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This paper is a continuation of our previous work on an HIV-1 therapy model of fighting a virus
with another virus [Jiang et al., 2009]. The work in [Jiang et al., 2009] investigated cascading
bifurcations between equilibrium solutions, as well as Hopf bifurcation from a double-infected
equilibrium solution. In this paper, we propose a modification of the model in [Revilla & Garcia-
Ramos, 2003; Jiang et al., 2009] by adding a constant η to the recombinant virus equation, which
accounts for the treatment of constant injection of recombinants. We study the dynamics of the
new model and find that η plays an important role in the therapy. Unlike the previous model
without injection of recombinant, which has three equilibrium solutions, this new model can
only allow two biologically meaningful equilibrium solutions.

It is shown that there is Rη
1 > 1 depending on η, such that the HIV free equilibrium solution

Eη
0 is globally asymptotically stable when the basic reproduction ratio, R0 < Rη

1 ; Eη
0 becomes

unstable when R0 > Rη
1 . In the latter case, there occurs the double-infection equilibrium solu-

tion, Eη
d , which is stable when R0 ∈ (Rη

1 , Rη
h) for some Rη

h larger than Rη
1 , and loses its stability

when R0 passes the critical value Rη
h and bifurcates into a family of limit cycles through Hopf

bifurcation. Our results show that appropriate injection rate can help eliminate the HIV virus in
the sense that the HIV free equilibrium can be made globally asymptotically stable by choosing
η > 0 sufficiently large. This is in contrast to the conclusion for the case with η = 0 in which,
the recombinants do not help eliminate the HIV virus but only help reduce the HIV load in the
long term sense.

Keywords : HIV-1 therapy model; stability; bifurcation; HIV-free equilibrium; double-infected
equilibrium; Hopf bifurcation; limit cycle; decease control.

1. Introduction

More than twenty years after its discovery in early
1980s, the acquired immunodeficiency syndrome
(AIDS) still remains one of the main causes of death
of human beings. It is well known that AIDS is
a result of the CD4+T cells dropping below cer-
tain level, and the population of CD4+T cells is
closely related to the HIV virus load within the host.
Naturally, controlling the virus load has been the

main goal of all therapies of AIDS. Currently there
are two types of drugs for therapy of HIV infection:
the protease inhibitors and the reverse transcriptase
inhibitors. Recent progress in genetic engineering
has offered a potentially alternative therapy: modi-
fication of a viral genome can produce recombinants
capable of attaching to the HIV infected cells and
hence, reducing the replication rate of HIV virus.
The idea of this method is similar to that of using
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lytic bacteriophages to cure the human bacterial
infections which has been used since the early 20th
century, mainly in Eastern Europe and the for-
mer Soviet Union (see, e.g. [Slopek et al., 1987;
Carlton, 1999; Sulakvelidze et al., 2001]). Indeed,
this method has been used to modify rhabdovirus,
including the rabies and the vesicular stomatities,
making them capable of infecting and killing cells
previously attacked by HIV-1. For details, see, e.g.
[Mebatsion et al., 1997; Nolan, 1997; Schnell et al.,
1997; Wagner & Hewlett, 1999].

To examine the efficacy of this approach of
fighting a virus with a genetically modified virus,
Revilla and Garcia-Ramos [2003] proposed a math-
ematical model which is a result of incorporating
two more variables — the density w of the recombi-
nant (genetically modified) virus and the density z
of doubly-infected cells (by the wild HIV virus and
the recombinants), into the standard and classic dif-
ferential equation model for HIV infection (see, e.g.
[Nowak & May, 2000]):


ẋ = λ − dx − βxv,

ẏ = −ay + βxv,

v̇ = −pv + ky.

(1)

Here x(t), y(t) and v(t) are the densities of unin-
fected CD4+T cells, infected CD4+T cells and the
free HIV virus respectively at time t. In this model,
a mass action infection mechanism is adopted with
an infection rate constant β. It is also assumed that
the healthy cell is produced at a constant rate λ and
die at a constant rate d, the infected cells die at rate
a, the virions are cleared (by immune system) at
rate p, and each infected cell produces and release
new virus at rate k. Based on the fact that the
engineered virus only codifies the coreceptor pair
CD4 and CXCR4 of the host cell membrane and
bind specifically to the protein complex gp120/41 of
HIV-1 expressed on the surface of infected cells (see
[Schnell et al., 1997]), Revilla and Garcia-Ramos
[2003] came up with the following model



ẋ = λ − dx − βxv,

ẏ = −ay + βxv − αyw,

ż = −bz + αyw,

v̇ = −pv + ky,

ẇ = −qw + cz.

(2)

The model (2) assumes that the recombinants
are only injected initially and there will be no

subsequent injections. However, as in other ther-
apies, subsequent treatments (injection in this con-
text) may enhance the efficacy of the therapy. In
this paper, we consider a simple injection mech-
anism, that is, a constant injection rate η, and
explore the consequence of such a treatment. Adop-
tion of such a constant injection rate treatment adds
the term η to the last equation in (2), resulting in
the following model system



ẋ = λ − dx − βxv,

ẏ = −ay + βxv − αyw,

ż = −bz + αyw,

v̇ = −pv + ky,

ẇ = η − qw + cz.

(3)

We will investigate how the injection rate η,
together with other parameters, affects the dynam-
ics of the model. For convenience of analysis, we
first simplify system (3) by the following rescalings:

x → µ1x, y → µ2y, z → µ3z,

v → µ4v, w → µ5w, τ = νt
(4)

d

ν
→ d,

a

ν
→ a,

b

ν
→ b,

p

ν
→ p,

q

ν
→ q,

αc

kβ
→ c,

αη

ν2
→ η,

(5)

where

ν = (λkβ)1/3, µ1 = µ2 = µ3 =
ν2

kβ
,

µ4 =
ν

β
, µ5 =

ν

α
.

(6)

By the above, system (3) is transformed to the fol-
lowing equivalent one:



dx

dτ
= 1 − dx − xv,

dy

dτ
= −ay + xv − yw,

dz

dτ
= −bz + yw,

dv

dτ
= −pv + y,

dw

dτ
= η − qw + cz.

(7)
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Note that in the new system (7), we still use the
same notations for the scaled state variables and
parameters as those in (3).

In order to compare the dynamics of the new
model system (7) with η �= 0 to that of the model
with η = 0 (i.e. a system equivalent to (2) which
has been previously studied in [Jiang et al., 2009]),
we summarize the results obtained in [Jiang et al.,
2009] as below.

