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Integrals of functions containing
parameters

Robert M. Corless, David J. Jeffrey and David R. Stoutemyer

1 Introduction

“There is always a well–known solution to every human problem
– neat, plausible, and wrong.”

H. L. Mencken [15]1

Calculus students are taught that an indefinite integral is defined
only up to an additive constant, and as a consequence generations of
students have assiduously added “ +C ” to their calculus homework.
Although ubiquitous, these constants rarely garner much attention, and
typically loiter without intent around the ends of equations, feeling
neglected. There is, however, useful work they can do; work which is
particularly relevant in the contexts of integral tables and computer
algebra systems. We begin, therefore, with a discussion of the context,
before returning to coax the constants out of the shadows and assign
them their tasks.

Tables of integrals are inescapable components of calculus text-
books [2, 18], and there are well known reference books that publish
voluminous collections [1, 9, 16, 20]. A modern alternative to inte-
gral tables is provided by computer algebra systems (CAS), which are
readily available on computing platforms ranging from phones to super-
computers. These systems evaluate integrals using a mixture of integral
tables and algebraic algorithms. A feature shared by tables and com-
puter systems is the fact that the formulae usually contain parameters.
No one would want a table of integrals that contained separate entries
for x, x2 and x42, rather than one entry for xn, and many tables include
additional parameters for user convenience; for example, there will be

1The truth of this statement is reinforced by the fact that it is often misquoted.
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entries for integrals containing sin ax, rather than the sufficient, but
less convenient, sinx.

Although parameters add greatly to the scope and convenience of
integral tables, there can be difficulties and drawbacks occasioned by
their use. We shall use the word specialization to describe the action
of substituting specific values (usually numerical, but not necessarily)
into a formula. The specialization problem is a label for a cluster of
issues associated with formulae and their specialization, the difficulties
ranging from inelegant results to invalid ones. For example, in [12] an
example is given in which the evaluation of an integral by specializing
a general formula misses a particular case for which a more elegant
expression is possible. The focus here, however, is on situations in
which specialization leads to invalid or incorrect results. To illustrate
the problems, consider an example drawn from a typical collection [19,
ch8, p346, (5)]:

I1 =

∫ (
ασz − αλz

)2
dz =

1

2 lnα

(
α2λz

λ
+
α2σz

σ
− 4α(λ+σ)z

λ+ σ

)
. (1.1)

Expressions equivalent to this are returned by Maple, Mathematica and
many other systems, such as the Matlab symbolic toolbox.

Before we proceed, we acknowledge that some readers may question
whether anyone at all competent would write the integral this way:
surely there are better ways? Why not transform ασz into exp(pz),
where p = σ lnα, and thus reduce the number of parameters? Or
scale the variable of integration to absorb, say, the λ ? Such actions
are possible for people who are free to recast problems in convenient
ways, for example, if (1.1) were an examination question devoid of
context. CAS, in contrast, are obliged to deal with expressions as they
are presented, either by users or by other components within the system
itself; and in the general case some of these “obvious” simplifications
and transformations are surprisingly difficult to discover automatically.
Humans are still superior at simplification, we believe.

Returning to the answer as returned by the CAS, it is easy to see
that the specialization σ = 0 leaves the left side of (1.1), the integrand,
well defined, but the expression for its integral on the right-hand side
is no longer defined. If we pursue this further, we see that there are
multiple specializations for which (1.1) fails, viz. α = 0, α = 1, λ = 0,
σ = 0, λ = −σ, and combinations of these. The question of how
or whether to inform computer users of these special cases has been
discussed in the CAS literature many times [6].

This brings us to the second theme of this discussion: comprehensive
and generic results. A comprehensive result lists explicit expressions
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for each set of special parameter values, while a generic result is correct
for ‘most’ or ‘almost all’ values of the parameters. Let us consider how
a comprehensive result for (1.1) would look.

