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Stress moments of nearly touching spheres in low
Reynolds number flow

By R. M. Corless and D. J. Jeffrey, Dept. of Applied Mathematics, University
of Western Ontario, London, Ontario, Canada

1. Introduction

The forces and couples acting on two nearly touching spherical particles in
low Reynolds number flow have been studied by O’Neill & Majumdar [11] and
Jeffrey & Onishi [8] using a method developed by O'Neill & Stewartson [12],
and by Goldman, Cox and Brenner [5]. The force acting on a sphere is the zeroth
moment of the stress on the sphere’s surface and the couple is the antisymmetric
part of the first moment. The symmetric part of the first moment (the “stresslet”
defined below) plays an important role in studies of the properties of suspensions
[1], and recently numerical data has been published for the stresslets of two equal
spheres by Kim & Mifflin [10] and by Jeffrey [7]. The data suggests that the
stresslets are singular when the spheres touch, just as the force and couple are,
and this is verified here; the singular behaviour of the stresslets is calculated by
extending the work of Jeffrey & Onishi [8].

The stresslet of a rigid particle is defined to be the symmetric part of the first
moment of the surface stress, and it measures the influence that the particle has
on the ambient flow field through the fact that a rigid particle does not deform
with the flow [1]. Explicitly

S=—(G(Xo-n+o-nx)—3Ix-0-n] dA. (1.1)
A

Since the couple acting on a particle is equivalent to the antisymmetric part of
the first moment of the surface stress, the couple and stresslet are a natural pair
of quantities to calculate.

We study the same flow problems as in earlier papers [8, 11]: firstly, one
sphere at rest and one rotating about an axis perpendicular to their line of
centres, and secondly, one sphere at rest and one translating perpendicular to the
line of centres. The method for solving these problems is that of matched
asymptotic expansions, and the complete program of calculating inner and outer
expansions and matching them was carried through in the first papers [3, 12].
Later papers, however, have calculated only the solution in the gap between the
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particles, using lubrication theory approximations, and from that solution found
the singular interaction terms. This is possible because the flow problem is
somewhat unusual from the point of view of the general theory of matched
asymptotic expansions. The solution in the gap appears to be independent of the
flow outside the gap. Thus although in other problems it would not be possible
to pursue the inner solution to high order without also solving for the outer
solution, here it is. The main reason for finding only the singular terms is that
the interactions between the spheres are wanted for all separations, not just
when they are close to touching, and so the asymptotic results must sooner or
later be combined with other solutions. It is most efficient to obtain the singular
terms by the present method and the non-singular terms by other methods, such
as twin multipole expansions or collocation [9, 10].

2. Governing equations

We consider a moving sphere with radius a and a stationary sphere with
radius b. We take Cartesian axes (ax, ay, az) with the z axis along the line of
centres of the spheres and the origin on the surface of the stationary sphere. We
also define cylindrical coordinates (ar, 0, az) with @ = 0 along the x axis. Figure 1
shows a cross-section of the xz plane. The gap between the spheres is the small
quantity a¢ and therefore the sphere surfaces are given by

(z—1—¢*+r*=1 and (z+ bja)* +r*=b*la’. (2.1,2.2)
The flow around the spheres obeys the Stokes equations
Vp=uV?u and V-u=0.

For the first problem, the moving sphere has angular velocity Qj, from
which we obtain a velocity scale % = Qa. Using %, we can write the boundary
conditions on the moving sphere in terms of the cylindrical velocity components
(u, v, w), as

u = U (—cosfcosg,sinf cos¢p, —cosflsing).

Figure 1
The xz plane, showing the axes of the cylindri-
cal coordinate system and the angles ¢ and .
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The angle ¢ is shown in Fig. 1. For the second problem, the sphere translates
with velocity u = % i and the boundary condition is

u =% (cosf, —sinf,0).
On the stationary sphere, u = 0 for both problems. The established asymptotic
scaling in the gap uses the stretched variables Z and R defined by

Z=1zf¢ and R =r/e'?.