Let

R0 =
1

adp
, and R1 = 1 +

bq

cdp
. (8)

Then, we have the following conclusions on the
dynamics of (7) with η = 0:

(i) when R0 < 1, the infection-free equilibrium
E0 = (1/d, 0, 0, 0, 0) is globally asymptoti-
cally stable;

(ii) when R0 > 1, E0 becomes unstable and there
occurs the single-infection equilibrium

Es =
(

ap,
1
a

(
1 − 1

R0

)
, 0,

1
ap

(
1 − 1

R0

)
, 0
)

;

(9)

(iii) when R0 ∈ (1, R1) , Es is globally asymptoti-
cally stable;

(iv) when R0 > R1, Es becomes unstable and there
occurs the double-infection equilibrium

Ed =
(

1
dR1

,
bq

c
,
aq(R0 − R1)

cR1
,
bq

cp
,

a(R0 − R1)
R1

)
; (10)

(v) there is a R2 > R1 such that Ed is asymptoti-
cally stable when R0 ∈ (R1, Rh);

(vi) when R0 is further increased in some appro-
priate ways to some critical value Rh, Ed loses
its stability, giving rise to some stable periodic
solution via Hopf bifurcation.

In the rest of this paper, we analyze (7) with
η > 0. Our results show that appropriate injec-
tion rate can help eliminate the HIV virus in the
sense that the HIV infection free equilibrium can
be made globally asymptotically stable by choosing
η > 0 sufficiently large. This is in contrast to the
conclusion for the case with η = 0 in which, the
recombinants do not help eliminate the HIV virus
but only help reduce the HIV load in the long term
sense. We also show that insufficient injection may

still lead to the persistence of the HIV virus, with
the recombinants also being persistent. In such a
case, the model may allow periodic dynamics aris-
ing from Hopf bifurcation within certain range of
the model parameters. Numerical simulations are
also carried out, which are guided by the analyt-
ical results obtained, and in turn, support these
results.

The remainder of the paper is organized as
below. In Sec. 2, we confirm that the model (7) is
well-posed by showing non-negativity of and bound-
edness of solutions corresponding to non-negative
initial values, and consider the structure of equilib-
ria for the model. In Sec. 3, we prove that there is
a threshold value for R0, denoted by Rη

1 such that
when R0 < Rη

1 , the HIV free equilibrium is glob-
ally asymptotically stable; when R0 > Rη

1, the HIV
free equilibrium becomes unstable and there occurs
an infection equilibrium. In Sec. 4, we study the
stability of the HIV infection equilibrium, and in
Sec. 5, we explore Hopf bifurcation from this infec-
tion equilibrium. Section 6 is devoted to numeri-
cal demonstrations of the theoretical results. Sec-
tion 7 gives some conclusions and also offers some
discussion.

2. Non-Negativeness and
Boundedness of Solutions
and Equilibria

Due to their biological meanings, the negative val-
ues of the state variables of system (7) are not
allowed. This requires that all solutions should
remain non-negative as long as the initial values are
non-negative. Moreover, solutions should remain
bounded. We confirm these below.

Theorem 1. When the initial values are non-
negative, the solutions of system (7) remain non-
negative for τ > 0. Moreover, they are bounded.

Proof. First, consider the first equation of (7),
yielding the solution for x(τ):

x(τ) = e−
R τ
0 (d+v(s))dsx(0)

+
∫ τ

0
e−

R τ
s (d+v(ξ))dξds (11)

which clearly shows that x(τ) > 0 for τ > 0, pro-
vided that x(0) ≥ 0.

Next, consider the second and the fourth
equations in (7) as a nonautonomous system for y
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and v: 


dy

dτ
= −[a + w(t)]y + x(t)v,

dv

dτ
= −pv + y,

(12)

with x = x(t) > 0 being proved above. By The-
orem 2.1, p. 81 in [Smith, 1995], we know that a
solution of (12) with y(0) ≥ 0 and v(0) ≥ 0 remains
non-negative for all τ ≥ 0 in its maximal interval
of existence. Applying the same argument to the
subsystem consisting of the third and fifth equa-
tions in (7), we also obtain the non-negativity of
z(t) and w(t).

It remains to prove that non-negative solu-
tions of (7) are all bounded. Let (x(τ), y(τ), z(τ),
v(τ), w(τ)) be a non-negative solution and consider

V = x(τ) + y(τ) + z(τ) +
a

2
v(τ) +

b

2c
w(τ). (13)

Then, differentiating V along (7) yields

dV

dτ
= 1 +

bη

2c
− dx − a

2
y − b

2
z − ap

2
v − bq

2c
w

=




< 0 for dx +
a

2
y +

b

2
z +

ap

2
v +

bq

2c
w

> 1 +
bη

2c
,

> 0 for dx +
a

2
y +

b

2
z +

ap

2
v +

bq

2c
w

< 1 +
bη

2c
.

(14)

This shows that any solution starting from a non-
negative initial value must be bounded. By the con-
tinuation theory of ODEs, the boundedness of a
solution also implies that it exists for τ ≥ 0. �

The equilibrium solutions of (7) can be
obtained by setting the vector field of (7) to zero,
yielding

Eη
0 =

(
1
d
, 0, 0, 0,

η

q

)

Eη
s =

(
p(a + Z−),

b

c

(
q − η

Z−

)
,
1
c
(qZ− − η),

b

cp

(
q − η

Z−

)
, Z−

)
(15)

Eη
d =

(
p(a + Z+),

b

c

(
q − η

Z+

)
,
1
c
(qZ+ − η),

b

cp

(
q − η

Z+

)
, Z+

)
,

where

Z± =
(c − acdp − abq + bη) ±√(c − acdp − abq + bη)2 + 4abη(cdp + bq)

2(cdp + bq)
. (16)

Thus, similar to the previous model without injec-
tion (i.e. η = 0), the new model (7) with η > 0
also formally has three equilibrium solutions. Also,
as η → 0, we have

lim
η→0

Z− = 0 and lim
η→0

η

Z−
=

−c + cadp + abq

ab
,

and so limη→0 Eη
0 = E0, limη→0 Eη

s = Es, and
limη→0 Eη

d = Ed, a natural expectation. However,
it is obvious that Z− < 0(Z+ > 0) for η > 0 and
thus, the equilibrium Eη

s is biologically meaningless
for this model with η > 0 and hence, will not be
discussed. Note that the HIV free equilibrium Eη

0
exists for any positive parameter values, while the
HIV infection equilibrium Eη

d exists if and only if
qZ+ − η > 0.

3. Stability of the HIV Free
Equilibrium Eη

0

In this section, we consider the stability of the HIV
free equilibrium Eη

0 . Let

Rη
1 = 1 +

η

aq
. (17)

We have the following theorem.

