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ABSTRACT: Tests of sex allocation theory in vertebrates are usually
based on verbal arguments. However, the operation of multiple se-
lective forces can complicate verbal arguments, possibly making them
misleading. We construct an inclusive fitness model for the evolution
of condition-dependent brood sex ratio adjustment in response to
two leading explanations for sex ratio evolution in vertebrates: the
effect of maternal quality on the fitness of male and female offspring
(the Trivers-Willard hypothesis [TWH]) and local resource compe-
tition (LRC) between females. We show (1) the population sex ratio
can be either unbiased or biased in either direction (toward either
males or females); (2) brood sex ratio adjustment can be biased in
either direction, with high-quality females biasing reproductive in-
vestment toward production of sons (as predicted by the TWH) or
production of daughters (opposite to predictions of the TWH); and
(3) selection can favor gradual sex ratio adjustment, with both sons
and daughters being produced by both high- and low-quality moth-
ers. Despite these complications, clear a priori predictions can be
made for how the population sex ratio and the conditional sex ratio
adjustment of broods should vary across populations or species, and
within populations, across individuals of different quality.
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Sex allocation represents one of the most productive and
successful areas of evolutionary biology. Theory predicts
a number of situations in which individuals are expected
to adjust their allocation to male and female reproduction,
and there is a large empirical literature supporting these
predictions (Charnov 1982; Frank 1998; Hardy 2002).
Much of the clearest support for sex allocation theory
comes from studies of invertebrates (West and Sheldon
2002; West et al. 2005). A key reason for this success has
been the interplay between theoretical and empirical re-
search, with the development of specific models that can
be tested with added precision in specific systems (e.g.,
Trivers and Hare 1976; Werren 1980; Charnov et al. 1981;
Charnov 1982; Herre 1985; Yamaguchi 1985; Boomsma
and Grafen 1991; Taylor and Crespi 1994; Shuker et al.
2005).

In contrast to data from invertebrates, those from ver-
tebrates such as birds and mammals have provided equiv-
ocal support for sex allocation theory (Brown and Silk
2002; Cockburn et al. 2002; West and Sheldon 2002;
Schino 2004; Sheldon and West 2004). A major problem
for the application of sex allocation theory to vertebrates
such as birds and mammals is the lack of interplay between
theoretical and empirical research. This can be illustrated
by considering the most famous sex allocation prediction
for vertebrates, the Trivers and Willard (1973) hypothesis
(TWH). Trivers and Willard (1973) envisaged a mammal
population in which (1) females in better condition have
more resources for reproduction and hence produce
higher-quality offspring and (2) intense competition for
mates between males leads to male fitness increasing much
more rapidly with quality than female fitness. In this case,
theory predicts that poor-quality mothers should produce
daughters and high-quality mothers should produce sons.
This model has been applied to a huge range of vertebrates,
especially ungulates, primates, marsupials, and birds
(Brown and Silk 2002; Cockburn et al. 2002; Schino 2004;
Sheldon and West 2004).

Empirical tests of the Trivers and Willard (1973) hy-



pothesis in vertebrates are usually based on verbal argu-
ments, which can lead to three problems. First, some stud-
ies have focused on whether overall population sex ratios
are biased (reviewed by West and Sheldon [2002]). In
general, this approach lacks a clear theoretical basis, be-
cause whether the overall population sex ratio should even
be biased, let alone in what direction, can depend on a
number of life-history details that can be difficult to mea-
sure (Frank 1987, 1990; Pen and Weissing 20004, 2002).
Second, multiple factors can influence sex allocation in
vertebrates, which complicates matters. For example, in
many species in which the Trivers-Willard effect could be
expected, limited dispersal by females can lead to local
resource competition (LRC) between related females,
which reduces the marginal fitness gain of producing
daughters (Clark 1978; Taylor 1981; Clutton-Brock et al.
1982; Silk 1983). When multiple factors act, then verbal
arguments can give misleading predictions (Frank 1990).
Third, the possibility of asymmetrical transmission of
quality from parent to offspring can lead to very different
predictions. For example, if only daughters inherit aspects
of quality from mothers, such as maternal rank, then this
can select for high-quality mothers to be more likely to
produce daughters—the opposite direction to that pre-
dicted by Trivers and Willard (Leimar 1996).

Here we address these problems by modeling the effects
of when both LRC and the Trivers-Willard effect can occur
simultaneously in the same species. Our aim is to deter-
mine whether clear predictions can be made for either the
overall population sex ratio or the direction of brood sex
ratio adjustment across individuals of different quality
within a population. We distinguish between absolute pre-
dictions for a given population or species (e.g., the off-
spring sex ratio should be male biased) and relative pre-
dictions across populations or species (e.g., the offspring
sex ratio should be more male biased in species or pop-
ulations in which there is more female philopatry). For
clarity, we model the simplest possible scenario: the
Trivers-Willard effect is allowed for by having offspring
quality determined by patch quality and two types of patch
quality—high and low; LRC is allowed for between females
by having only a fraction d of females disperse from their
natal patch and complete male dispersal. In the discussion,
we relate our predictions to existing empirical data.

The Model
Preliminaries

We consider a diploid sexual species undergoing discrete,
nonoverlapping generations. We suppose that the popu-
lation is divided into an infinite number of breeding
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patches, with each breeding patch supporting exactly one
fertilized female.

Breeding patches themselves are assumed to vary in
quality. Specifically, we assume that there exist two patch
“types” (indexed; i = 1,2). One patch type (type 1) is of
high quality, while the other type (type 2) is of low quality.
We let p; denote the frequency of a type i patch, and we
suppose that these frequencies remain constant over time.
A key assumption here is that patch quality and maternal
quality are inextricably linked: a mother is of high (low)
quality because she breeds on a patch of high (low) quality.

A parent is assumed to make some fixed investment in
offspring, and in turn this investment influences offspring
survival. A parent can manipulate the sex ratio of its brood,
then, by altering the proportion of the fixed investment
it gives to sons. We refer to this proportion as parental
“sex allocation behavior” and denote its population av-
erage as z, We attach the subscript i to z to remind us
that sex allocation behavior may be expressed differently
depending on the quality of the parent’s breeding patch.
It is the joint evolution of z, and z, that is the focus of
this article.

We will treat z, and z, as behaviors expressed by a
mother. This assumption is made only because it improves
the clarity of the exposition. Our results are not affected
by treating z, and z, as behaviors expressed by a father,
but that is not the case in more general models (e.g., Pen
and Weissing 2002; Wild and Taylor 2005).