I1 =



1

2λ lnα

(
α2λz − α−2λz − 4zλ lnα

)
,

[
λ+ σ = 0, σ 6= 0 ,

α 6= 0 , α 6= 1 ;

z +
1

2λ lnα

(
αλz(αλz − 4)

)
,

[
σ = 0, λ 6= 0 ,

α 6= 0 , α 6= 1 ;

z +
1

2σ lnα
(ασz(ασz − 4)) ,

[
λ = 0 , σ 6= 0

α 6= 0 , α 6= 1 ;

0 ,
[
α = 1 ;

0 ,
[
α = λ = σ = 0 ;

ComplexInfinity ,

[
α = 0 ,

<(λz)<(σz) < 0 ;

Indeterminate ,

[
α = 0 ,

<(λz)<(σz) ≥ 0 ;

1

2 lnα

(
α2λz

λ
+
α2σz

σ
− 4α(λ+σ)z

λ+ σ

)
, otherwise (generic case)

(1.2)
Conditions are here shown as in printed tables; otherwise they could
be presented using the logical ∨ and ∧ operators.

To generalize, we denote a function depending on parameters by
f(z; p), with z being the main argument, here the integration variable,
and p a list of parameters. The definition is then:

Definition 1.1 A comprehensive antiderivative of a parametric func-
tion f(z; p) is a piecewise function F (z; p) containing explicit conse-
quents2 for each special case of the parameters.

Designers of computer algebra systems are reluctant to return com-
prehensive expressions by default, because they can quickly lead to un-
manageable computations, and as well many users might regard them
as too much information. Instead, tables and CAS commonly adopt the

2consequent: following as a result or effect; the second part of a conditional
proposition, dependent on the antecedent.



4 THE MATHEMATICAL GAZETTE (submitted)

approach of identifying a generic case, which is then the only expres-
sion given; in the case of CAS, the generic case is typically returned
without explicitly showing the conditions on the parameters. In the
case of tables, any special-case values would be used to simplify the in-
tegrand and then the resulting integrand and its antiderivative would
be displayed as a separate entry somewhere else in the table.

Definition 1.2 A generic antiderivative is one expression chosen from
a comprehensive antiderivative that is valid for the widest class of con-
straints.

Remark 1.3 The above definition is an informal one, since the choice
of which result to designate as generic may include personal taste.

2 Continuity in parameters

We now come to the third theme of the discussion: the treatment of
removable discontinuities. Consider the improper integral∫ 1

0

ln (x(1− x)) dx =

[
x ln (x(1− x))− 2x− ln(1− x)

]1
0

. (2.1)

The expression for the integral contains a removable discontinuity at
each end, and a computer system (and we hope students) would au-
tomatically switch to limit calculations to obtain the answer. In this
section, by extending the handling of removable discontinuities to con-
stants of integration, we introduce a new idea for handling the special-
ization problem in integration3. The idea is new in the sense that we do
not know of any published discussion, but it originated with William
Kahan [14] and was circulated informally possibly as early as 1959.

The example (1.2) dramatically illustrates the potential size of com-
prehensive antiderivatives, but is, unsurprisingly, too cumbersome for
explaining ideas. We turn to simpler examples. We begin with the
comprehensive antiderivative known to all students of calculus4:∫

zα dz =

ln z , if α = −1 ,
zα+1

α+ 1
, otherwise (generic case).

(2.2)

3The specialization problem is not confined to integration. Any formula which
uses parameters to cover multiple cases is likely to have some specialization prob-
lems. The ideas presented here, however, apply specifically to integration.