Theorem 2. When R0 < Rη
1 , the HIV free equi-

librium Eη
0 is globally asymptotically stable, imply-

ing that the virus cannot invade regardless of the
initial load; when R0 > Rη

1 , E
η
0 becomes unsta-

ble and the HIV infection equilibrium comes into
existence.
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Proof. The proof of the stability (instability) of Eη
0

is divided into two steps. The first step is to prove
the local asymptotic stability (instability) of Eη

0 by
analyzing the characteristic equation, and the sec-
ond step is to show the global attractivity of Eη

0 .
For the first step, we use the Jacobian matrix

of (7), which is given by

J(7) =




−d − v 0 0 −x 0

v −a − w 0 x −y

0 w −b 0 y

0 1 0 −p 0

0 0 c 0 −q




. (18)

Evaluating J(7) at Eη
0 yields the following charac-

teristic polynomial:

P0(ξ) = (ξ + d)(ξ + b)(ξ + q)
[
ξ2 +

(
p + a +

η

q

)
ξ

+ ap +
ηp

q
− 1

d

]
, (19)

indicating that the equilibrium Eη
0 is asymptotically

stable if and only if

ap +
ηp

q
− 1

d
= ap

(
1 +

η

aq
− 1

adp

)

= ap(Rη
1 −R0) > 0,

that is, R0 < Rη
1 .

For the second step, we apply the Fluctua-
tion Lemma (see, e.g. [Hirsch et al., 1985]). To
achieve this, for a continuous and bounded function
g : [0,∞) → R, define

g∞ = lim
τ→∞ inf g(τ) and g∞ = lim

τ→∞ sup g(τ).

Then, by the Fluctuation Lemma, there exists a
sequence τn with τn → ∞ as n → ∞ such that

lim
n→∞x(τn) = x∞, lim

n→∞
dx

dτ

∣∣∣∣
τ=τn

= 0. (20)

Thus, it follows from the first equation of (7) that

dx

dτ

∣∣∣∣
τ=τn

+ dx(τn) + x(τn)v(τn) = 1,

which, as n → ∞, yields the following estimate:

dx∞ ≤ (d + v∞)x∞ ≤ 1, implying x∞ ≤ 1
d
.

(21)

By applying similar argument to the second, third
and fourth equations of (7), we obtain respectively

(a + w∞)y∞ ≤ x∞v∞, (22)

bz∞ ≤ y∞w∞, (23)

pv∞ ≤ y∞. (24)

On the other hand, again by the Fluctuation
Lemma, there exists a sequence sn with sn → ∞
as n → ∞ such that

lim
n→∞w(sn) = w∞, lim

n→∞
dw

dτ

∣∣∣∣
s=sn

= 0.

Substituting s = sn into the fifth equation of (7)
and letting n → ∞ leads to

qw∞ ≥ η + cz∞ ≥ η (25)

Combining (21)–(22) and (24)–(26), we then
have (

a +
η

q

)
y∞ ≤ (a + w∞)y∞ ≤ 1

dp
y∞,

which implies[(
1 +

η

aq

)
− 1

adp

]
y∞ ≤ 0,

that is,

(Rη
1 −R0)y∞ ≤ 0 ⇒ y∞ = 0 since

R0 < Rη
1 and y∞ ≥ 0.

Hence v∞ = 0 (by (24)) and z∞ = 0 (by (23)). Now
by the relations:

0 ≤ y∞ ≤ y∞, 0 ≤ z∞ ≤ z∞ and

0 ≤ v∞ ≤ v∞,

we conclude that as τ → ∞,

y(τ) → 0, z(τ) → 0 and v(τ) → 0.

Thus, with z(τ) → 0 and v(τ) → 0, the first and last
equations of (7) become asymptotically autonomous
equations with the following limit equations:

dx

dτ
= 1 − dx and

dw

dτ
= η − qw,

which, by the theory for the asymptotically contin-
uous systems (see, e.g. [Castillo-Chavez & Thieme,
1995]), results in

lim
τ→∞x(τ) =

1
d

and lim
τ→∞w(τ) =

η

q
.
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Combining the local stability and global attac-
tivity of the equilibrium Eη

0 under the condition
R0 < Rη

1 shows that Eη
0 is globally asymptotically

stable.

Finally, the occurrence of Eη
d under R0 > Rη

1

is a result of the following claim: R0 > Rη
1 if

and only if qZ+ > η. Indeed, a direct calculation
leads to

qZ+ − η > 0 ⇔ q(c − acdp − abq + bη) + q
√

(c − acdp − abq + bη)2 + 4abη(cdp + bq)
2(cdp + bq)

− η > 0

⇔ q
√

(c − acdp − abq + bη)2 + 4abη(cdp + bq) > 2(cdp + bq)η − q(c − acdp − abq + bη).

If c − acdp − abq + bη ≤ 0, the right-hand side of the above inequality is obviously positive; while if
c− acdp− abq + bη > 0, the absolute value of the right-hand side of the above inequality cannot be greater
than that of the left-hand side of the inequality. Thus, in any case, we have

qZ+ − η > 0 ⇔ q2(c − acdp − abq + bη)2 + 4abη(cdp + bq)

− [2(cdp + bq)η − q(c − acdp − abq + bη)]2 > 0

⇔ 4cη(dpc + bq)(q − qdap − ηdp) > 0

⇔ 4c2d2p2aqη

(
1 +

bq

cdp

)(
1

adp
− 1 − η

aq

)
> 0

⇔ 4c2d2p2aqηRη
1(R0 − Rη

1) > 0

⇔ R0 > Rη
1 .

The proof is complete. �

4. Stability of the HIV Infection Equilibrium Eη
d

In this section, we assume R0 > Rη
1 (equivalent to qZ+−η > 0) and study the stability of the HIV infection

equilibrium Eη
d . Substituting the solution Eη

d given in (15) into the Jacobian matrix (18) results in the
characteristic polynomial:

Pd(ξ) = ξ5 + a1ξ
4 + a2ξ

3 + a3ξ
2 + a4ξ + a5, (26)

where

a1 =
1

Z+

[
Z2

+ + (p + q + b + a + d)Z+ +
b

pc
Zq

]
,

a2 =
1

Z+

{
(q + b + d)Z2

+ +
[
(p + a)(q + b + d) + d(q + b) +

b

pc
Zq

]
Z+ +

b

pc
(b + q + p + a)Zq + bη

}
,

a3 =
1

Z2
+

{
(bq + bd + dq)Z3

+ +
[
d(b + q)(a + p) +

b

pc
(p + q + b)Zq

]
Z2

+

+
[
bη(d + p + a) +

b

pc
((b + q)(a + p) + ap)Zq

]
Z+ +

b2η

pc
Zq

}
,

a4 =
b

Z2
+

{
dqZ3

+ +
[
p +

1
pc

(bq + pq + pb)
]

Z2
+Zq +

[
dη(p + a) +

a

c
(q + b)Zq

]
Z+ +

bη

pc
(p + a)Zq

}
,

a5 =
b

cZ2
+

[(bq + cdp)Z2
+ + abη]Zq,

(27)
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in which Zq := qZ+−η > 0 since R0 > Rη
1 has been

assumed. Therefore, ai > 0, i = 1, 2, 3, 4, 5.
In the following, we show that there is an

R2 > Rη
1 such that HIV infection equilibrium Eη

d
is stable for Rη

1 < R0 < R2. To achieve this, we
first need to show that when R0 > Rη

1, there exist
parameter values such that

∆i > 0, i = 1, 2, 3, 4, 5, (28)

where ∆i’s are Hurwitz quantities, given by

∆1 = a1,

∆2 = a1a2 − a3,

∆3 = a3∆2 − a1(a1a4 − a5),

∆4 = a4∆3 − a5[a2∆2 − (a1a4 − a5)],

∆5 = a5∆4.