Life Cycle

Each generation consists of a series of events. These are
outlined below in their order of occurrence (see table 1
for a list of symbols and definitions).

1. Birth. A fertilized female gives birth to K sons and K
daughters, where K is very large (ideally infinite) and in-
dependent of patch quality. Note that brood sex ratios at
this stage are unbiased.

2. Maternal Investment. Mothers express conditional sex
allocation behaviors. At the end of this stage, the brood
on a type i patch consists of Kz; sons and K(1 — z;) daugh-
ters. Note that thinking of z; as a probability of survival
is merely a technical device used to guide our modeling
efforts. The ratio (1 — z;)/z; could also be interpreted as
the “birth sex ratio” of the brood produced by a type i
mother.

3. Dispersal. Sex-specific dispersal patterns have been re-
ported in many species of vertebrates (Greenwood 1980).
To reflect common dispersal patterns in mammals, we
assume complete dispersal of males but only partial dis-



E114 The American Naturalist

Table 1: Explanation of the principal notation used in the main text

Symbol Explanation

d Rate of natal dispersal by females

O, O¢ Deviant increase in the level of investment in sons and daughters, respectively (6, = —6,,)

K Size of brood at the end of the maternal investment period (stage 2 of life cycle)

N, Effective number of females competing on a type i patch

N, Effective number of males competing on any patch

D Frequency of type i patches (p, = 1 — p,)

T, Strength of local resource competition on a type 7 patch (a number between 0 and 1)

Ve o Uy ; Reproductive value of female and male, respectively, born on a type i patch, measured at birth

Vi j),vim(i, 2 Reproductive value of female and male, respectively, born on a type i patch but competing on a
type j patch

Wi p Wi Intrasexual competitive abilities of a female and male, respectively, born on a type i patch

AW, AW, ; Inclusive fitness effect through daughters and sons, respectively, born on a type i patch

AW, = AW, ;+ AW;,; Overall inclusive fitness effect of the production of sons on a type i patch (recall, 6; = —4,,)

z; Proportion of reproductive investment the average type i mother allocates to the production of sons

persal by females (let d denote the female dispersal rate).
For simplicity, we do not impose a survival cost on dis-
persing individuals.

In addition to the assumptions outlined above, we as-
sume that dispersal rates do not evolve and do not depend
on habitat quality. The consequences of relaxing these as-
sumptions are not trivial and have been explored elsewhere
(Leturque and Rousset 2003, 2004; Wild and Taylor 2004;
Wild et al. 2006).

4. Male-Male Competition. Each female is fertilized by
exactly one male; however, the mating success of a male
is variable. Males born on a high-quality patch enjoy a
competitive advantage over males born on a low-quality
patch. If w,,; denotes the competitive ability of a male
born on a type i patch, then the effective amount of male-
male competition for access to any given female is simply

N, = KZ Wi, iDiZ;
J

By the assumption w,,, > w, ,, the relative competitive
advantage enjoyed by the son of a type 1 mother is
Wit/ Wi o > 1.

5. Female-Female Competition. Fertilized females from
stage 4 of the life cycle compete for access to the vacated
breeding site. As before, we posit a competitive advantage
for females born on a high-quality patch. On a type i patch
the effective number of competing females is

N;; = K‘(l - d)Wf,i(l —z) + dE Wﬂjpj(l - Zf) 4

where w;; is the competitive ability of a female born on
a type i patch. We assume that daughters born to type 1

mothers usually enjoy a relative competitive advantage
over those born to type 2 mothers. That is, w;,/w;, > 1.

Note that when w,, ,/w, , = w; /W, the model de-
scribes a situation in which parents breeding on a high-
quality patch enjoy only a fecundity advantage over those
breeding on a low-quality patch. Leturque and Rousset
(2003) have investigated the consequences of fecundity
advantage. In this article, we suppose that superior patch
quality has sex-specific consequences for offspring com-
petitive ability. Specifically, we assume

w,

m, 1

w,

m,2

w,
—+1>1, 1)
We,

To be clear, inequality (1) means that the investments
made in sons by mothers in good condition (i.e., mothers
breeding on a high-quality patch) are always rewarded at
a higher rate than those made in daughters. Inequality (1)
reflects the key ideas behind the TWH: (1) there is a benefit
of improved maternal condition (neither w,, ,/w,, , nor
Wg1/Wy, is less than unity) and (2) the benefit of improved
condition is felt more strongly by sons (w,, ,/w,, , always
exceeds wg,/w;,). Of course, condition may be due to
things other than quality of breeding site, so our model
is one of many possible Trivers-Willard scenarios.

Inclusive Fitness Analysis
The Inclusive Fitness Effect

The analysis of the model uses a version of Hamilton’s
(1964) notion of inclusive fitness, generalized to reflect the
sex structure of the population. To capture the action of
kin selection on the population average behavior z,, we
use AW, = AW(z,, z,), the so-called inclusive fitness effect
of z, When AW. > 0, kin selection favors individuals who



invest more than an average amount in sons, and z; in-
creases. Alternatively, when AW, < 0, kin selection favors
individuals who invest more than an average amount in
daughters, and z; decreases. A population is at an (internal)
equilibrium with respect to the evolution of z; whenever
AW, = 0.

More formally, AW, describes the marginal change in a
mother’s contribution to the gene pool of the population
in the very distant future (i.e., her inclusive fitness), where
the change itself is due to small changes in her own sex
allocation behavior. A key quantity in the construction of
AW, then, will be per capita reproductive value (i.e., the
probability that an allele chosen at random from a pop-
ulation of descendants originated from a given individual
in the distant past).

In keeping with previous kin-selection models of sex
ratio evolution (e.g., Taylor and Frank 1996; Wild and
Taylor 2004), we split AW, into two parts. The first part,
called the “inclusive fitness effect through sons,” reflects
those inclusive fitness changes that occur when investment
in sons is increased. The second part, the “inclusive fitness
effect through daughters,” reflects the inclusive fitness
changes that occur when investment in daughters is in-
creased. It is useful to note that the way in which we
approach our kin-selection argument (below) differs from
the recent “direct fitness” approaches used to study sex
ratio evolution (e.g., Taylor and Frank 1996; Pen and
Weissing 2002). The two approaches will, however, yield
the same results (Taylor et al. 2007).