4Most textbooks use xn, but we wish to emphasize continuity and use α instead
of n. We also use z and α because we are thinking in the complex plane, and we
prefer ln z instead of ln |x| for the same reason.
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Substituting α = −1 into the generic case gives 1/0 and not ln z. Often
when a substitution fails, a limit will succeed, so we try the limit as
α→ −1. Disappointingly, this also fails, but we can examine how the
limit fails by expanding the generic case as a series about the pole at
α = −1, that is, treating α+ 1 = ε as a small quantity.

zα+1

α+ 1
=
eε ln z

ε
=

1 + ε ln z +O
(
ε2
)

ε
. (2.3)

If we can remove the leading term of the series, namely 1/ε, then the
next term gives us the desired ln z. But an integral needs a constant5!
So, an equally correct integral is∫

zα dz =
zα+1

α+ 1
− 1

α+ 1
,

and now the limit as α→ −1 is precisely ln z. Thus the comprehensive
antiderivative,

∫
zα dz =


ln z , if α = −1 ,

zα+1 − 1

α+ 1
, otherwise.

(2.4)

is continuous with respect to α, and the generic antiderivative now
contains the exceptional case as a removable discontinuity [14].

Definition 2.1 Let a function F (z; p) be an indefinite integral of an
integrand f(z; p). That is,

F (z; p) =

∫
f(z; p) dz .

If a point pc in parameter space exists at which F (z; p) is discontinuous
with respect to one or more members of p, and if a function C(p), which
serves as a constant of integration with respect to z, has the property
that F (z; p) +C(p) has only a removable discontinuity and thus can be
made continuous with respect to p at pc, then C(p) is called a Kahanian
constant of integration6.

5The lack of a constant in (2.2) betrays our CAS allegiance: it is a rare CAS
that adds a constant, because the user can easily add one (and name the constant)
by typing, for instance, “int(f,x)+K”.

6Since it is a function of p, one can question whether it should be called a
constant. It is constant with respect to z, and this seems a useful extension of
calculus terminology.
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Figure 1: A parametrically discontinuous integral. The real part of each
consequent of the comprehensive integral (2.5) is plotted. The surface
shows the generic expression plotted as a function of the integration
variable z and the parameter α. The surface curves up to become
singular all along the line α = 0. The detached curve hovering below
the surface in the plane α = 0 is the special case integral.

Remark 2.2 The definition does not guarantee the existence of C(p).
If, for some value of p, the integral does not exist, then there will be
no Kahanian.

A second example shows the effect of Kahanian constants graphi-
cally. To begin with, consider the comprehensive antiderivative

∫
dz

z
√
z2 − α2

=


− 1√

z2
, α = 0 ,

1

α
arccot

α√
z2 − α2

, generic .

(2.5)

We write
√
z2 rather than |z| so that the expression is valid for non-

real z. Figure 1 shows this antiderivative as a three-dimensional plot
treating both z and α as real variables. The generic expression is then
the surface shown in the plot; it becomes singular along the line α = 0
(as α−2). The special case α = 0 is shown as a detached curve confined
to the plane α = 0. It can be seen hovering forlornly underneath the
surface of the generic integral, dreaming of gaining an invitation to the
party. For |z| < |α|, the values of the integral are non-real, but only the
real part is plotted, because that displays the properties of interest7.

7The definition of arccot varies between computer systems and amongst refer-
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Figure 2: A parametrically continuous integral. The real part of each
consequent of the comprehensive integral (2.6) is plotted. The surface
shows the generic expression plotted as a function of the integration
variable z and the parameter α. The surface curves down, and is sin-
gular only at z = α = 0. The special case curve lies happily within the
surface in the plane α = 0.

To achieve continuity, we now add Kahanian constants to each con-
sequent of the comprehensive antiderivative. We show the new con-
stants in bold print.

∫
dz

z
√
z2 − α2

=


− 1√

z2
+ 1 ,

1

α
arccot

α√
z2 − α2

−
1

α
arccot

α
√

1− α2
.

