value of K must now be found that ensures that the denominator is positive. The
minimum value of the denominator is given by

inf (14 Kb+ (Ka— K +bju+au’) = 1+ Kb~ (Ka — K +b)*/4a ,
ue

and this must be greater than zero. The largest value of the infimum is obtained by setting
K = b(1+a)/(1—a)?, but using this value leads to a more complicated expression than
the one in (2.6). The infimum is also positive for K = b/(1 + a) and using this leads to
(2.6), after using v = sinz/(1 + cos z). U

We finally come to the general odd-degree case. The technique just used, of combining
the arctangent with a constant, can be shown by counter example to fail. Thus the
straightforward generalization would be to try to rectify an odd degree poynomial P(u)
by writing
P—u—K(1+uP)

I+ uP+ K(P—u)’

arctan P(u) — arctan u — arctan K = arctan

Consider, however, the example P = 11—0u3 — 4u. The denominator then becomes equal

to 11—0u4 + 11—0Ku3 — 4u? — 5Ku+ 1. No value of K exists that makes this positive for all

u. For example, the expression is always negative at u = 11—0 — gK + %\/25[(2 + 16, if

K >0, and at a similar place if K < 0. Hence a more elaborate construction is needed.
THEOREM 2.5. Let P € R[u] be an odd degree polynomial with positive leading coefficient.
If F(z) = arctan P(u) as before, then the transformation Ty defined by

kcos $2EP — (cos £2)48 PE[u] (1 —k)cos 328u
k(cos §2)1+deg P 4 £[uP] k(cos 12)? + Eu?]’

where k > 0 is chosen so that (Yu € R)(k+ uP) > 0, is rectifying on R.

TaF(z) = % + arctan + arctan

(2.7)

Proor. The formal proof follows the same path as those above and is not written out.
The constructive proof starts by adding %z — arctan u to the arctangent, but simply
combining the arctangents fails because

arctan P — arctanu + %z # arctan + %z ,

14+uP
since 1 + uP can change sign in general. Therefore, the transformation is written
arctan P — arctan u/k + arctan u/k — arctanu + 1z .

Combining the terms pairwise gives

—u/k + arct u/k —u
———— +arctan ————
1+ uP/k 1+ u?/k

arctan + %z ,

and provided k is chosen so that uP 4+ k > 0, the expression in the theorem is obtained.
O
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3. Implementation and examples

The algorithm is now summarized.

1 The system identifies an integrand as rational trigonometric over R (in variable z
let us say) and tries any preferred simpler evaluation strategies, for example, a sine
or cosine substitution.

2 The system substitutes u = tan %z and passes the resulting rational function to its
integrator. This step can be tried even if the coefficients are in R rather than Q,
because the integrator may succeed.

3 If an expression is returned in the form (2.1), then the algorithm can proceed. If it
is not of this form (for example, it contains complex logarithms or arctangents of
rational functions), then the algorithm fails.

4 For each term matching one of the four patterns, the rectifying transform is applied.
Notice that the application of the transformation does not require any analysis or
knowledge of the whole integral expression, but can be applied immediately upon
recognising the pattern.

5 Any residual terms in u are returned to z.

This algorithm is now applied to the examples given in the introduction and to other
examples. Starting with (1.2), the transformation 73 gives (1.3), by simple substitution
in (2.6). To apply 73 to (1.4), a value k > —inf(u? 4+ u) = i must be chosen. Taking
k=1 gives

21

sin?lz +sinlzcoslz — cos?

1
52
Tl = T4 arctan(u2 + u) = arctan —; f - f f f . (3.1)
sin” -z +s8in 5zcos 52 + cos? 52

Combining half-angles simplifies this to
sinz — 2 cos z

7215 = arctan -
272 24+ sinz

which is actually no more complicated than the original expression (1.4). Using this
expression, we have Tal5(7) = iﬂ', where before we had only the limit lim,_,» I5(z) = %ﬂ'.
The difference between the two values is the constant that the transformation adds to
the expression.