The Inclusive Fitness Effect through Sons

Fix attention on one mother (the focal mother) breeding
on a type i patch. Suppose that this focal mother increases
the proportion of resources she gives to her male offspring
by some small amount, 6,,. Suppose further that the in-
creased investment in sons does not come at the expense
of decreased investment in daughters (this is not an as-
sumption per se, because changes in the level of investment
in daughters are captured in “The Inclusive Fitness Effect
through Daughters”). What are the inclusive fitness con-
sequences of this type of deviant behavior?

To answer the question, we observe that the deviant
mother has produced K§, “extra” sons; each extra son
contributes to the gene pool of future generations with a
probability proportional to its reproductive value; only half
of the alleles carried by the extra sons were contributed
by the deviant mother herself. Putting these observations
together allows us to express the inclusive fitness effect of
a son born on a type i patch as
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AWm,i = EKamvm,i’ (2)

where v, ; is the reproductive value of a male born on a
type i patch (measured at the beginning of stage 2 in the
life cycle).

Since the total reproductive value of males (and indeed
females) as a group is conserved (Fisher 1930), the extra
reproductive value created by deviant behavior must dis-
place an equal amount of existing reproductive value in
the population. However, we assume that complete male
dispersal implies that the focal mother has no genetic stake
in the reproductive value that is displaced. Consequently,
displaced reproductive value does not enter into our
AW, ; calculation.

The Inclusive Fitness Effect through Daughters

Now instead suppose that the deviant mother increases
investment in daughters by a small amount, §; (without
decreasing investment in sons). As above, the deviant be-
havior increases the inclusive fitness of the focal mother
by an amount 1/2(Kéw; ), where v, is the reproductive
value of a female born on a type i patch (measured at the
beginning of stage 2 in the life cycle). However, in contrast
to the situation with sons, this increase is not the only
inclusive fitness change that occurs.

The extra reproductive value created by increased in-
vestment in daughters must displace an equal amount of
existing reproductive value from the population. Unlike
males, females exhibit some degree of philopatry. Con-
sequently, the focal mother does have a genetic stake in
the reproductive value that gets displaced. The actual
amount of this genetic stake, though, is not immediately
clear.

To calculate the reduction in inclusive fitness due to
increased investment in daughters, we first note that we
can write

v, = (1= d)vg ) + dz P ®)
)

local

where vy, is the reproductive value of a female born on
a type i patch and competing on a type j patch (measured
at the end of stage 3 of the life cycle). In words, equation
(3) tells us that the reproductive value of a female before
dispersal is a weighted average of her reproductive value
given that she does not disperse and her reproductive value
given that she does disperse.

It is the first term of equation (3)—labeled “local”—
that counts toward a decrease in inclusive fitness for the
focal mother. Note, however, that the displaced repro-



E116 The American Naturalist

ductive value only counts toward a reduction in inclusive
fitness in the event that the local breeding site would have
been won by another of the daughters produced by the
focal mother. Since §; is small, we can approximate the
probability of this event with

K1 —dyw. (1 — z)
T, = .
l N,

The coefficient r, can be used to measure the strength of
LRC on a type i breeding patch. The effect of LRC is its
strongest when r, = 1, and LRC is absent when r, = 0.
The total reduction in inclusive fitness due to LRC can
now be expressed as 1/2[K8/(1 — d)v;; ,r]. In turn, the
overall inclusive fitness effect through daughters is

AW,

[.; = increase — decrease 4)

1 ;
EKaf[vf,i -(1- d)vf,(i,i)ri]'

The Inclusive Fitness Effect ... Again

In reality, investment in sons does come at the expense of
daughters and vice versa. It follows that §,, = —§; The
net effect of increased investment in sons—what we call
AW~—can now be expressed as

AW, = (AWm,i + A‘/vf,i) 5)

o< vy, — A2 pfy + (1 — il — 1)
7

L. . , .
Explicit expressions for v,, ; and v ; ; are presented in the
appendixes.

A Comment on Stability

Discussions surrounding the stability of a trait (or in this
case a pair of traits) is often facilitated by making explicit
reference to some dynamic description of evolution. If we
suppose that evolution proceeds slowly, so that one gen-
eration represents only an infinitesimal fraction of evo-
lutionary time (denoted #), then it is reasonable to describe
the action of selection with the continuous (evolutionary)
time dynamic

4
dt

2y

A= (positive constant) x
2

AW (z,, zz)‘
, (6
AWZ(Z]’ ZZ)

where values of z, and z, are taken from the unit square.

Equation (6) is a simplified version of multidimensional
evolutionary dynamics studied by other authors (e.g.,
Greenwood-Lee et al. 2001; Day and Taylor 2003). Our
simplified evolutionary dynamic assumes that (1) the sex
allocation behavior exhibited by an individual in a given
condition is not constrained by the behavior the individual
itself would have exhibited in the opposite condition, and
(2) both conditional sex allocation behaviors exhibit the
same amount of variation. Our investigation, then, steers
clear of the issues surrounding the genetic constraints on
the evolution of z, and z,.

We consider a pair of strategies, (z, z,) = (Z,, Z,), to
be stable provided the pair corresponds to a locally as-
ymptotically stable steady state of (6). When both Z, and
Z, occur inside of the unit square, that is, when
AW(Z,,Z,) = 0and AW,(Z,, Z,) = 0, we require that the
eigenvalues of the matrix

AW, dAW,
dz, dz,
AW, AW,
0z, oz,

21 =2,22=2;

have negative real parts. If both Z, and Z, occur on the

boundary of phenotype space, then the pair (Z,,Z2,) is
stable whenever

<0ifZ =0

AWZnZ) |0 i 7 = 1

forbothi =1and i = 2.

Suppose now that one of the two behaviors (say Z)
occurs on the boundary of phenotype space and the other
(say Z,) does not. In this case, AW, vanishes but AW, does
not. We will consider such a pair to be stable whenever

<0ifZ;=0
AWzo 2|30 7 2
and whenever
IAW,
< 0.
azk z21=21,2=2>

Results for Well-Known Special Cases
Local Resource Competition

By setting female dispersal d equal to zero in equation (5),
we recover a version of the standard model used to de-
scribe the effect LRC has on the sex ratio (Clark 1978;



Table 2: Stable sex allocation behaviors and sex ratio (no. fe-
males : males) for complete female dispersal (d = 1)

Parameters
P Wi Wi Wi Py Wi Wi Wan P2
P Wz Win,2 Wi, D Win,2 Wi Wno P
Stable z, 1 1+ BMe 1 1
2 Wi
Stable z, 0 0 1 1 — D
2 pZWm,Z
. Wi, T po(we, —w, Wt 01 (Wi — Wi,
Sex ratio o1 T P2 (We — Wro) b 2P (Wi 2)
Wy, = oWy, — W) )2 Wi ™ D1 (Wi = Win )

Note: Under complete female dispersal, our inclusive fitness analysis yields
the same results as the population genetic models investigated by Charnov
(1979) and Bull (1981). The table formally describes the conclusions of a
verbal argument originally presented by Trivers and Willard (1973) for the
case in which maternal condition is determined by the quality of her breeding
patch.