(29)

A direct computation yields

∆2 =
1

Z2
+

{
(q + b + d)Z4

+ +
[
2(a + p)(q + b + d) + q2 + b2 + d2 + 2db + 2qd + qb +

b

pc
Zq

]
Z3

+

+
[
bη + (q + b + d)(p + a + d)(p + q + b + a) +

b

pc
(p + 2b + 2q + 2a + 2d)Zq

]
Z2

+

+
[

b2

p2c2
Z2

q +
b

pc
((p + q + b + a)(b + q + p + 2d) + a(a + b + q))Zq + bη(q + b)

]
Z+

+
b2

p2c2
(b + p + q + a)Z2

q

}

> 0 since Zq > 0. (30)

For ∆3 and ∆4, however, it is not easy to deter-
mine their signs for general R0. Thus, we use the
property that ∆3 and ∆4 continuously depend on
the parameters. At R0 = Rη

1 , using (16), (27), (29)
with a direct calculation leads to

∆3|R0=Rη
1

=
1
q3

(d + q)(b + d)(b + q)

× (q2 + qa + qp + η)

× (η + dq + qa + qp)

× (η + qp + qb + qa) > 0,

∆4|R0=Rη
1

=
1
q3

bd(η + qp + qa)∆3|R0=Rη
1

> 0

∆5|R0=Rη
1

= a5∆4|R0=Rη
1

> 0.

(31)

Since ∆3, ∆4 and ∆5 depend on R0 continu-
ously, we can conclude that there must exist an
R2 > Rη

1 such that ∆i > 0 for i = 3, 4, 5
when R0 ∈ (Rη

1 , R2). This together with ∆1 =
a1 > 0 and ∆2 > 0, leads to the following
conclusion.

Theorem 3. There exists an R2 > Rη
1 such that

when R0 ∈ (Rη
1 , R2), the HIV infection equilibrium

Eη
d is asymptotically stable.

5. Hopf Bifurcation Analysis

In the previous section, we have shown that when
R0 is increased to cross the critical point Rη

1 , the
equilibrium Eη

0 loses its stability and bifurcates
to the equilibrium Eη

d , which is stable for R0 ∈
(Rη

1 , R2) where R2 > Rη
1. Now, in this section we

want to study the stability of Eη
d when R0 is fur-

ther increased. We show that there exists indeed an
Rη

h > R2 such that Eη
d will lose it stability when R0

passes Rη
h, resulting in Hopf bifurcation. We have

the following result.

Theorem 4. For system (7), as R0 > Rη
1 is further

increased, there exists finite Rη
h > Rη

1 such that the
equilibrium Eη

d loses its stability at R0 = Rη
h, giving

rise to a family of limit cycles via Hopf bifurcation.

Proof. First, note that when R0 > Rη
1 is further

increased, ∆1 = a1,∆2 and a5 remain positive, but
∆3 and ∆4 may become negative. The type of bifur-
cations depends on whether ∆3 or ∆4 first crosses
zero. We want to prove that if ∆3 and ∆4 can ever
become negative as R0 increases, then ∆4 must
cross zero before ∆3 does.

First, assume ∆4 = 0 at R0 = R4 > R2 (R2 is
given in Theorem 3). Then, from (29) we have

a4∆3 = a5[a2∆2 − (a1a4 − a5)],
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or

a1a4∆3 = a1a5[a2∆2 − (a1a4 − a5)]. (32)

Now multiplying the third equation in (29) by a5

results in

a5∆3 = a3a5∆2 − a1a5(a1a4 − a5). (33)

Subtracting (33) from (32) we obtain

∆3 =
a5(a1a2 − a3)∆2

a1a4 − a5

=
a5∆2

2

a1a4 − a5
. (34)

Note that a5 > 0. Further, we can show that

a1a4 − a5

=
b

Z3
+

{
qdZ5

+ +
[
qd(p + q + b + a + d) +

1
pc

(p2c + bq + pq + pb)Zq

]
Z4

+

+
[

1
pc

((p + q + b + a)(p2c + q(b + p)) + p((b + q)(a + d) + b(a + b + p)) + 2bdq)Zq + dη(p + a)
]
Z3

+

+
[

b

p2c2
(p2c + bq + bp + pq)Z2

q +
1
pc

(pa(q + b)(p + q + b + a + d) + bη(p + a))Zq

+ dη(a + p)(a + p + q + b + d)
]

Z2
+

+
1

p2c2

[
bap(q + b)Z2

q + pbcη((a + p)(p + b + q + 2d) + a2)Zq

]
Z+ +

b2

p2c2
η(p + a)Z2

q

}

> 0 when R0 > Rη
1 (i.e. Zq > 0). (35)

This together with (34) shows that ∆3 > 0 when
∆4 = 0.

Conversely, assume, for the sake of contradic-
tion, that ∆3 will change sign no later than ∆4

does. Then there exists an R3 > R2 such that ∆3 >
0,∆4 > 0 for R0 ∈ (R1, R3), and ∆3 = 0,∆4 ≥ 0
at R0 = R3. Thus, at R0 = R3, it follows from (29)
with ∆3 = 0 that

a3∆2 − a1(a1a4 − a5) = 0,

or

a1a4 − a5 =
a3

a1
∆2 (a1 > 0).

Hence, ∆4 becomes

∆4 = −a5

[
a2∆2 − a3

a1
∆2

]
= −a5

a1
∆2

2 < 0

(a1 > 0, a5 > 0,∆2 > 0),

leading to a contradiction to ∆4 ≥ 0 at R0 = R3.
This confirms that when ∆4 crosses zero, ∆3 must
remain positive.

