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Abstract

An algebraic relation is derived that allows the different branches of the Lambert W
function to be concisely distinguished. The derivation relies on the unwinding number,
which is defined here, for the manipulation of elementary functions in the complex plane.
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1. Introduction

Interest in the Lambert W function goes back at least to Lambert and Euler, albeit
that these two mathematicians studied it only indirectly, but the function did not receive
a permanent name until it was included in the library of Maple, the computer algebra
system. After gaining its name, it gained recognition. Many of the applications of W were
found because of users discovering that Maple had used W in the solution of a problem they
had posed. In addition to its applicability, the function has rich mathematical properties.
It is defined to be the solution W (z) of

W(Z)GW(Z) =z, (1)

where z is a complex variable. The history, applications and properties of W were recently
reviewed in Corless et al.[3], and so just two examples of the uses of W are given here, in
order to convey the flavour of its applications.

A common way to meet W is through the problem of iterated exponentiation, which
is the evaluation of

22

h(z) = z* ,

whenever it makes sense. The function h(z) can be found in closed form by solving the
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equation h(z) = z"*) for h(z) (using Maple, for example), and getting

W(—log z) ‘

h(z) = = log =

(2)
For more details and references on the problem, see Baker & Rippon [2].

Another application is the solution of linear constant-coefficient delay equations [§].
Consider the simple delay equation

y(t) = ay(t —1), (3)

subject to the condition on 0 <t <1 that y(¢t) = f(¢), a known function. Direct substi-
tution shows that exp(W(a)t) is a solution of (3). The starting condition can be matched
by noting that (1) does not define W uniquely. If complex values are considered, multiple
solutions exist, denoted Wy (a), for k an integer. Then, by linearity, a solution of (3) is

o0

y= Y crexp(Wi(a)t) (4)

k=—o0

and the ¢, can be determined to match f(¢). One sees immediately that the solution will
grow exponentially if any of the Wi (a) have positive real part, and this leads to important
stability theorems in the theory of delay equations.

As a prelude to describing the branches Wy, it is useful to consider the branches
of some elementary functions that are multivalued. The manipulation of multivalued
functions in the complex plane has been the subject of renewed attention in recent years,
in an attempt to impose some uniformity on the operations of hand-held calculators and
computer programs. As a result, there is now substantial agreement on the principal
branches of the elementary functions [7]. The principal argument of a complex number z
satisfles —7 < argz < m, and the principal branch of its (natural) logarithm is defined to
be Inz = In|z| + targz. The kth branch of the logarithm is written lng z = Inz + 27k,
implying that lng z is another representation of the principal branch. (On the matter of
notation, notice that although log, means logarithm to the base k, there is no standard
interpretation of Ing, so there need be no confusion of meaning.) The notation Ln z denotes
an unspecified branch. The range of each Ing z in the complex plane is shown in figure 1.
Plotted horizontally is the real part of the logarithm: R1lng 2 = In |z|. The imaginary part,
Slng z = arg z+ 27k, is plotted vertically. The points that form the boundary between two
branches belong to the region below them, because of the definition of arg z. This closure
also agrees with the ‘counter-clockwise continuous’ convention (CCC) of Kahan [7].

Figure 2 shows the complex range of each Wj. The horizontal axis is £ = RW, the
real part of the appropriate branch of W, and the vertical axis is n = SW. The branch
boundaries obey either n = 0 or { = —ncotn and correspond to cuts in the z plane along
portions of the negative real axis. The points on the boundaries belong to the branch
below them, which closure rule again satisfies the counter-clockwise continuous (CCC)
convention [7]. The negative real axis is divided at £ = —1, with ¢ > —1 belonging to
branch 0 and ¢ < —1 belonging to branch £ = —1. It should be noticed that the dashed
asymptotes at odd multiples of 7 coincide with the branch boundaries in figure 1. This is
a consequence of the fact that for |z| — oo, Wi(2) — lng 2.
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Figure 1. The ranges of the branches of the multivalued logarithm Ln z. The heavy lines
are the boundaries between the branches, and the value of k for each branch is shown.
Branch k corresponds to Ing z = In z + 271k, where In z = Ing 2z is the principal branch of
logarithm.