Wild and Taylor 2005). In this case, 7, = 1, and so from
(5) we see that AW, oc v, ,, which is always greater than 0.
It follows that selection always favors increased investment
in sons and strongly male-biased population sex ratios. It
should be emphasized that we are not making any addi-

tional assumptions about w,, ,/w,, , or w;,/w;, here.

Condition-Dependent Sex Allocation in a Well-Mixed
Population: A Version of the TWH

When there is complete dispersal by females, that is, when
d = 1, the inclusive fitness effect can be written as
AW, oc v, ; — v, , where now

w,

m, i

>
KE} Wm,jpjzj

Wy i
Uf,i = .

KZwp(1 = z))

The assumption w,, ,/w,, , > w;,/w,, leads to a situation
in which at least one of z, and z, is as extreme as possible,
that is, a situation in which both types of mother do not
simultaneously produce mixed-sex broods. In this case,
stable investment behaviors z, and z, are always biased in
opposite directions and stable population-wide sex ratios
is never male biased (table 2, and see, e.g., fig. 1). In fact,
except for the case w;, = w;,, the population sex ratio is
biased toward females, providing a marked contrast to the
LRC model explored above. These same results have been
produced by the population genetic models of Charnov
(1979) and Bull (1981), and so we will not discuss them
further.

We will refer to the special case d = 1 as a “Charnov-
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Bull model,” and we note that it is a formalization of the
verbal theory outlined by Trivers and Willard (1973) for
the case in which maternal condition is determined by the
quality of the breeding patch and fitness returns on pa-

sex allocation behaviour

sex ratio (#F:#M)

0 0.5 1

frequency of type-1 patch, p,

Figure 1: Stable sex allocation behavior and population-wide sex ratios,
no. females : no. males (and labeled simply “sex ratios”), as a function
of p, for the case d = 1, w,, ,/w,,, = 3, and w,, ,/w,,, = 1.5. The figure

illustrates results already presented in table 2 but provides a visual ref-
erence for results presented in figures 3 and 4.
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rental investment are linear (cf. more general return func-
tions considered by Frank [1987]). Recall that the as-
sumption w,, ,/w,, , > w; /W, means that the investments
made in sons by mothers in good condition (i.e., mothers
breeding on a high-quality patch) are always rewarded at
a higher rate than those made in daughters. As Trivers and
Willard (1973) predicted, we see that mothers in good
condition tend to produce more sons than daughters (table
2). (Trivers and Willard [1973] made no specific predic-
tions about population sex ratios.)

Combining LRC and Condition-Dependent Allocation
Overview

Local resource competition and the adjustment of parental
investment strategies in response to changes in breeding
condition are leading explanations for the adaptive sig-
nificance of sex allocation behavior and population sex
ratios of many vertebrate species (Cockburn et al. 2002).
On one hand, local resource competition in a homoge-
neous environment encourages the evolution of male-
biased sex allocation behavior as well as male-biased pop-
ulation sex ratios (“Local Resource Competition”). On the
other hand, a simple, well-mixed but heterogeneous en-
vironment (and the associated variablity in maternal con-
dition) encourages the evolution of extreme conditional
investment strategies biased in opposite directions and
population sex ratios that are mainly biased toward females
(“Condition-Dependent Sex Allocation in a Well-Mixed
Population: A Version of the TWH”). Combining the two
approaches is thought to lead to tremendous complica-
tions (e.g., Cockburn et al. 2002)

In this section we show that in some nontrivial cases,
models of condition-dependent sex allocation that account
for LRC make the same predictions as models that ignore
LRC. In other cases we see that it is possible for LRC to
complicate predictions about condition-dependent sex al-
location substantially. Furthermore, we present numerical
results that suggest LRC is a significant complication in
those circumstances in which there is little difference be-
tween the advantage enjoyed by sons and daughters born
to mothers in good condition. The section ends with a
brief investigation into how the strength of LRC varies
across a population at evolutionary equilibrium.

No Broods of Mixed Sex

We begin the analysis of the general model by restricting
attention to those populations in which each fertilized
female produces either only sons or only daughters. Such
populations are said to exhibit “joint extreme investment
behavior” and are especially convenient to work with be-

cause the total reproductive value of type 1 parents can
be related in a simple way to the total reproductive value
of type 2 parents.

Mathematically, we suppose that population average
strategies are either

z,=12,=0 (7)
or
z, =0,z, = 1. (8)

The calculations presented in appendix B show that in the
presence of LRC, (7) is stable whenever

Wi P2 { 20— dp)’ ] o
Wno D 2dp,ldp, +2(1 —d)] + (1 — d)’
and
Wi Dy [ 2dp,(1 — dp,) ]
—— <= X . 10
Wiy P 1 —d( —2dp,p,) (10

In words, stability of the pair of behaviors in (7) is assured
whenever (1) the relative competitive ability of sons born
to mothers in good condition is large enough to discourage
the production of sons by mothers in poor condition (in-
equality [9]), and (2) the relative competitive ability of
any daughters born on a type 1 patch is modest enough
to discourage the production of daughters by those moth-
ers currently investing only in sons (inequality [10]).

In order for inequality [10] to hold, the frequency of
type 1 patches cannot exceed one-half (fig. 2A). This means
that the stability condition (10) implies a female-biased
sex ratio p,/p, > 1. This leads us to the first main conclu-
sion of our analysis.

Conclusion 1. Under a reasonable set of conditions, the
conclusions about sex allocation behavior and population-
wide sex ratios—made under assumptions consistent with
those of Trivers and Willard (1973)—are not complicated
by local resource competition.