(2.6)
Figure 2 shows the real part of the new expressions. The extra term

in the generic (the lower) consequent in (2.6) subtractively cancels a
parametric pole asymptotic to 1/α2 as α → 0, which can be seen in
the generic consequent of result (2.5). This makes the parametrically
continuous expression now approach the same values from both sides
of α = 0, converting that parametric pole to an indeterminate slit in an
otherwise parametrically continuous surface—a removable singularity.
Moreover, the extra term 1 in the α = 0 consequent of (2.6) raises the
space curve exactly the right amount to make it contiguous with the

ences, and even between different printings of the same reference work [7]. The
plots shown here were made with Mathematica, and other systems such as Maple
and Matlab may create different plots.
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surface on both sides, thus removing that removable singularity.

3 Advantages of parametrically continuous
integrals

We have defined the specialization problem as the failure of a generic
formula when particular values are substituted for parameters, with the
generic integrals above being examples. One way to avoid specialization
problems completely would be to specify all parameters in advance, that
is, delay starting a calculation until the parameters are known. This,
however, negates the very power and generality that algebra extends
to us. As well, it is not always the case that one can know parameters
in advance; for example, a parameter might depend on the outcome of
an intermediate computation.

The specialization problem can be looked at another way, a way per-
haps more suitable for computer algebra. There are variations possible
in the order in which operations are applied. For example, in Maple
syntax, where as usual operations take precedence from the inside out,
it is the difference between

subs( n=-1, int( x^n, x ) ) ;

int( subs( n=-1, x^n ), x ) .

The first gives a division by zero error; the second gives lnx. The
challenge, then, is to retain the generality of algebra, while finding
ways to react to exceptional values of parameters.

3.1 Definite integration

There are at least two ways to evaluate a special case of a known
parametric definite integral, especially in the computer-algebra setting.
The first way is the typical human way: by working on each limit
separately. Thus to evaluate∫ b

a

f(x,p) dx ,

one first finds an indefinite integral F (x,p), then makes any substitu-
tions F (x,pc), then evaluates and simplifies F (b,pc) − F (a,pc). For
this approach, the Kahanian term is important, because it allows a sub-
stitution to be performed correctly, possibly as a limit limp→pc F (x,p).

For the second way, let us explicitly notate the presence of a Ka-
hanian term, so that the indefinite integral is F (x,p) + C(p), where



INTEGRALS OF FUNCTIONS CONTAINING PARAMETERS 9

now F is any function that satisfies F ′ = f and C(p) is the Kahanian
constant. We now perform the definite integral before specializing.∫ b

a

f(x,p) dx = [ F (b,p) + C(p) ]− [ F (a,p) + C(p) ]

= F (b,p)− F (a,p) . (3.1)

Now we must evaluate this expression as p → pc. If we simplify each
term separately, the calculation may fail, but keeping the terms to-
gether, the calculation succeeds.

For example,

lim
n→−1

∫ b

a

xn dx = lim
n→−1

(
bn+1

n+ 1
− an+1

n+ 1

)
= ln b− ln a ,

using the methods of (2.3). Again we point out that separately the
limits of each term need not exist. Computer systems, like people, can
sometimes succeed when asked one way and not another. With the
Kahanian form, either approach succeeds.

3.2 Resonance

We now give an example of Kahanian terms used in the solution of a
differential equation. A standard topic in physics and engineering is
resonance. The equation of a forced, frictionless, harmonic oscillator is

d2x(t)

dt2
+ k2x(t) = cosωt , (3.2)

It has the generic general solution

x(t) = C1 cos kt+ C2 sin kt+
cosωt

k2 − ω2
, (3.3)

where C1 and C2 depend on initial conditions, and the last term is
the particular integral. The phenomenon of resonance occurs when
ω2 = k2 and the particular integral becomes invalid. We shall now
derive a particular integral containing Kahanian terms that enable the
particular integral to have a valid limit in the resonant case. We shall
use the method of variation of parameters [4, 13]. We start from the
solutions to the homogeneous equation: x1 = cos kt and x2 = sin kt.
Then the particular integral is given by xp = u1x1 + u2x2 , where

u1 = −
∫
x2 cosωt

W
dt , u2 =

∫
x1 cosωt

W
dt ,
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and W = x1x
′
2 − x2x′1 is the Wronskian. Evaluating the integrals in

the usual way, we obtain

u1 =
cos((k − w)t)