The above discussion, together with the Hopf
critical condition obtained for high-dimensional
systems [Yu, 2005] implies that there are no

static bifurcation, Hopf-zero bifurcation, double-
Hopf bifurcation, or double-zero Hopf bifurcation,
emerging from the equilibrium Eη

d . The only possi-
bility for Eη

d to lose stability is occurrence of Hopf
bifurcation when ∆4 crosses zero from positive to
negative as R0 is further increased from R2 > Rη

1.
In order to show that ∆4 can indeed change sign

from positive to negative as R0 increases to pass
some finite value Rη

h, we notice that ∆4|R0=Rη
1

> 0.
Thus, we only need to show that as R0 > Rη

1 and
increases to pass some finite value Rη

h, it becomes
negative. To prove this, we only need to show that
∆4 can be negative for some combination of param-
eter values. First note that R0 = 1

adp and Rη
1 =

1 + η
aq , implying that R0 → +∞ and Rη

1 → +∞ as
a → 0+, and it is easy to satisfy R0 > Rη

1 if d is
chosen small enough such that 1

d > p(a + η
q ). Thus,

we may choose

a = ε (0 < ε 	 1), (36)

and then obtain

∆4 =
10∑

k=0

ckc
k + O(ε), (37)
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where the leading coefficient of c10 is

c10 =
−bd

(cdp + bq)4(c + bη)6

[
bd2p(1 + pη)(d + p) + (d + b + pd2(p + d))(d + q) + p2qb

(
1
dp

− η

q

)]
f5(d),

in which f5(d) is a fifth-order polynomial of d, given by

f5(d) = −η2p6b(b + q)d5 − ηp5[p(b + q)(p + b + q) + bη]d4

− ηp3[bq(b + q) + p2(b + p) + p(2q + 3b)(p + q) + 2p(pq + b2)]d3

+ p2{p2q(b + p + q) − η[p(3b + 3q + 2p) + bq]}d2

− p[q(b2 + bq + q2 − 2p2) + pη]d + q(p − b − q). (38)

Since R0 > Rη
1 implies that 1

dp − η
q is positive, the

sign of c10 is determined by the sign of f5(d). Indeed,
f5(d) > 0(< 0) corresponds to c10 < 0(> 0). Note
that f5(0) = q(p− b− q) and f(−∞) = −∞. Thus,
if p, b and q are chosen such that p− b− q > 0, then
f5(d) > 0 for small d. Therefore, further increasing
R0 to some value Rη

h > R1 by decreasing d can cause
change of signs of ∆4 from ∆4 > 0 to ∆4 < 0, lead-
ing to occurrence Hopf bifurcation (see [Yu, 2005])
as long as a > 0 is taken sufficiently small and c > 0
is taken sufficiently large. For general model param-
eters, quantitatively determining the above “small”
and/or “large” is very difficult (if not impossible).
In the next section, we will numerically explore this
problem by fixing some parameters, using the above
analysis as a guide line. �

Remark 1. The above analysis shows that if we
choose the parameters such that

p − b − q > 0, 0 < a 	 1,

0 < d 	 1, and c 
 1,

then we will have ∆4 < 0, resulting in Hopf bifurca-
tion. However, these are only sufficient conditions;
when they are not all satisfied, Hopf bifurcation
may still be possible. Indeed, in the next section,
for convenience of comparison with the results given
by Jiang et al. [2009], we will choose a = 0.93 and
p = b = q (hence p − b − q < 0) in the numerical
example of the next section, and show that we can
find parameter values such that Hopf bifurcation
occurs when R0 passes a finite value Rh > R1. In
such a case, the parameter η must be restricted to
small; for large values of η, one must choose small
a. This will be illustrated in the next section by
numerical examples.

Remark 2. Comparing the above results with those
in [Jiang et al., 2009], we have seen that there is
a difference in the bifurcation path, as is shown
below:

System (7) without injection (η = 0) : E0
R0=1===⇒ Es

R0=R1======⇒ Ed
R0=Rh======⇒ Hopf;

and

System (7) with injection (η �= 0) : Eη
0

R0=Rη
1======⇒ Eη

d

R0=Rη
h======⇒ Hopf.

It should be noted that if we consider the stability
of Eη

s purely from the mathematical view point, we
can show that it is always unstable since the coef-
ficient a5 for the characteristic polynomial of Eη

s ,
given by

a5 =
b

cZ2−
[(bq + cdp)Z2

− + abη](qZ− − η),

is negative for any positive parameter values due to
Z− < 0.

6. Numerical Illustration

In this section, we present numerical examples and
simulations to demonstrate the theoretical results
obtained in the previous sections. We choose d as a
bifurcation parameter, and apply normal form the-
orem to determine bifurcation and stability of limit
cycles.

For a consistent comparison, we take the same
parameter values used for the model without an
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injection of recombinant (i.e. η = 0) [Jiang et al.,
2009]:

c = 40, a =
93
100

, b = p = q =
28
5

. (39)

Since this modified model is a new one and there
are no results in the literature about how to choose
the injection parameter η, we will consider several
different values of η to see the trends of the system
asymptotic dynamics and the effect of η.

Based on the bifurcation parameter d, we have

R0 =
1

adp
=

125
651d

. (40)

The equilibrium solution:

Eη
0 =

(
1
d
, 0, 0, 0,

5η
28

)

is stable when 0 < R0 < Rη
1 = 1 + 125

651η (i.e.
d > 125

125η+651 ). At the critical point R0 = 1 +
125
651η(d = 125

125η+651 ), Eη
0 becomes unstable and bifur-

cates into the equilibrium solution:

Eη
d =

(
651
125

+
28Z+

5
, − 7η

50Z+
+

98
125

, − η

40
+

7Z+

50
− η

40Z+
+

7
50

, Z+

)
,

where

Z+ =
25

224(50d + 7)


(6772

625
− 5208

25
d +

28
5

η

)
+

√(
6772
625

− 5208
25

d +
28
5

η

)2

+
291648
3125

(50d + 7)η


 > 0.

(41)

The equilibrium solution Eη
d is stable when

1 +
125
651

η < R0 < Rη
h, or dη

h < d <
125

125η + 651
,

where dη
h or Rη

h is determined as follows.
Under the given parameter values, the coefficients of the characteristic polynomial for Eη

d are:

a1 =
1

200Z+
[200Z2

+ + (200d + 3574)Z+ − 5η],

a2 =
1

20000Z+
[400(50d + 567)Z2

+ + 8(188983d + 44325)Z+ + 103135η],

a3 =
7

25000Z2
+

[400(100d + 301)Z3
+ + 4(65300d − 375η + 9793)Z2

+ + 5(4000d + 25281)ηZ+ − 500η2],

a4 =
7

125000Z2
+

[11200(50d + 301)Z3
+ − 112(5375η − 1302)Z2

+ + 20(32650d + 3269)ηZ+ − 16325η2],

a5 =
49

31250Z2
+

[80(50d + 7)Z2
+ + 93η](28Z+ − 5η),

(42)

and thus

∆2 =
1

4000000Z2
+

[80000(50d + 567)Z4
+ + 4000(1000d2 + 35740d − 25η + 244552)Z3

+

+ 8(8865000d2 − 25000dη + 159658650d + 2423250η + 670164537)Z2
+

+ 10(250η − 354600d + 21946907)ηZ+ + 44325η2],
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∆3 =
7