The current definition of the branches is a little long-winded, and it would be a great
convenience if it could be replaced, or at least supplemented, by an algebraic relation that
directly discriminates between the branches of W. Section 3 derives such a relation. It is
more concise, as a definition, although the original definition is more graphical. To derive
the result, we have used a method currently being explored in connection with computer
algebra systems.

Computer algebra systems, and humans for that matter, face the problem of how
to handle the fact that in the complex plane In(zw) # Inz 4 lnw, when logarithms are
interpreted as principal branch. Any scheme should be suitable for automatic operation.
One proposed solution is to transfer the problem to the design of the user interface to
the system, and not develop any new mathematics. This possibility has been discussed,
amongst other issues, in Corless & Jeffrey [4]. Although plausible in the computer-algebra
context, an interface solution does nothing to alleviate the mathematical difficulty. Here,
a mathematical idea called the unwinding number is described and applied. Similar ideas
have been discussed informally, particularly in electronic forums such as newsnet, but have
not appeared in print, although an unnamed function similar to the unwinding number
made a cameo appearance in the book by Apostol [1, theorem 1.54].

2. Definition and properties of the unwinding number

The unwinding number K(z) is an integer function defined using the principal-value
logarithm. The definition is
In(e®) = z + 2miK(z2) . (5)
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Figure 2. The ranges of the branches of W. Each branch is given a number, the principal
branch being numbered 0. The boundaries of the branches are asymptotic to the dashed
lines, which are horizontal at integer multiples of . The boundary curves obey either
£ = —ncotn, for 2nm < |n| < (2n + 1)m, or n = 0 for { < —1.

Equivalent definitions use the floor function or the round function. If Sz is the imag-

inary part of z, then
T — Sz Sz

Here, R is the round function with half-integers rounded down. Particular values of K are

when =37 <y < —7 |

0, when —m <y < 7w,

—1, when 7 <y <3m,

—n, when 2n — )r <y < (2n+ )7 .

K(z +1y) =

Only those properties of K that are of immediate relevance will be explored here.
From (6), it is clear that K(z) = K(:S%z), and also

K(z 4+ 2min) = K(z) —n, forn an integer. (7)

This relation is very useful for removing one unwinding number from the argument of
another. The application of K in this paper is to the manipulation of logarithms, as
summarized by the following formulae.

In(zw) =lnz 4+ Inw+2mK(lnz + lnw) . (8)
In(z/w)=Inz —Inw+2mK(lnz — lnw) . (9)



Both of these apply for any complex numbers z and w. The derivation of (8) is effected
by taking logs of zw = exp(Inz + Inw). The special case w = 1 implies

K(lnz)=0. (10)

While giving an example of working with X, we can derive a result that will be used
in section 4. If @ and b are complex numbers for which |argb — arg a| < m, with arg the
principal argument, then

b
Inb=Ina+1n-—. (11)

a

The derivation uses (8), (9) and (7).

Inb=Ina+1In(b/a) + 2mK (Ina + 1n(b/a))
=1Ina+1In(b/a) + 27K (Ina+1Inb —Ina + 2miK(Inb — Ina))
=Ilna+1In(b/a) + 2miK(Inb) — 2miK(lnb —Ina) .
The first unwinding number is zero by (10) and the second by the condition on a and b.
3. A new relation for Lambert W
The main result of this article is, in the notation introduced,

for k= —1and z € [-1/e,0)

Ing z otherwise.

Inz,

Wi(z) + InWi(z) = { (12)

The proof takes logarithms of (1). Omitting the argument of Wj(z) for clarity, we have

Inz =Iln(Wiexp W) = In Wi, + Inexp Wi, + 2miK(In Wi, 4 lnexp W)
=InW, + Wy + QTZIC(Wk) + 27TiIC(1n Wi + Wi + QFZIC(Wk)) .