A similar analysis of the case in which z, = 0 and
z, = 1 (eqq. [8]) shows us that such conditional behaviors
are stable whenever

2dpldp, +2(1 —d)] + 1 — d)°
2(1 - dpz)z

Wm,1<& x

Wm2 D

(11

and



1 —d1 — 2dp,p,)
dez(l - dpz)

Wia &
We2 D

12)

In this case, stability of the pair z, = 0 and z, = 1 in (8)
is assured because (1) the relative competitive ability of
any sons born to on a high-quality patch is not strong

|
| |
I e den b et s e

o
n
|

female dispersal rate, d

|
|
L
|
|
L
L
i
B
L
|
L
1

female dispersal rate, d
T
=5
]
+
i
|
NN
1

frequency of type-1 patch, p;

Figure 2: Regions of d-p, parameter space in which it is possible for
either condition (10)—for the stability of z, = 1,z, = 0—to hold (A)
or for condition (12)—for the stability of z, = 0,2z, = 1—to hold (B).
In both panels, stability conditions imply that pairs (d, p,) fall into the
region above the curve. Although the regions indicated in A and B over-
lap, we can rule out the possibility of bistability.
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enough to discourage the production of daughters by
mothers in good condition (inequality [11]), and (2) the
relative competitive ability of daughters born to mothers
in good condition is large enough to discourage the pro-
duction of daughters by mothers in poor condition (in-
equality [12]). It is interesting to note that z, = 0 can be
part of a stable pair of conditional investment strategies
when w,, ,/w,, , > w; /w,, because this possibility can only
hold when the aforementioned inequality is reversed in
the absence of LRC (Charnov 1979; Bull 1981).

In order for inequality [11] to hold, the frequency of
type 1 patches must not exceed one-half (fig. 2B). Unlike
the previous case, the appropriate stability condition, con-
dition [11], now implies a male-biased sex ratio, p,/p, <
1. Again, this provides a stark contrast to the predictions
made by the Charnov-Bull model.

Conclusion 2. Our second main conclusion can now be
stated as follows: LRC can greatly complicate predictions
about sex allocation behavior and population sex ratios.
In some cases (e.g., above), our model leads to predictions
that are qualitatively opposite to those made by models
that ignore LRC.

Numerical Investigations

We have found that the model is analytically tractable for
any case in which only one type of mother invests in
daughters (not just those cases explored above). Never-
theless, we forgo such analysis in favor of a numerical
investigation. Our numerical investigation tracks how, for
fixed advantages w,, ,/w,, , and w;,/w;,, the stable levels of
sex allocation behavior change as we change d and p,. In
technical terms, we use numerical methods (implemented
with the Maple software package) to investigate structural
stability properties of the model in general.

Figure 3 shows the results of numerical investigations.
As expected, we see the predictions of LRC models indi-
cated by a green curve of the face, d = 0, and the pre-
dictions of the Charnov-Bull models indicated by a blue
curve on the face, d = 1 (cf. fig. 1).

By increasing d from 0 to a small positive value, we
move into a region of parameter space in which both types
of mother produce mixed-sex broods (fig. 3, black curves).
Joint production of mixed-sex broods is a phenomenon
that does not occur in the Charnov-Bull models, and it
also does not occur in the version of the LRC model we
developed above (“Local Resource Competition”).

Increasing d further leads to levels of sex allocation be-
havior that are qualitatively consistent with the sex allo-
cation predictions made by the Charnov-Bull models (fig.
3, red curves). That is to say, red curves indicate those
stable pairs of strategies in which z, is male biased, z, is
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Figure 3: Stable sex allocation behaviors and population sex ratios (labeled simply “sex ratios”) as d and p, change. In this case, w,, ,/w,,, = 2.5
and w;,/w;, = 1.5; that is, male advantage was about 67% greater than female advantage. Panels on the far left show a transition between sex
allocation predictions made by LRC models (green) to those made by standard models of condition-dependent sex allocation behavior (blue). Notice
the similarity between the blue curves and those presented in figure 1. Black curves indicate those situations in which both types of breeding female
produce broods of mixed sex. Red curves indicate situations in which sex allocation behaviors (but not necessarily sex ratio) are qualitatively
consistent with standard models of Charnov (1979) and Bull (1981): type 1 females bias investment toward sons, type 2 females bias investment
toward daughters, and at least one sex allocation behavior is as extreme as possible. Smaller panels to the right give the top view of the d-p, plane
and highlight those points where sex allocation behaviors and sex ratios are, respectively, male biased (center) or female biased (far right). To help
orient the reader, we have included two landmarks: the number sign and the asterisk.

female biased, and only one of z, or z, is as extreme as
possible. Red curves do not necessarily indicate popula-
tion-wide female bias; although sex allocation behaviors
are qualitatively consistent with Charnov-Bull results, the
population-wide sex ratio bias might not be.

As d approaches 1, we also find visual evidence of the
argument already made in “No Broods of Mixed Sex.”
That is to say, we recover a model that allows for LRC
while making the same predictions as the Charnov-Bull
models (fig. 2, blue curve not on face d = 1).

In sum, figure 3 illustrates a gradual transition between
the predictions models of LRC (d = 0) and those of Char-
nov-Bull (d = 1). However, there are cases in which the
transition between the different predictions is abrupt. Fig-
ure 4 illustrates one such case.

In figure 4 we see again that increasing d from 0 to a
small positive value leads to the production of mixed-sex
broods by both type 1 and type 2 mothers (fig. 4, black
curves). Increasing d further leads to the (arguably) coun-
terintuitive situation in which low-quality mothers invest
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Figure 4: Stable sex allocation behaviors and population sex ratios (labeled simply “sex ratios”) as d and p, change. In this case, w,, ,/w,,, = 7.7

and w;,/w;, = 7.2; that is, male advantage was only 7% greater than female advantage, in contrast to figure 3. Panels on the far left show a transition
between sex allocation predictions made by LRC models (green) to those made by standard models of condition-dependent sex allocation behavior
(blue). Thick black curves indicate those situations in which both types of breeding female produce broods of mixed sex. Red curves indicate
situations in which sex allocation behaviors (but not necessarily sex ratio) are qualitatively consistent with standard models of Charnov (1979) and
Bull (1981): type 1 females bias investment toward sons, type 2 females bias investment toward daughters, and at least one sex allocation behavior
is as extreme as possible. Purple curves indicate situations in which at least one condition sex allocation behavior is as extreme as possible, and
bias in sex allocation behavior is qualitatively inconsistent with the predictions made by models of Charnov (1979) and Bull (1981). Smaller panels
to the right give the top view of the d-p, plane and highlight those points where sex allocation behaviors and sex ratios are, respectively, male biased
(center) or female biased (far right). To help orient the reader, we have included two landmarks: the number sign and the asterisk.

completely in sons, and high-quality mothers either invest nov-Bull models (red curves). Now, however, the transition

in both sons and daughters or simply invest in daughters between the different qualitative preditions occurs

(purple curves). We expect the latter situation to occur abruptly. (The transition itself is characterized by the ex-

whenever inequalities (11) and (12) hold. istence of a line of stable sex allocation behaviors and
Remarkably, we see that the main qualitative predictions population sex ratios [thin vertical black lines].) Numerical

of LRC models—namely, male-biased sex allocation be-  results presented in this section lead us to suggest the next

haviors and male-biased population sex ratios—can be conclusion.

maintained even under high rates of female dispersal (fig.