100000000000Z4
+

[32000000(5000d + 57750d + 86387)Z7
+ + 320000(500000d3 + 19840000d2

− 31250dη + 1254750η + 154527450d + 73119711)Z6
+ + 3200(1073000000d3 + 20625000d2η

+ 25289905000d2605881250dη + 46875η2 + 135888034450d + 7446495000η − 54784651243)Z5
+

+ 32(2500000000d3η + 578884500000d3 + 64861250000dη − 112500000dη2 + 10508879190000d2

+ 1248995756250dη − 2347453125η2 + 45194987681550d + 9251858981750η + 5398746708201)Z4
+

+ 40(22400000000d3 − 150000000d2η + 371523285000d2 + 8444600000dη

+ 1156250η2 + 3930979433950d + 41653769625η + 16768455413388)ηZ3
+

− 250(268800000d2 − 600000dη − 16959281440d + 39181900η − 116370697641)η2Z2
+

+ 125(13440000d − 10000η − 924584267)η3Z+ − 14000000η4 ],

∆4 =
49

6250000000000000Z6
+

[358400000000(62500d3 + 770000d2 + 2615375d + 11876032)Z10
+

+ 512000000(43750000d4 + 7812500d3η + 1157187500d3 + 80937500d2η + 8406317500d2

+ 154809375dη + 19785929275d − 159152000η + 56343381031)Z9
+ + 5120000(781250000d4η

+ 32637500000d4 + 55476562500d3η + 39062500d2η2 + 294118562500d3 + 544326562500d2η

+ 144921875dη2 − 210354305000d2 + 1393225421875dη − 23618000000η2 − 5438046860575d

+ 6770841609000η − 75962431340229)Z8
+ − 51200(4228125000000d4η − 5859375000d3η2

− 36224606250000d4 + 127095507812500d3η + 135976562500d2η2 + 48828125dη3

− 628921081687500d3 + 917508252500000d2η + 1439169921875dη2 − 875000000η3

− 2290566634282500d2 + 1799559791071875dη − 140968236281250η2 + 1964727758881125d

+ 10950676362050250η − 761023756778439)Z7
+ + 512(5135472656250000d4η

+ 12378906250000d3η2 + 14648437500d2η3 + 105324401492187500d3η + 2216748281250000d2η2

+ 492041015625dη3 + 2637976666500000d3 + 517492882714062500d2η + 14458708712109375dη2

+ 37552812500000η3 + 47888962468830000d2 + 294513488052765625dη − 164010832351406250η2

+ 205953558864823350d + 2150066686740332500η + 24602088749271957)Z6
+

+ 640(40812500000000d4η + 9450289462500000f4 + 818154203125000d3η − 1136171875000d2η2

− 97656250dη3 + 172349911619625000d3 + 26292244412812500d2η − 75947388671875dη2

− 23587890625η3 + 750979923076897500d2 + 158891091692003125dη − 1075867616687500η2

+ 140938912990928850d − 211011650994607750η + 2880627455034042)ηZ5
+

+ 800(365680000000000d4 − 3265000000000d3η + 5949268163000000d3 + 129916613437500d2η

+ 13679687500dη2 + 62131744461117500d2 + 180009575871875dη + 4425071359375η2

+ 270135269412279250d − 13621925249009000η + 32901492002660442)η2Z4
+
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− 1000(29254400000000d3 − 97950000000d2η − 1264442575510000d2 + 6342784706250dη

+ 2718750η2 − 8531601925051750d − 23080719997625η + 3665294181509436)η3Z3
+

+ 1250(877632000000d2 − 1306000000dη − 58019234078800d + 67522139500η

− 170731874778439)η4Z2
+ − 3125(5850880000d(−3265000e − 302750729877)η5Z+

+114275000000η6)],

where Z+ is given in (41).
We shall consider several values of η starting

from η = 0.01. It should be noted that since we take
a = 0.93, which is quite close to 1, and b = p = q
which makes the constant term in (38) negative,
there might not exist Rη

h for large values of η. So
for such a set of parameter values given in (39), we
need to choose small values of η. For large values of
η, we need to choose small values of a. We will also
present a couple of cases for small a but large η. For
brevity, we shall only present a detailed analysis on
the case of η = 0.01, and summarize the results for
other cases.

When η = 0.01, with other parameter values
given in (39), the equilibrium solution Eη

0 is stable
for

0 < R0 < 1.192012288786482

(or d > 0.161082474226804),
(43)

and bifurcates into the equilibrium solution Eη
d at

the critical point R0 = 1.192012288786482 (d =
0.161082474226804). The equilibrium solution Eη

d
is stable for 1.192012288786482 < R0 < Rη

h (or
dη

h < d < 0.161082474226804), and bifurcates into
a family of limit cycles at the critical point R0 =
Rη

h (d = dη
h). A numerical scheme (e.g. bisection

approach) can be used to find the solution d of
∆4 = 0 as

dη
h = 0.0163983468429118, or

Rη
h = 11.709246707967994.

(44)

At the critical point R0 = Rη
h, except for ∆4, all

other Hurwitz conditions are satisfied:

∆1 = a1 = 18.1053876158, a5 = 6.1809019109,

∆2 = 1402.6217823605,

∆3 = 13609.5628253147,

∆4 = 0.3162518844 × 10−10.

The eigenvalues of this characteristic polyno-
mial Pd(ξ) include a pure imaginary pair and three

negative real values:

ξ = ±0.7981309053i, −0.1281736434,

−6.7317310171, −11.2454829553,

where i is the imaginary unit, i2 = −1.
In order to obtain the approximate solution of

the bifurcating family of limit cycles, we apply the
normal form theory and program using computer
algebra system Maple, developed by Yu [1998], to
analyze the Hopf bifurcation of system (7) from the
critical point d = dη

h(R0 = Rη
h). The general normal

form can be written in polar coordinates as:

dr

dτ
= r(v0µ + v1r

2) + · · · ,

dθ

dτ
= ω0 + τ0µ + τ1r

2 + · · · ,
(45)

where ω0 = 0.7981309053, v0 , v1, τ0, τ1 are con-
stants, expressed in terms of the original system
parameters; v0 and v1 are called focus values (or
Lyapunov coefficients). v0 and τ0 can be found from
linearization at the critical point R0 = Rη

h, while
v1 and τ1 must be determined by using nonlinear
analysis. r and θ represent the amplitude and phase
of periodic motion (limit cycle), respectively. When
v1 < 0 (v1 > 0), the Hopf bifurcation is super-
critical (subcritival), giving rise to stable (unsta-
ble) limit cycles, and the periodic solutions can be
approximated in terms of the steady-state solution
of (45).