By combining the linearity of the Stokes equations with the boundary conditions
and the asymptotic scaling, one can show that the velocity components and the
pressure can be written, for both problems, as [11]

u=%(Ucos@, Vsin@, Wcosb), (2.3)
and

p = u PcosO/a, (2.4)
where

U=Uy+¢eU +&U, +0(),

V=Vy+eV,+e2V,+ 0(),

W =¢e2(Wy+eW, + W, + 0(e?)),
and

P=¢"32(Py+ &P, + &* P, + O(c%).

Substituting the above expressions into the Stokes equations, we obtain the
following equations governing the order k quantities.

OBJOZ = O?W,_,/0Z% + Y W,_, — W,_,/R?, (2.5)
OP/OR = 2 U OZ% + YU,_, — 2(U,—, + Vi_,)/R?, (2.6)
PR = *VOZ? + Y Vp—y — 2(U—y + Vi y)/R?, 27
dW,/0Z + (U, + V)/R + dU,/oR = 0, (2.8)

where the operator Y is
Y = 0%/0R* + R '0/0R. (2.9)

If, at any order k, the subscript of a term is negative, then that term is
omitted. To complete the development of the asymptotic problem, the equations
for the spheres’ surfaces are expanded in powers of &. The surface of the moving
sphere is then given by Z = Z,, where

Z,=1+1/2R*+&1/8R* + &21/16 R® + 0 (&?),

= H, +&1/8R* + 21/16 R® + 0 (&*). (2.10)
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On the stationary sphere, Z = Z,, where
Z,=1/2kR*> +e1/8x*R* + £21/16 x> R® + O (&%),
=H,+¢1/8x*R*+ e21/16 k> RS + 0 (&%), (2.11)

where we have introduced x = — a/b. We use «, instead of the 4 used in earlier
papers, so that 4 can be used in the sense of Jeffrey & Onishi [9], i.e.

A=bla=—1/k.

3. Rotating sphere

On the rotating sphere the boundary conditions are
UZ,, R =—V(Z,,R)=—1+e(1—2Z,) and W(Z,,R)=—¢"?R.

Substituting (2.10) for Z, and expanding each velocity component as a
Taylor series we obtain the boundary conditions that apply at each order in
terms of functions found at previous orders.

Us(H,,R)=— Vo (H,,R)=—1, W,(H,,R)=—R.
U,(H,,R)=1— H, — 1/8 R*dU,/0R,
V,(Hy,R)=—1+ H, — 1/8R* dV,/0R,

W, (H,, R) = — 1/8 R*3W,/0R.

In the equations, the derivatives are evaluated at Z = H,;. On the other
sphere, we can shift the zero velocity condition to Z = H, in the same way.

Uy (H,, R) = V, (H,, R) = W,(H,, R) = 0.
U, (H,, R) = — 1/8 R*0U,/0R,
V,(H,, R) = — 1/8 R* 3V, /oR,
W, (H,, R) = — 1/8 R*0W,/0R.

The equations were integrated using the symbolic mathematics package
MAPLE, following the method of earlier papers [4]. Each equation is integrated
with respect to Z and the boundary conditions applied until a differential
equation is obtained for the pressure. This equation is always of the form

R*Q" +[R+3(1 —x)R¥/(H, — H,)]Q' — Q = f(x), B4)

where the right-hand side is a known function derived from earlier solutions in
the asymptotic scheme. The equation is solved by guessing the form of the
particular integral and adjusting unknown coefficients. It has been shown that
the solutions of the homogeneous equation do not appear in the solution [5, 12].
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To calculate the stresslet, we first rewrite the components of the stress tensor,
separating the dependence on 0 in the way it was done for velocity and pressure.

g,, = uR2 cosO(— P + 20U/0r) = uL cos0a,,, (3.2)
0,, = uS2 cos 0(dU [0z + OW[Or) = uL2 cos 04, ., (3.3)
g, = p2sin@(— Wir + 0V/0z) = uQ sin0 g, , (3.4
G = pRsin @ @V/[Or — V/r — U/r) = uf2 sin 0 6,,, (3.5)
0., = u2cos(—P + 20W[0z) = uR cos 0., . (3.6)