Equation (7) now cancels two of the unwinding numbers.
Inz=IlnWy + Wi + 2miK(ln Wy + W) .

So it is required to show K(ln Wy + W}) = —k for k # —1, and this requires showing
(2k — 1)w < arg Wi, + SWy < (2k + 1)7. Put z = re’?, with —7 < 0 <, and Wy = £+ in
in (1) and separate real and imaginary parts.
rcos® = e (€ cosn — nsing) | (13)
rsinf = e (ncosn + Esinng) . (14)
For 6 # 0 or m, divide (13) by (14).

cotarg Wy cotn —1
cot 6 =

= cot Wi + SWi) .
cot arg Wi + cotn cot(arg Wi + W)

Thus 6 and arg Wy, + SW;, differ by an integer multiple of 7. Furthermore, by continuity,
this multiple is the same for all r and 6, except possibly when W is real and negative,
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because then arg W is discontinuous. Putting the exceptions to one side, we identify
the multiple of 7 by fixing € and considering r — co. Since W is asymptotically similar to
logarithm as |z| — oo, we have, for 8 fixed,

lim (arg Wy + W) = lim n =6 + 2kn |

r— 00 r— 00

since arg Wi — 0 as |z| — oo. Therefore for 6 # 0, 7 and for all r,
arg Wy + SWy, = 0 + 2nk . (15)

The special case § = 0 requires k = 0 and is trivial; the special case § = 7w requires either
k=—-1lork=0. If k =—1, then § = & corresponds to W_; < —1 when r < 1/e, and
then arg W_; is discontinuous at § = = [3, figures 7 and 8]. Hence

argW_q1(2) + SW_4(2) == for—1/e<z<0,
and K = 0, as stated in the theorem. For the £ = 0 branch, Wy > —1 also corresponds to
6 = 7 and r < 1/e, but in this case, (15) continues to apply.

4. Application

De Bruijn [5] obtained an asymptotic expansion for the real values of Wy(z), for =
real, when  — oo. This was generalized to all branches of W (z) for complex z in the case
|z| = oo by Corless et al. [3]. In both cases, the derivations were based on a quantity v,
for which an equation was derived that was valid in the asymptotic region. Here, (12) and
(11) are used to obtain an equation for v that is valid for all z and all branches.

Generalizing de Bruijn, we define vy by

Wi(z) =Ing z — Inlng z + vi(2) . (16)

For k =0, vg is unbounded at z = 0,1. We show that (suppressing the argument of vy)

Ing = Ing = 0 otherwise.

vk+1n<1_1n1nkz+ Uk ):{Qm' for k=0 and z € (0,1), (17)

The proof treats separately the three cases arg Wy = 0,7 and arg W} not equal to these
values. If arg W # 0,7, then substituting (16) into (12) gives

Ingz —Inlng z + v + In(lng z — Inlng z + vg) = Ing 2 .

For all branches, arg W}, and argln; have the same sign, and so (11) applies, and results
in (17).

The special case arg Wy = 0 implies £ = 0 and z is real and positive, and checking
this case is straightforward. Finally, if argW = 7, then k can be 0 or —1, and, for either
value of k, —1/e < z < 0. Since k = —1 is a special case in (12), one might expect to see
a separate line for it in (17), but a factor 27 is introduced because of the two conditions
argW_y = 7w but arg L_; < 0, and this factor cancels the same factor in (12).
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Exponentiating (17) casts it in a more familiar form due to de Bruijn.

e_“—l—l—lnlnkz v

=0 (18)

Ing 2 Ing =z

From (17), —7 < Qv < m, and any solution of (18) must satisfy this constraint to be
relevant. The last equation has been the starting point for several series expressions, both
asymptotic and convergent, for the Lambert W function [6].
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