Let d = dη
h − µ, where µ is a small perturba-

tion (bifurcation) parameter. Further, introducing
the following linear transformation



x

y

z

v

w




=




6.4406999294

0.7776399769

0.0305674982

0.1388642816

0.2201249874




+ T




x1

x2

x3

x4

x5




, (46)
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where

T =




1.3370910031 0.2767729103 −8.0633794990 0.9006658877 −0.0048590515

0.1491338139 −0.9635913372 0.1855705581 −1.0407983714 0.0472345425

−0.1313985937 −0.0338798848 −0.1919070400 −0.0086936442 −0.0766425867

0.0020651094 −0.1723642080 0.0339138244 0.9196517155 −0.0083667851

−0.9536799068 −0.1060774970 −1.4028737574 0.3072689190 0.5430365290



,

into (7) yields

dxi

dτ
= Fi(x1, x2, x3, x4, x5;µ), i = 1, 2, . . . , 5, (47)

in which

F1 = 0.7981309053x2 − (2.4544677135x1 − 21.0146351538x2 + 4.3252758911x3

− 23.2404597695x4 + 1.3787597052x5)µ + · · ·
+ 0.4348707871x2

1 − 0.3132788864x2
2 + 0.7914568489x2

3 + 0.9912263340x2
4

− 0.0784190641x2
5 − 2.7648983162x1x2 + 1.1811644773x1x3 − 3.1546713514x1x4

− 0.1100566813x1x5 − 4.0498643138x2x3 + 0.5692835516x2x4 + 1.6150680334x2x5

− 4.7585752473x3x4 − 0.1044033300x3x5 + 1.6833860349x4x5,

F2 = −0.7981309053x1 + (0.0201877283x1 + 4.7355319755x2 − 0.7313653103x3

− 32.0146359880x4 + 0.3488866114x5)µ + · · ·
− 0.0238147316x2

1 + 0.0555310017x2
2 + 0.1904213506x2

3 − 0.7442823567x2
4

+ 0.0038423546x2
5 + 0.3296533305x1x2 − 0.0824745155x1x3 − 0.8778051825x1x4

+ 0.0148394608x1x5 − 0.9743278331x2x3 − 0.1114882188x2x4 − 0.0785966765x2x5

+ 6.4342427395x3x4 − 0.0513312088x3x5 − 0.0731380752x4x5

F3 = −0.1281736434x3 − (0.5548438965x1 − 2.8606104110x2 − 0.3703949508x3

− 6.5240594399x4 + 0.2501050776x5)µ + · · ·
+ 0.0711256583x2

1 − 0.0547754723x2
2 + 0.1079022556x2

3 + 0.2257156082x2
4

− 0.0127842286x2
5 − 0.4686429801x1x2 + 0.1948260523x1x3 − 0.4191383638x1x4

− 0.0188126243x1x5 − 0.5521379769x2x3 + 0.1005117728x2x4 + 0.2632460746x2x5

− 1.3472952388x3x4 − 0.0118178142x3x5 + 0.2735719636x4x5

F4 = −6.7317310171x4 + (−0.0223497497x1 + 1.1404096931x2 − 0.2016845633x3

− 5.7954656586x4 + 0.0501630568x5)µ + · · ·
+ 0.0005120195x2

1 + 0.0069015842x2
2 + 0.0452202351x2

3 − 0.1295588393x2
4

− 0.0001779833x2
5 + 0.0305135228x1x2 − 0.0019798715x1x3 − 0.2027518607x1x4

+ 0.0015400066x1x5 − 0.2313806778x2x3 − 0.0145455868x2x4 + 0.0037675484x2x5

+ 1.1640435729x3x4 − 0.0109312340x3x5 + 0.0055909766x4x5
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F5 = −11.2454829552x5 + (−5.7273193778x1 + 44.5756964879x2 − 6.6679148882x3

+ 54.6945255400x4 − 3.0277259802x5)µ + · · ·
+ 0.9425228123x2

1 − 0.6847438147x2
2 + 1.6803186075x2

3 + 2.2518207727x2
4

− 0.1698947743x2
5 ;−6.0192671940x1x2 + 2.5626799918x1x3 − 6.6797733300x1x4

− 0.2398542988x1x5 − 8.5981550372x2x3 + 1.2458878774x2x4 + 3.4989615815x2x5

− 11.2393705622x3x4 − 0.2177247953x3x5 + 3.6456518531x4x5

Here · · · denotes the terms including higher-order powers of µ. Now, the Jacobian of system (47) evaluated
at the equilibrium solution xi = 0, i = 1, 2, . . . 5 (i.e. Eη

d ) is in the Jordan canonical form:

J(Eη
d ) =




0 0.7981309053 0 0 0

−0.7981309053 0 0 0 0

0 0 −0.1281736434 0 0

0 0 0 −6.7317310171 0

0 0 0 0 −11.2454829553




.

The coefficients v0 and τ0 are given by Yu and
Huseyin [1988]:

v0 =
1
2

(
∂2F1

∂x1∂µ
+

∂2F2

∂x2∂µ

)
= 1.1405321310,

τ0 =
1
2

(
∂2F1

∂x2∂µ
− ∂2F2

∂x1∂µ

)
= 10.4972237127.

(48)

Applying the Maple program [Yu, 1998] to sys-
tem (47) (setting µ = 0) results in

v1 = −0.07469643387,

τ1 = −0.7343312614.
(49)

Therefore, the third-order normal form (47) is
given by

dr

dτ
= r(1.1405321310µ − 0.07469643387r2),

dθ

dτ
= 0.7981309053 + 10.4972237127µ

− 0.7343312614r2 .

(50)

The steady-state solutions of (50) are determined
by setting dr

dτ = dθ
dτ = 0, yielding

r = 0 and r2 = 15.26888966786µ. (51)

The solution r = 0 actually denotes the equilibrium
solution Eη

d . A simple linearization of the first equa-
tion of (50) indicates that r = 0(Eη

d ) is stable for
µ < 0, as expected. When µ increases from nega-
tive to cross zero, a Hopf bifurcation occurs and the
amplitude of bifurcating periodic solutions is given
by the nonzero steady-state solution

r = 3.90754356068
√

µ (µ > 0). (52)

Since v1 < 0, the Hopf bifurcation is supercritical,
i.e. the bifurcating limit cycles are stable and the
amplitude is given by Eq. (52), and the frequency
is determined from the following equation:

ω = 0.7981309053 + 7.6277923208µ. (53)

Now we give a comparison of the two systems,
one without injection (η = 0) and one with injec-
tion η = 0.01, as follows:

System without injection (η = 0) : E0
d=0.1920=====⇒ Es

d=0.0520=====⇒ Ed
d=0.0243=====⇒ Hopf

System with injection (η = 0.01) : Eη
0

d=0.1611=====⇒ Eη
d

d=0.0164=====⇒ Hopf.