We reduce the stresslet to the scalar function Y{] by extending the estab-
lished notation to unequal spheres [7, 9, 10]. The stresslet on the moving sphere
is given by S = 8za® Y (ik + ki)€2. Taking the xz component of (1.1), we can
integrate over 0 to be left with an integral over ¢, where ¢ is defined in Fig. 1.
Thus

Y =L [ {—cos¢[6,,sing — G,,cos¢ — Gy, sin + Gy, cos¢]
+ sin¢g [6,,sind — 6., cos¢]} sinpde. (3.7

The stresslet of the stationary sphere is § = un(a + b)® Y5} (ik + ki)Q. The
integral for Y] is

13

Y= T +)—},‘ [ {cos y[6,,siny + G,,cOs Y — Gy, sin y — Gy, COS Y]
+ sin y [6,,siny + 6., cos y]}sinydy, (3.8)

where i is the angle shown on Fig. 1.
To obtain the singular behaviour of Y1 and Y}{, we expand the integrand

of the above integrals for large R and obtain
integrand ~ ao R + a,/R + O(R™?),

from which the singular behaviour follows as [10]
YA ~Lalneg”" +0(1).

This leads to the results

1 24— 1 16—612+1804% +22°

AP e ) 2 - fig ™4 1.
B eaT AP T 250 4+ )7 e
(3.9)
and
272443 2 2214—18512+147 23 +43 2%
P iR T ; —elme”t+0(1).
N s " T 125 1+ 2)° se ol

(3.10)
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The corresponding results for ¥{% and Y;j can be found from interchanging
the labels of the spheres [9]. Thus

1 24—1 i 1 164> —614*+1804+2

Pl = 1 S . i) 1),

2~a " T250 A0 + A sdna’ i)
(3.11)

and
2723442 2 2212%—18513+14712+432

| el il N -1 e e | adl 1).
e~sarar e Tizs 1 + A)° Blng "o
(3.12)

For the case of equal spheres (4 = 1), the expressions above all agree with the
expressions deduced from studying the coefficients of infinite series expressions
for the same quantities [7].

4. Translating sphere

When the moving sphere translates, the boundary conditions are
U=—V=1 and W=0.

On the stationary sphere the velocities are zero. The solution scheme pro-
ceeds as in the previous section. The stresslets are in this case expressed using
the functions Y% and Y,|. For the moving sphere

S=—4na’¥§ (ik+ kiU,
and for the stationary sphere,
S=—n(a+b?YS(ik+kiU.

The minus sign comes from the fact that the vector used by Kim and Mifflin
[10] to define Y] is — k. The integrals are the same as those for Y,j except that
the one in (3.7) is multiplied by 2 and the one in (3.8) is multiplied by 1 + 4. Thus

Y('.F:__"i 55 =1
= AP

1 32—1794 4 5322% — 35643 + 2212*

= . = elngT) , (441
+250 e elne ' +0(1), &1)
and
27— 13444
@ L e et
el R T
2 21435642 + SR 1T 4324 o
T 125 1+ 2° Fng '

(4.2)
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By relabelling the spheres, we can show from these results, that
4YS+(1+2)*Y5=0(). 4.3)

In other words, the singular terms in the two functions are equal (but the
functions are otherwise different). This can be understood as follows. If the two
spheres both have the same translational velocity U i, the stresslet of sphere a will
be

S=u@na’ Y5 +n(a+ b Y% Uik + ki).

It has been pointed out before [8] that if there is no shearing of the fluid in
the gap, as in this case where both surfaces move with the same velocity, there
can be no singular behaviour. Thus the singular terms in the two functions must
cancel in the way they do. In the same way, we find

422Y5 + (1 + A2 YS =0(1). (4.4)

For 1 = 1, the singular terms again agree with those deduced by studying
infinite series [7].