2k(k − w)
+

cos((k + w)t)

2k(k + w)
, (3.4)

u2 =
sin((k − w)t)

2k(k − w)
+

sin((k + w)t)

2k(k + w)
. (3.5)

When the expression for xp is simplified, we are led to (3.3). If, however,
we change to Kahanian antiderivatives, we obtain

u1 =
cos((k − w)t)− 1

2k(k − w)
+

cos((k + w)t)− 1

2k(k + w)
, (3.6)

and no Kahanian is needed for u2, so it is still given by (3.5). The new
particular integral is

xp(t) =
cosωt− cos kt

k2 − ω2
, (3.7)

and now the limits ω → ±k give

xp(t) =
t

2k
sin kt , (3.8)

showing an oscillation that increases with time—a hallmark of resonant
behaviour8.

Both Mathematica and Maple return (3.3) without provisos, and to
obtain (3.8), one must substitute ω = k and rerun the solution. The
lesson from this example is that, because of their black-box automation,
computer algebra systems should implement and exploit comprehensive
results from the most basic operations on up through the most sophisti-
cated. For example, it would greatly help to have comprehensive limits
and comprehensive series, as well.

4 Computing a Kahanian antiderivative

The derivation used in (2.4) appears ad hoc, but a more systematic
procedure is possible. Instead of computing an indefinite integral, we
calculate a “semi-definite” integral.

8This is an example of a computation that ought to be routine, for a human
using familiar trigonometric identities. Instead of thinking back to how you solved
it in your first course in differential equations, correctly accounting for resonance,
imagine that you are a computer subroutine, having to turn out a good answer by a
mechanical algorithm. In that context, the Kahanian approach makes automation
easier.
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Definition 4.1 A parametric semidefinite integral is one of the
form

P (z; p) =

∫ z

A

f(τ ; p) dτ, (4.1)

where the lower limit A is called the anchor point, and is constant.

Remark 4.2 Some people use the term indefinite integral to describe
(4.1), allowing one point (usually the lower limit) to be fixed and the
other to vary. We, however, have earlier used the term indefinite in-
tegral to mean any antiderivative or primitive, as is common parlance
where we work. To avoid confusion and to fix attention on the anchor
point, we have introduced the term “semi-definite”, although we are
somewhat indefinite (that is, semi-indefinite) about the hyphen in the
term.

Lemma 4.3 In (4.1), let z be finite and let f(τ ; p) be continuous with
respect to p and with respect to τ in the domain of interest containing
z, τ and A; A is a fixed finite numeric constant. Then P (z; p) is
continuous with respect to all finite values of its parameters p, except
perhaps for removable singularities.

Proof 4.4 This theorem is a consequence of classical theorems about
the interchange of limits when functions are uniformly continuous: see
for instance [3]. As a conceptual alternative, consider the following.
Let G(z; p) be a generic antiderivative of f(z; p). Then

P (z; p) = G(z; p)−G(A; p) , (4.2)

and all discontinuities whose locations depend only on the parameters
occur both in G(z; p) and in G(A; p). Therefore they cancel in the
semidefinite integral (4.2), leaving at worst an expression that is inde-
terminate at the locations of those discontinuities, making the discon-
tinuities removable.

Remark 4.5 The finiteness of the interval in the hypotheses is neces-
sary. If the interval of integration is unbounded, then the lemma need
not be true. For example, for real x we have (the signum function is −1
for negative arguments, +1 for positive arguments, and zero for zero
argument) ∫ x

−∞

sin pt

t
dt =

π

2
signum(p) +

∫ px

0

sinu

u
du (4.3)

which has a jump discontinuity at p = 0 although the integrand sin(pt)/t
is continuous there. We are indebted to a referee for this example.
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Remark 4.6 The complexity of the Kahanian depends on the choice
of anchor point A. We want to avoid values of A that make G(A; p)
indeterminate or take an infinite magnitude. The least complex Kaha-
nian is 0. Therefore it is worth comparing the complexities of Kahanian
constants corresponding to different anchor points, and preferring any
that yield a Kahanian of 0.