4). We can, of course, increase d to the point at which  Conclusion 3. The qualitative predictions of previous

model predictions qualitatively match those of the Char- models that ignore LRC are extremely sensitive to the pres-
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ence of incomplete female dispersal when the difference
between the advantage enjoyed by sons born to a mother
in good condition and that enjoyed by their sisters (mea-
sured relative to sister’s advantage) is not sufficiently large.
Unfortunately, the numerical results do not tell us, a priori,
how large “sufficiently large” is.

Variation in the Strength of Local Resource Competition

If both types of mother invest in daughters, then both
incur inclusive fitness losses due to local competition. It
has been suggested that such losses are less for parents
breeding on high-quality patches (Silk 1983). Of course,
reduced local resource competition on high-quality
patches could be due to certain habitat-specific patterns
of female dispersal. Our model does not allow habitat-
specific dispersal. Despite this simplification, we see that
reduced local resource competition on high-quality
patches can emerge from the action of selection on the
sex ratio alone, though some exceptions exist (table 3).

Discussion
Theoretical Predictions

We have examined the consequences of combining the
standard assumptions of (1) LRC models of sex allocation
(e.g., Clark 1978) and (2) models describing the evolution
of condition-dependent sex allocation (Trivers and Willard
1973). Given that the models that examine these factors
separately make qualitatively different predictions (Clark
1978; Charnov 1979; Bull 1981; Wild and Taylor 2005),
we might expect that combining them would lead to a
gradual transition between the different predictions as we
move through parameter space (in particular, as d
changes). The most striking result we present here is that
in general, such intuition fails.

If conditions (9) and (10) hold, then the predictions
made by Trivers and Willard hold: females should be pro-
duced on low-quality patches and males on high-quality
patches. In these cases, and from the standpoint of qual-
itative predictions, LRC can be effectively ignored. Our
numerical results suggest that LRC can even be overlooked
by verbal arguments in some cases in which (9) and/or
(10) fail, provided the advantage given to males born on
high-quality patches is sufficiently greater than that given
to females born on high-quality patches. Of course, female
philopatry can be adjusted so that model predictions co-
incide instead with those made by LRC models of sex ratio
evolution, but as long as w,,, ,/w,, , is sufficiently larger than
Wy, /W;,, there appears to be a gradual transition between
the two extremes.

In contrast, we sometimes obtain predictions exactly

Table 3: Comparison of the strength of local resource competition
(LRC) on different patches for selected numerical examples

Stable Strength of
Parameters behaviors LRC
Wm, I/Wl‘n, 2 Wf. l/wf, 2 d pl ’Zl ZZ rl rZ
4.0 2.1 7 6 .6536 0 2715 .3388
2 9 7478 0 .7860 .8740
1 1 .8611 O 7386  .9064
2.2 2.1 7 .6 4778 7044 3771 .5205
2 9 .7408 6737 .8064 .7141
1 1 .8812 8339 9279 .8955

opposite to those made by the TWH: we find female-biased
brood sex ratios on high-quality patches and male-biased
brood sex ratios on low-quality patches in cases where the
advantage given to males born on high-quality patches is
not appreciably greater than that given to females born
on high-quality patches. Remarkably, we also see that the
gradual transition between the predictions of Trivers and
Willard and those made by LRC models is lost (fig. 4).
Simply put, the predictions of verbal arguments, like those
made by Trivers and Willard, appear to be extremely sen-
sitive to the presence of incomplete female dispersal when
sons born to good mothers do not enjoy an intrasexual
competitive advantage that is markedly greater than that
enjoyed by their sisters.

Clearly, when parental condition is tied to the quality
of a breeding patch, female philopatry does more than
simply force us to consider the detrimental impact LRC
has on inclusive fitness of a parent. Female philopatry also
means that daughters born on high-quality patches are
always more likely than their brothers to compete on a
high-quality patch. This situation is analogous to one con-
sidered by Leimar (1996) in which daughters (not sons)
inherit maternal condition. Leimar’s model also predicts
the possibility that mothers in good condition may prefer
to invest in daughters rather than sons. In our model,
incomplete female dispersal establishes an asymmetric pat-
tern of “inheritance” of maternal condition by daughters.
This inheritance increases the relative inclusive fitness re-
turn from producing daughters on high-quality patches
because it increases the probability that descendents con-
tinue to breed on high-quality patches. When this inher-
itance effect is large enough, relative to increased mating
success of high-quality sons, then we predict the opposite
pattern to that suggested by TWH: females on high-quality
patches should produce daughters.

Applying to the Real World

Our results have four clear implications for empirical tests
of sex allocation theory. First, we have shown that when