5. Application of reciprocal theorem

Some remarkable relations can be found between the functions Y,§ and Y5
studied here and the functions Y, and Y,j studied in Jeffrey & Onishi [9]. Here
Y5 and Y, where found by calculating the stresslets of moving spheres placed
in an ambient flow that is at rest far from the spheres. The reciprocal theorem,
however, requires that the same functions appear in expressions for the forces
and couples on two spheres placed in an ambient rate-of-strain field [2, 10, 13].
Thus if two spheres are held stationary in a rate-of-strain field E (ik + ki), using
the same coordinates as above, the force and couple on the sphere of radius a
are

F=6nauYA[—a(l +e)E]li+3n(a+b)uY?SbEi
+[drna®?uYS +n(a+b*uYS)2Ei, (5.1)
and
L=4na*uYE[—a(l + &) Elj+n(a+b?uYsbEj
—[8ra®u Y +n(a+ b uYA]2E]. (5.2)
We now argue that since the spheres are not in relative motion, the force

and couple cannot be singular in the gap width e. Therefore the In¢ and ¢lne
singularities in the ¥, must cancel those in the Y,5. Similarly the singular terms
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in Y, must cancel those in Y,j. We conclude that the combinations
—6YA(1+e)+30+DAYA +8YS +2(1 + A)? Y5 (5.3)
and
AYE(A +e)—(1 +APAYE +16 YE +2(1 + A YA (5.4)

should be independent of In¢ and elng. They are. These tests provide further
validation of the calculations performed here.

For the special case A — oo, the results of Goldman, Cox and Brenner [6]
can be used as a check. They calculated the force and couple acting on a sphere
in a shear flow next to a wall. They used the reciprocal theorem to equate these
quantities to integrals that are stresslet integrals, although they did not name
the integrals specifically. Converting their results to the notation used here, we

get
Y% =—(3/2)(F* + F™/2 + F*)=(7/10)loge™' — 0.923.
YH = — T% — T™2 — T*2=—(1/10)log ¢! + 0.0916.

6. Numerical results

The functions Y, and Y,j have been calculated numerically for the case of
equal spheres [7, 10]. We show here that the infinite series used in Jeffrey [7] can
be made to converge much faster using the results obtained above. The method
is an improved version of that used by Jeffrey & Onishi [9]. The series for Y
and Y,§ can be written [7]

Yi=3 F B, (6.1)
=1
Sodd
and
Yl(;.:_qé. Z PZprp’ (62)
p=2
peven

where the P,, are numerical coefficients, 350 of which have been calculated. The
variable ¢ is given in the present notation by

t = a/(distance between sphere centres) = 1/(2 + ¢&).

Since the functions are singular at ¢ = 0, the series representations of these
functions must diverge at ¢t = 1/2, and be slowly convergent near there. Since we
know that the singularity is of the type Ing, we expect that the coefficients will
be asymptotic to 27/p, and this has been verified.
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To improve the convergence, we proceed as follows. We consider the iden-

tity
1+ 2t 1 1+ 2t
gz‘“m*-‘h(ﬂ“*)‘“i:z
o0 2]” 21”
= g,/t + p;l {292;"49315(‘” m} tF. (6.3)
podd

We note that the series contain only odd powers of f, like Y\§. We
now substitute ¢ = 1/(2 + ¢) into the left-hand side and expand for small &.
Thus

lni+2r+ i_11n1+2r
9: 1 9 P \ap2 1-—2¢

=g,Ine" ' +g,Ind +gyelne™' + 0(e).