4.1 Earlier examples

The example (2.4) is obtained from the semidefinite integral
∫ z
1
τα dτ .

Our opening example (1.1) can be modified by using an anchor point
A = 0 to calculate a Kahanian constant: we obtain∫ (

ασz − αλz
)2
dz =

−(λ− σ)2

2λσ(λ + σ) lnα
+

1

2 lnα

(
α2λz

λ
+
α2σz

σ
− 4α(λ+σ)z

λ+ σ

)
. (4.4)

It is straightforward to verify that by taking the limits α → 0, λ → 0
and λ→ −σ, each of the special cases in (1.2) is reproduced. That is,
the use of a Kahanian makes each of the special cases of the comprehen-
sive integral into a removable discontinuity. Therefore, the conceptual
advance of replacing evaluation using substitution by evaluation using
limits, as discussed previously, can be usefully applied.

5 Implications

The danger of exceptional values is as old as algebra. Early enthusiasts,
amazed at algebraic power, often overlooked exceptions. Eventually,
though, experts such as Cauchy and Weierstrass worked to check the
enthusiasm, pointing out that care was needed. Out of this care, mod-
ern analysis was born; out of the enthusiasm, modern algebra. Hawkins
[10] writes of Cauchy

“Nevertheless, Cauchy did not accept the particular al-
gebraic foundation used by Lagrange . . . Cauchy, however,
had well-founded doubts about the automatic general in-
terpretation of symbolic expressions. He had warned that
“most (algebraic) formulas hold true only under certain con-
ditions, and for certain values of the quantities they con-
tain.”
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The dichotomy between analysis and algebra survives to this day,
and can be seen in the present discussion of integration. Within com-
puter algebra, integration is based on modern algebraic algorithms,
such as the Risch algorithm and its generalizations [17, 5], for solving
the elementary antidifferentiation problem. Algebraic algorithms ex-
plicitly exempt the constant of integration from consideration. Indeed,
when verifying an integration formula by differentiation, all piecewise
constants are given zero derivatives.

5.1 Computer algebra system design

In the early days of computer algebra, implementers and users were
equally delighted at the ability of systems to obtain generic results.
Now, however, the low-hanging fruit has been harvested, and imple-
menters can and should make another pass through their fundamental
functionalities such as integration, the solving of systems of equations
and inequalities, limits and series to make as many results as possible
comprehensive. The robustness of high-level functionality demands it.

5.2 Mathematical tables

Computer algebra and the internet make it decreasingly likely that
there will be a completely new printed table of integrals. There will,
however, probably be new editions of existing tables, because there is
something to be learned by scanning a table of closely-related integrals,
as opposed to seeing results one at a time from a computer algebra
system, with no organizing principle.

Printed integral tables would be impractically bulky if every entry
were a piecewise result of the kind in this article. However, many of
the special cases could be listed once in the most appropriate place,
then explicitly cross referenced from more generic cases. New editions
can also make the relevant domains as general as possible and more
explicitly obvious.

Moreover, an on-line version could assemble each piecewise result
as needed. There could even be a computer algebra system involved.
The difference of such a mathematical knowledge base from a bare
computer algebra system is that a user can learn by browsing through
related examples that follow a clear organizing principle.
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5.3 Mathematical practice

“A lot of times, people don’t know what they want until you show it
to them.”

–Steve Jobs

Mathematicians are increasingly frequent users of computer algebra
and other educational or research mathematical software. We suspect
that when users start encountering more comprehensive results, they
will become disappointed in software that does not provide them. As
a side benefit, users might become more careful about not overlooking
special cases or relevant issues such as domain enforcement and conti-
nuity issues with their manually derived results. Perhaps editors and
referees will also pay more attention to such details in articles they are
reviewing.