Applying 7; to (1.5) gives

T3 = ﬂ[ln(tan2 %z + tan %z + 2) — In(2 tan %z —1) = In(1 + tan %z)]
= ln(sin2 7%+ sin %z cos %z + 2 cos? %z)
—In(2sin %z — cos %z) — In(cos %z + sin %z) . (3.2)

In contrast to the properties of Iz at m, which were described above, the new expression
obeys T1I3(m) = lim, T113(2) = — In2. Therefore the discontinuity at z = m has been
removed, as has the one at —m. The logarithmic terms can also be combined if desired,
and there will be no change in the continuity properties of the expression. The resulting
expression can then be significantly simplified:

3+sinz +cosz

7-1[3 =In

14sinz—3cosz

The opening examples do not cover all the points of interest, so now we continue with
more examples. Applying 77 to the following integral results in a singularity being still
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present at z = m.

/ (Tcosz+ 2sinz+3) dz 3+sinz+cosz (3.3)

- - =1In - .
3cos?z —sinzcosz +4cosz —Hsinz+ 1 cosx —2sinx + 1

The singularity cannot be removed because it is induced by a pole in the integrand.
Even so, the integral is in a form that is more convenient for further analysis than the
original expression. Therefore, a CAS would do well to implement the transformation,
independently of whether the transformation is rectifying. In this regard, it can be noticed
that the transformation is linear in its argument, and even though theorem 2.2 was
stated for a sum of logarithms, the transformation can be applied independently to each
logarithm. Also, the polynomial arguments of the logarithms do not have to be monic,
although again that is how the theorem was stated.
An example of the application of 74 1s

/ (5cos?z+4cosz — 1) dz

31 . 1
z—2tan =z
4cos3z—3cos?z—4cosz —1

2 2)'

= 2arctan(tan

A value of k > —inf(u* — 2u?) = 1 must be selected. Since k cannot equal 1, the obvious
choice is 2. This gives

= z—2arctan —2 arctan

/ (5cos?z +4cosz — 1) dz Tcoszsinz + 3sinz sin z
4cos3z—3cos?z—4cosz—1 5cos?2z+ 2cosz+1 3+cosz

If it 1s possible to choose k£ = 1, this is clearly the best choice, since one of the arctangent
terms is then removed, as the next example shows. We have

/ (Tcos?z+2cosz —5) dz

4cos3z—9cos?z+2cosz—1

= arctan(2 arctan® %z — arctan %z) .

The minimum of 2u* — u? is —% and therefore k = 1 is possible, giving
/ (Tcos?z+ 2cosz — 5) dz 9 arct 2sin z cos z
= z — 2arctan .
4cos3z—9cos?z+2cosz—1 2cos?z—cosz+1
Jeffrey and Rich (1994) gave the example
3d

/ m = 2arctan(3 tan[%z + %ﬂ']) (3.4)

= 2arctan(%tan %z—l— %) (3.5)

to show that sometimes the substitution u = tan(%z + iﬂ') gives tidier results. This sug-
gests that there is a need for additional transformations to handle such variations of the
basic idea. If, however, one goes to the trouble of developing a rectifying transformation

for (3.4), let us temporarily call it 75, one finds
75 [2arctan (3tan[$z + £7])] = T3[2arctan(3 tan 3z 4+ )] = z + 2arctan % .

1

5%z was considered here, and at present

Because of this, only the substitution u = tan
there is no reason to pursue variants.