By evaluating (4.1) when A =1, we can select g, and g3 to capture the
asymptotic behaviour of Y;§ by adding the left side of (6.3) to (6.1) and subtract-
ing the right side. Thus

ool Qg2 1 1 1+ 2t

§ 1 _2: 16\42 1—2¢
1/(16n+§{3p 2y i ESii g (64)
s=1 |47 4p 4p(p+2)f '
podd

The improvement in the convergence of the infinite series can be seen in
Table 1, where the series is summed to 100, 200 and 300 terms for the value
t = 1/(2.01). As each singularity is taken into account explicitly, the convergence

improves.
Table 1
Convergence properties of series for Y, at & = 0.01.
Y v
n First Second Third First Second Third
Form Form Form Form Form Form
100 0.36921 0.43937 0.43896 —0.40819 —0.47760 —0.47719
200 0.41159 0.43912 0.43903 —0.45004 —0.47735 —0.47725
300 0.42649 0.43906 0.43903 —0.46481 —0.47729 —0.47726

350 0.43031 0.43905 0.43903 —0.46860 —0.47727 —0.47726
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The function Y,§ is treated in the same way. This time we use the identity

1
—g,In(1 —41%) —g; (ﬁ - 1) In(1 —4¢%)

o { 2P ; P } =
= (g5 + 29, — — 4493 — — > P, /
K pgz gz » 3,'7(,0 ¥2) (6.5)

peven

Expanding the left-hand side for small &, we obtain

1
—g,In(1 —41>) — g, (ﬁ — 1) In(1 — 4¢3

=g,Ing"' + gyelng™' + O(e).

This leads to an improved representation of Y, in the form

Y% = (1/8) In(1 — 4¢%) + (1/16) (ﬁ = 1) In(1 —4r%)

gl B, A U (6.6)
93 oo 4 2p 4P 4P(P+ ) . -
peven

Again in Table 1, the improvement in the convergence can be seen. Similar
expressions can be written down for Y{] and Y5, with the only difference that
the even powers of t now go with Y. The numerical improvement can be seen

in Table 2.

Table 2
Convergence properties of series for Y} at & = 0.01.
6 Y
n First Second Third First Second Third
Form Form Form Form Form ‘orm
100 0.03120 0.04508 0.04463 0.37834 0.43451 043413
200 0.03925 0.04471 0.04461 0.41216 0.43419 0.43410
300 0.04215 0.04464 0.04461 0.42408 0.43413 0.43411
350 0.04289 0.04463 0.04461 0.42713 0.43412 0.43411

To complete our study of the asymptotic forms, we need the O(1) and O (¢)
terms in the expression for the functions. The natural extension of earlier nota-

tion is
Y
YE =—g,Ine” ! + G, —gselne” ' + 0(e).

12

g,Ine™' + G, + gselne™! + 0(e),
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By expanding (6.4) for small ¢ and then setting ¢ = 0 and t = 1/2, we obtain

GY, = (1/8)In4 — 1/8+§l {gz-vpz,,—;—erm}, 6.7)
podd
and
Gi, =—(1/16) — E «Pz""PZ = B —;} (6.8)
=2 (4 P 4p 4p(p+2)
peven

The O (¢) terms are found by fitting data for ¢ < 0.02. We deduce the follow-
ing results.

YS = é Ing ' —0.1411 + f—ﬁalns_l +0.16& + 0(e? Ing), (6.9)
YS=—1lne ' +01025 —Lelne™ ' —0.12¢ + 0(* Ing), (6.10)
Y =tlne™ ! — 00741 + ;3 5elne™ + 0.04¢ + 0(e? Ing), (6.11)
Y = Line ' —00294 + i elne™" + 004+ 0(? Ine). (6.12)
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Abstract

If two spheres are nearly touching, and the flow around them is governed by the Stokes
equations, the integral moments of the surface stress are singular functions of the gap width. The
method used previously to calculate the singular terms in the zeroth moment (the force) and the
antisymmetric first moment (the couple) is extended here to calculate the singular terms in the
symmetric first moment (the stresslet) for motions perpendicular to the line of centres. It is shown
that the reciprocal theorem requires unexpected relations between the newly found singularities and
ones found previously. It is also shown that the singular terms can be used to improve the rate of
convergence of series expressions for the stresslets. The series expressions then become valid for all
separations of the spheres.
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