Meanwhile we hope that this article serves as a warning that when
a computer algebra system returns a generic parametric antiderivative,
the user should ponder the result, to determine whether there exist
special cases, and if so, compute them with separate integrands.

We think that the idea of comprehensive antiderivatives will be
welcomed by many mathematicians, perhaps after they are exposed
to it through using future versions of computer algebra systems that
offer built-in comprehensive antiderivatives. We admit, however, that
parametrically continuous antiderivatives will be adopted only slowly,
because they are not always necessary, and they are usually more com-
plicated than the simpler, incorrect answer. In addition, from a nu-
merical point of view, they can suffer from catastrophic numerical can-
cellation, which requires higher precision (or perhaps some numerical
analysis experience) to overcome. Nonetheless, the point remains that
when they are necessary, they are crucial to obtaining a correct and
complete result.

5.4 Implications for mathematics education

The calculus curriculum is already quite full, and it seems unlikely that
the textbook examples and the expected exercise or test results could
all be comprehensive results. However it does seem worthwhile to intro-
duce students to the concept and have them do some simple examples
so that those who proceed into mathematical careers (or careers that
use mathematics) are more thorough and careful. The concept and
ideas behind a Kahanian antiderivative also seem worthwhile, but we
do not expect that to be as prevalent.
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5.5 Adoption issues

We are well aware that an abrupt transition to Kahanian parameterized
antiderivatives is impossible. One of us implemented the non-piecewise
generic portion of Kahan’s example (2.4) in an early version of a com-
puter algebra program. The complaints were immediate, numerous and
strong. Even many mathematics teachers said that it was incorrect
even though it differed only by a constant from the traditional an-
tiderivative. Perhaps the space-saving omission of a generic integration
constant C from most integral tables led some mathematics teachers to
forget what they taught, or perhaps they were simply concerned that
it would alarm, and hence intimidate, many of their students. Another
of us taught the concept to their beginning calculus students. They
hated it.

5.6 The pedagogical value of “lies to children”

The Wikipedia entry on Lie-to-children quotes [11], “The pedagogical
point is to avoid unnecessary burdens on the student’s first encounter
with the concept.” Asking students, on their first encounter with an-
tiderivatives, to worry about the continuity of their answer, in addition
to other worries, might seem unreasonable. Asking computer algebra
systems to cater to the needs of first-year students as well as the needs
of people who solve differential equations with parameters might also
seem unreasonable, without some sort of switch to “expert mode”, say.
On the other hand, if only experts learn to be careful with parametric
continuity, then both education and software have done a disservice to
their audiences.

5.7 Closing remarks

In one sense this paper merely offers a minor technical correction to
the current practice of computing indefinite integrals. However, the
total impact of this minor correction is potentially large because the
current practice is taught early at the university level and to very many
students—most of whom do not go on to become mathematics majors.
Moreover, computer algebra systems have become widespread, includ-
ing good free ones, some of which are available for smartphones. Most
current computer algebra systems apply current textbook rules and
amplify the effects of fundamental “minor” errors such as the error in
continuity that we address in this article. So in practice, the correction
we present is important.
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In order to promote the ideas of comprehensive antiderivatives and
Kahanian constants, we have developed a Mathematica program that
computes comprehensive anti-derivatives and Kahanian forms. It can
be used as an enhancement to Mathematica’s own Integrate com-
mand. The program, as this paper, hopes to promote the analytical
view common to several older calculus texts, such as those by Apos-
tol [3] or Courant and John [8], over the more common current practice
of making algebraic antidifferentiation the fundamental object of study.

The enhanced integration command is available on the website

http://math.hawaii.edu/~dale/ComprehensiveIntegrals/

ComprehensiveIntegrals.html
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