The question of appropriate substitution arises also in the example

2dz COoS Z CoSs 2
-~ —V9:+arctan——=  tarctan ——— 3.6
/1—|—coszz sinz+v2+1 sinz —v/2 -1 (36)
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Here the 73 transformation has already been applied. If the substitution u = tan z is used
instead of u = tan %z, only a single arctangent is needed. Within the present scheme, the

same effect 1s achieved by first making the preliminary transformation

/ 2dz :/ 4 dz :/ 2dz (3.7)
1+ cos? z 3+ cos 2z 34+cosz’
where z = 2z. The computation continues
/ 72 dz = i — v 2arctan —sin :
34+cosz /2 cosi+2v/2+3"

so that finally the replacement for (3.6) is

2d in 2
/ 72:2 =2z — V2 arctan S 22 .
1+ cos? z cos2z+2v/2+3

The identification of the transformation (3.7), however, is not a subject of this paper,
which focuses on the rectifying transforms 7; derived here. The point of the example is
that the transformations given here are sufficient for obtaining the best known solution,
provided the problem is correctly handled.

All of the transformations can be applied to integrals containing symbolic parameters.
A generalization of the first example is

/ dz 2 p—qu+r

- — — arctan ,
p+qgcosz+rsinz A A

where p, q, 7 are real and A = \/p? — ¢%2 — r2 has been introduced for convenience. Since
the transformation assumes a positive leading coefficient, the signum of p — ¢ must be
taken to the front of the arctangent. Thus

2sgn(p — ¢) (p—qutr
——— ~~Jzarctan ———— =
A 3 sgn(p — q)
zsgn(p—q) | 2sgn(p—q) oSk — gsinx .
. ) 3.8
A + A arc anp-{-qcosa:—}—rsin:b—}-sgn(}g_‘J)A o

The final expression for the integral was quoted without explanation by Jeffrey (1994).
Also the signum factor was given as sgnp instead of sgn(p — ¢q). This was correct, because
of the proviso p > ¢ attached to the formula. The special case »r = 0 and ¢ = 1 was also

discussed by Jeffrey and Rich (1994).

4. Concluding remarks

We return to the issue of the behaviour of the transformations in the complex plane.
Although the transformations are rectifying on R, they are not rectifying on C. Referring
to figure 1, the singular points B; are not eliminated by transformation 73, they are
moved to the branch cuts Li, to the point z = arccos 2, in fact. A more typical example
of the linear case is obtained from a numerical example of the general formula (3.8).
Consider p = 13, ¢ = 3, r = 4. The untransformed and transformed expressions are

4cosz — 3sinz
254+ 3cosz+4sinz

12dz ) 5 1 1 )
/ 134 3coss L dsins = 2arctan(3 tan 52 + 3) = z 4+ 2arctan

The untransformed integral has a branch cut running between the two singularities lo-
cated at By = arctan(4/3) — m + iIn 5 through the singularity at —m. The transformed
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integral has branch cuts running parallel to the imaginary axis from the points By to
infinity, through the moved singularities now at arctan(4/3) — m 4 iIn(2v/6 + 5).

The branch cuts of (3.1) show similar properties. The branch cuts of (1.4) were
described in the introduction, and it was because they met the real axis at the sin-
gularity that the integral on the real axis had removable discontinuities. The branch
cuts of the transformed expression do not cross the axis, but join the singularity that
is at 2arctan (—% + %\/1 + 42') to the singularity at 2 arctan (—% — %\/1 — 4i), passing
through the moved singularity at %ﬂ' +iIn(v/3 + 2), all 3 points lying on the same side
of the real axis. Similarly with the complex conjugates.

This paper has assumed that the basic integration of rational trigonometric functions
is already a standard component of a CAS. The contribution of this paper has been
the rectifying transformations, which can be thought of as being independent of the
integration procedure used, although this is only partly true, since they cannot be applied
unless the basic integration is performed correctly. In addition, the final expressions may
not be in the simplest possible form unless the underlying integrator chooses the best
approach.

The algorithm here does not completely replace that described by Jeffrey and Rich
(1994). Several of the cases that can be handled by that algorithm are not covered here,
for example the integral of /1 + cosz. Where there is an overlap, however, this method
gives an expression that has better properties, particularly in the eyes of those who
levelled the criticisms listed after (1.6) at the earlier method.
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