LRC and maternal condition influence sex allocation strat-
egies, the population sex ratio can be biased in either
direction, depending on the value of several parameters
in our model (figs. 3, 4). This is without even considering
the complications that can be raised by differential mor-
tality. Consequently, attempts to test theory based on
whether the population sex ratio of a particular species
are male or female biased will generally be misguided
(Frank 1990; Pen and Weissing 2000a; West and Sheldon
2002; Wild 2006). This contrasts with what often appears
to be conventual wisdom in the empirical literature, where
it is often assumed that testing whether a population sex
ratio is biased or not is testing for whether sex ratio ad-
justment is occurring (e.g., Palmer 2000). A notable ex-
ception to this is the application of the Trivers-Willard
effect to sex-changing animals, where clear predictions can
be made for the population sex ratio, as has recently been
discussed in detail elsewhere (Allsop and West 2004).
Second, while it is extremely hard to make absolute
predictions for the population sex ratio of a particular
species, it is possible to make relative predictions for how
the population sex ratio should vary across populations
or species. For example, results in figures 3 and 4 suggest
(1) a greater tendency for population sex ratios to be more
male biased (or less female biased) in populations or spe-
cies in which female philopatry is more prevalent and (2)
a lesser tendency toward male-biased population sex ratios
in populations or species in which the advantage of being
a higher-quality offspring is relatively greater for males.
The key point is that these predictions hold, even if both
LRC and the assumptions of Trivers and Willard are op-
erating. Support for the first of these predictions has al-
ready been found in primates and marsupials. Johnson
(1988) found that across primate species, the sex ratio was
more male biased in species in which there was greater
competition for resources or lower rates of dispersal by
females. Johnson et al. (2001) found that across popula-
tions of the common brushtail possum, the sex ratio was
more male biased in populations in which there was
greater competition between females for den sites.
Third, depending on parameter values, our model is
able to predict conditional sex ratio adjustment in either
direction, with females on high-quality patches producing
a higher proportion of either sons or daughters. Conse-
quently, the original Trivers-Willard prediction only holds
under certain conditions. Leimar (1996) has previously
shown that this problem arises if there is maternal trans-
mission of quality to daughters through factors such as
transmission of rank or inheritance of quality. This is be-
cause inheritance of maternal quality leads to high-quality
mothers producing high-quality daughters who will pro-
duce high-quality offspring (grandchildren). Depending
on parameter values, this can outweigh the fact that sons
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produced by high-quality mothers will have a higher re-
productive success because they will not necessarily mate
with high-quality females, and so this will not necessarily
lead to high-quality grandchildren. The underlying trade-
off here is between producing more grandchildren
(through high-quality sons) or higher-quality grandchil-
dren (through high-quality daughters). This emphasizes
that reproductive success (number of offspring) is not the
same as reproductive value (which also accounts for dif-
ferences in quality among offspring) and that it is the latter
that matters to selection (Fisher 1930; Grafen 2006). Our
model leads to this same issue for similar reasons, because
daughters who do not disperse have a chance of inheriting
their mothers’ patches. The difference here is that inher-
itance of quality drops out of our model as a consequence
of how we allow for LRC rather than as a consequence of
an initial assumption. The relative importance of the orig-
inal Trivers-Willard suggestion and maternal transmission
could vary across taxa. For example, in ungulates, there
is a general tendency for high-quality females to produce
sons, suggesting that the Trivers-Willard effect is more
important (Sheldon and West 2004), whereas in primates,
a greater tendency for maternal transmission of rank to
daughters may explain the lack of a consistent pattern of
sex ratio adjustment (Brown and Silk 2002; West et al.
2005.

These results demonstrate the care that must be taken
when testing for adaptive sex ratio adjustment in a species
in response to maternal quality. The original TWH is only
expected to hold under certain conditions. More specifi-
cally, in order to be able to predict the direction of sex
ratio adjustment, it is necessary to know how maternal
quality influences the reproductive value of offspring and
not just their reproductive success (Leimar 1996). This can
be hard because the direct measurement of the reproduc-
tive value of males and females produced by different qual-
ity females can require long-term multigeneration studies.
Shorter-term studies will need to examine the different
components of fitness separately. For example, the im-
portance of maternal transmission of quality could be ex-
amined by investigating factors such as (1) temporal au-
tocorrelation in patch success or (2) mother-daughter
correlation in patch quality or identity. These issues could
be addressed with observational or experimental (e.g.,
cross-fostering) methodologies. Alternatively, the effect of
LRC and/or transmission of quality could be examined
experimentally by manipulating density or dispersal. We
hope that these issues do not make empirical workers too
pessimistic—our aim is to emphasize empirical work that
is needed rather than suggest things that are not worth
doing. In particular, examining the underlying assump-
tions of sex allocation theory to demonstrate selection on
sex ratio adjustment is as important as testing for sex ratio
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adjustment. The Cape mountain zebra provides an excel-
lent candidate for further study because it appears to be
a species in which there is strong maternal transmission
of condition and selection for high-quality females to pro-
duce daughters (Lloyd and Rasa 1989).

Fourth, while it is very hard to predict what should
happen in a particular species, it can be much easier to
predict how the extent of sex ratio adjustment between
individuals or patches should vary across populations or
species. For example, the difference in the birth sex ratio
of broods produced by high- and low-quality mothers, as
determined by factors such as patch or maternal condition,
should be greater when (1) the advantage of being a
higher-quality offspring is relatively greater for males or
(2) the extent of LRC is lower. There is support for these
predictions from primates and ungulates. Both ungulates
and primates show greater sex ratio shifts with maternal
condition in species in which there is greater sexual di-
morphism and hence stronger sexual selection for high
male quality (Schino 2004; Sheldon and West 2004). In
primates, the extent of sex ratio adjustment with maternal
condition is lower in species in which there is likely to be
greater LRC, as estimated from the population growth rate
(van Schaik and Hrdy 1991; Schino 2004). If individuals
can assess variation in the relative importance of LRC,
then our model would also predict variation in the pattern
of sex ratio adjustment within a species, either across pop-
ulations or over time. Consistent with this, as the popu-
lation density increased in a population of red deer, which
could increase the importance of LRC, the extent to which
high-quality females preferentially produced sons was re-
duced (Kruuk et al. 1999). In contrast, across populations
of wild savannah baboons, the pattern of sex ratio ad-
justment did not vary consistently with population growth
rate, another possible indicator of the extent of LRC (Silk
et al. 2005). More generally, this emphasizes the power of
using relative or comparative predictions to test evolu-
tionary theory: it is often easier to make predictions for
how traits should vary across individuals or populations
or species than it is to predict their absolute value (Frank
1998; Griffin et al. 2005).

Our results also suggest a potential reason for why the
pattern of sex ratio adjustment in vertebrates is usually
not very extreme. A major problem for sex allocation the-
ory is that in cases in which the birth sex ratio is expected
to be adjusted in response to environmental conditions
(as predicted by Trivers and Willard), the observed pattern
is generally a gradual shift in response to environmental
quality (e.g., maternal condition), whereas theory predicts
a threshold shift from all male to all female at a critical
value of the environmental value (e.g., at a certain host
condition; West et al. 2002). We have shown that as LRC
is introduced into the TWH through lower female dis-

persal rates, the pattern of sex ratio adjustment across
patches changes from producing only daughters in low-
quality patches and only sons in high-quality patches to
producing both sons and daughters in both low- and high-
quality patches. Previous theory has found it impossible
to predict such gradual shifts in sex ratio unless extreme
assumptions were made, such as the cost of sex ratio ad-
justment increasing exponentially the further one is from
50% males (Charnov et al. 1981; Leimar 1996; Pen et al.
1999; Pen and Weissing 2002). More generally, this seems
to be an area in which theory is falling behind empirical
progress, as there is an expanding literature examining
what factors correlate with the extent of sex ratio adjust-
ment but an almost complete lack of theory able to predict
such variation (e.g., van Schaik and Hrdy 1991; West and
Sheldon 2002; Cameron 2004; Schino 2004; Sheldon and
West 2004; Griffin et al. 2005; West et al. 2005).

Challenges

Vertebrate natural history suggests a number of directions
in which it would be useful to develop further theory. In
particular, there are several possibilities for even more
complicated interactions between different selective forces.
For example, considering LRC and the TWH, (1) in species
with overlapping generations, there can be LRC between
generations, the importance of which can vary with factors
such as age or survival rates (Cockburn et al. 1985; Isaac
et al. 2005); (2) the importance of LRC could co-vary with
maternal (or patch) quality (Silk 1983); (3) there can be
coevolution between dispersal rates and such allocation
(Leturque and Rousset 2003, 2004; Wild and Taylor 2004;
Wild et al. 2006); (4) there can also be cooperative inter-
actions between relatives (local resource enhancement
[LRE]) in populations in which LRC and the TWH occur
(Komdeur et al. 1997; Komdeur 1998); and (5) the relative
costs of raising a son or daughter can vary with maternal
quality (Gomendio et al. 1990). In all cases, the interplay
between theory and empirical research will be key, as em-
pirical studies suggest the complications that can be ig-
nored as well as those that need to be added. For example,
we have assumed that related males do not compete with
one another for access to females, as such local mate com-
petition (LMC) is not important in vertebrates (West et
al. 2005). However, the interplay of the TWH with LMC
could be important in some parasitoid wasps, as has been
explored elsewhere (e.g., Werren 1984; Werren and Sim-
bolotti 1989; Tkawa et al. 1993).

Another major complication that requires further the-
oretical attention relates to how offspring quality is de-
termined. We have assumed that the breeding condition
of a mother is determined solely by the quality of patch
on which she breeds. In reality, though, condition could



be a quality that is passed from mother to offspring, in-
dependent of any dispersal “decision” made by the off-
spring itself (Leimar 1996). To complicate matters further,
offspring could also inherit aspects of paternal condition
(Pen and Weissing 2000b), leading to complicated sex al-
location reaction norms. Modeling intricate transmission
pathways is a difficult task, at least with a kin-selection
approach. The main challenge lies in simply understanding
the population dynamics of a system with both maternal
and paternal input into offspring condition. The dynamics
of such a system are inherently nonlinear, and it is not at
all clear when these lead to a steady state distribution of
conditions. Steady state distributions like these are critical
to the formulation of any kin-selection model (Taylor

Sex Allocation Theory for Vertebrates E125

1990; Taylor and Frank 1996). A possible solution to this
problem is to use a population genetic or quantitative
genetic approach (Kirkpatrick and Lande 1989; Courteau
and Lessard 2000).
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APPENDIX A

Calculation of Reproductive Value

In this appendix we calculate v; ; ;, the reproductive value of a female born on a type i patch but competing on a

!

type j patch. We also calculate v

m, (i,7)?

the reproductive value of a male born on a type i patch but competing on a

type j patch. Both v; ; ; and v/, ;, can be expressed in terms of V, the reproductive value of an adult (male or female)
breeding on a type j patch. Consequently, our first step will be to calculate V/’s.

We will say that an allele is in state i if it currently resides in an individual (male or female) breeding on a type i
patch. Let P, denote the j— i transition probability, that is, the probability that an allele, currently in state i, was in
state j one generation ago. Transition probabilities can be summarized with a 2 x 2 matrix, P. Let

Qm -

_ KpiWin,1

N,

m

denote the probability that a male born on a type 1 patch competes successfully on any patch. Similarly, let

Qs

_ K = d+ dp)w;,

N

denote the probability that a female born on at type i patch also competes successfully on a type i patch. Using this

notation we can write

P — 1 Qf,l + Qm
2((1 = Q) + Q.

1-Q)+a-Q,|

Q.+ (1 —-Q,)

The jth element of the dominant left eigenvector of P gives us the total reproductive value of type j breeding adults
(Taylor 1996). Let ¢; denote the jth element of the dominant left eigenvector of P. An elementary calculation yields

[Clr Cz] oc [(1 - Qf,z) + Qm’ (1 - Qf,l) + (1 - Qm)]

We calculate V, by dividing c; by frequency of individuals breeding on a type j patch (Taylor 1996). This gives us

[V, V;] o< 3

1-Qp)+Q, 1 -Q)+(0~Q,)

b
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Finally, we express v;;, = probability of becoming breeding adult x reproductive value as breeding adult =

(w;,/N;;) x V; and v, ,; = probability of becoming breeding adult x reproductive value as breeding adult
(Wm,i/Nm,j) X ‘{

APPENDIX B

Populations with No Mixed-Sex Broods
In this appendix we consider a population in which no mixed-sex broods are produced; that is, we suppose that
z,=12z, =00+ k). (B1)

In this case, type i breeding females produce only sons, whereas type k breeding females produce only daughters.
When (B1) holds, we have manageable expressions for the various reproductive values used in the inclusive fitness
calculation (5):

=i Mo (B2)
’Um’j B Mn B KWm,ipi ] B l’

and

/ ITwg; 11 w1
v - =,
£, i) 2N, p; ZKdeWf,kpi

, 1w 1 1 W 1
Vi = ———— = = — (j=1k). (B3)
FO 2Nppe 2Kw,[(1 = d) + dp] py /
Equation (B1) also yields simple expressions for the coefficient r;
r, =0,
1—d
= B4
T d+ dp, (B4)
Substituting (B2)—(B4) into expressions for AW, and AW,, we get
1 1 w. 1 We 1 w. 1
AWOC - d - f,i - f,i , ( _ )_ i ~
p; ( {2 deWf,k 2w, (1 = d) + dp,] 2 dpw . p;
and
W, ¢ 11 1 1 )
AW, oc —— — idl-——+ -
L W, iD; ( (2 dp,  2(1—d) +dp,
1 1 1-—
+1—-d)= (1 — d }
2pk[(1 - d) + dpk] 1—d+ dpk

The pair z; = 1, z;, = 0 are stable whenever AW, > 0 and AW, < 0. Simple algebraic rearrangement of these conditions
gives
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Wmi pk 2’(1 B dpi)z } .
_mt 'k .
Wik Pi lZde[de +201—d)] + 1 — dy (i#k (B5)
and

Wi Pr [ 2dp(1 — dp,) ] '

o<, i # k), B6

v S p " = at —2dpp) Y (86)

which are general forms of (11), (9) and (12), (10), respectively.
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