Recalling that d decreases as R0 is increasing, we know that by adding the constant injection η, the
equilibrium Eη

0 has larger stability interval, and delay the occurrence of Hopf bifurcation. This confirms
that the constant injection of recombinant helps to cure disease.
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Fig. 1. Simulated time history of system (7) for d = 0.21,
a = 0.93, c = 40, b = p = q = 5.6, η = 0.01, with the initial
condition: x(0) = 5.0, y(0) = 1.0, z(0) = 2.0, v(0) = 0.5,
w(0) = 4.0, converging to the stable equilibrium solution Eη

0 .

To this end, we show some simulation results
for the case η = 0.01, based on Eq. (7), obtained
by using a fourth-order Runge–Kutta method. We
take the parameter values given in Eq. (39), and
choose three different values for d (and so for R0):

d = 0.21 (R0 = 0.9143442323),

d = 0.10 (R0 = 1.9201228879),

d = 0.012 (R0 = 16.0010240655),

d = 0.008 (R0 = 24.0015360982).

(54)
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Fig. 2. Simulated time history of system (7) for d = 0.04,
a = 0.93, c = 40, b = p = q = 5.6, η = 0.01, with the
initial condition: x(0) = 5.0, y(0) = 1.0, z(0) = 2.0, v(0) =
0.5, w(0) = 4.0, converging to the stable equilibrium
solution Eη

d .

According to the above theoretical analysis,
the simulation results are expected to have sta-
ble equilibrium Eη

0 when d = 0.21, stable equilib-
rium Eη

d when d = 0.10, and stable limit cycles
when d = 0.012 (for which µ = 0.0043983468), and
d = 0.008 (for which µ = 0.0083983468). Note that
the first two numerical values of d are the same as
that used for the model without the injection (i.e.
η = 0) [Jiang et al., 2009].

The simulated time history and phase por-
traits for the above four cases are shown in
Figs. 1–4, respectively, where the initial condition is

x
y
z
v
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6
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(b)

Fig. 3. Simulation results of system (7) for d = 0.012,
a = 0.93, c = 40, b = p = q = 5.6, η = 0.01, with the
initial condition, x(0) = 5.0, y(0) = 1.0, z(0) = 2.0, v(0) =
0.5, w(0) = 4.0: (a) time history showing convergence to a
stable periodic solution; (b) phase portrait projected on x–y
plane indicating a stable limit cycle.
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Fig. 4. Simulation results of system (7) for d = 0.008,
a = 0.93, c = 40, b = p = q = 5.6, η = 0.01 with the initial
condition, x(0) = 5.0, y(0) = 1.0, z(0) = 2.0, v(0) = 0.5,
w(0) = 4.0: (a) time history showing convergence to a stable
periodic solution; (b) phase portrait projected on x–y plane
indicating a stable limit cycle.

taken as
x(0) = 5.0, y(0) = 1.0, z(0) = 2.0,

v(0) = 0.5, w(0) = 4.0.
(55)

It can be seen from these figures that the numer-
ical simulation results agree with the analytical

predictions. The solutions for the first two cases
converge to the equilibrium points, Eη

0 and Eη
d ,

respectively. They are quite similar to the results
obtained for the model without the injection (see
Figs. 1 and 3 in [Jiang et al., 2009]).

For the last two cases, the simulated ampli-
tudes of the limit cycles (see Figs. 3 and 4) are
close to the predicted values, r = 0.2591 for Fig. 3,
and r = 0.3581 for Fig. 4, showing a good agreement
between the theoretical prediction and numerical
simulation results, not only qualitatively, but also
quantitatively. It can be seen from these two figures
that a small change in µ can cause large variation
of the amplitudes.

The period of motion, T = 2π
ω (ω is given in

Eq. (53)), decreases as µ increases. In other words,
T decreases as d decreases. However, since µ is
quite small, the change of the period due to µ is
not significant [hardly to observe from Figs. 3(a)
and 4(a)].

By using the above process, for the fixed param-
eter values given in (39), we can similarly con-
sider bifurcation of limit cycles for different values
η = 0.02, 0.04, 0.05, 0.1, etc. We have found that
there does not always exist dη

h at which a Hopf bifur-
cation occurs. This is because a = 0.93 is quite close
to 1. In fact, for these fixed parameter values, η has
a limit value η = 0.0412442708 for which all the
Hurwitz conditions are satisfied even as d → 0+. In
other words, for such a case, the equilibrium solu-
tion Eη

d is always stable, and no Hopf bifurcation
can occur.

We summarize the results for the cases: η =
0.02, η = 0.04 and η = 0.0412442708026295 below.
The critical points dη

h are given by

a = 0.93, c = 40, b = p = q = 5.6,

dη
h = 0.0101558526334221 when η = 0.02,

dη
h = 0.0005138201172363 when η = 0.04,

dη
h = 0+ when η = 0.0412442708026295,

(56)

and the normal forms for η = 0.02 and η = 0.04
(the case dη

h = does not have positive µ) are

η = 0.02 :




dr

dτ
= r(1.1688784471µ − 0.0269500492r2),

dθ

dτ
= 0.8710118988 + 10.2078158880µ − 0.2138810655r2 .

(57)
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η = 0.04 :




dr

dτ
= r(1.2296296415µ − 0.0945184454r2),

dθ

dτ
= 0.9805343288 + 10.0797829783µ − 0.6189782824r2 ,

(58)

where µ = dη
h − d. It should be pointed out that

the above two normal forms are obtained from the
two different critical points corresponding to the
two different values of η = 0.02, 0.04, though both
cases use d as a bifurcation parameter. Therefore,
the estimate of the amplitude of the periodic motion
(limit cycle) may not be consistent for comparison
with respect to η, and so we cannot make a con-
clusion on the trend of the effectiveness of η. As a
matter of fact, if taking µ = 0.0004, we obtain the
amplitudes of the two limit cycles estimated from
the above normal forms as

r = 0.1317148951 (η = 0.02)

r = 0.0721371321 (η = 0.04),

which seems to imply that a larger value of η
results in a smaller motion. (For this case, dou-
ble the amount of injection reduces the amplitude
of the motion almost by half.) However, the simu-
lated results for the two phase portraits, depicted
in Figs. 5(a) and 5(b) respectively, indicate that the
two limit cycles almost have the same size. This dis-
crepancy does not mean that the normal forms are
not appropriate, but that they are based on two
different critical points. To illustrate this point, in
the following we consider two different values of
η, but now we fix d and treat η as a bifurcation
parameter.

Take the parameter values given in (39) and
choose d = 0.0005. Then the critical point ηh =
0.040033210376566. Let η = ηh − µ. The normal is
then given by

dr

dτ
= r(0.5116283875µ − 0.0945229057r2),

dθ

dτ
= 0.9806903402 + 0.5029615211µ

− 0.6188803990r2 .

(59)

We compare two cases:

µ = 0.01 (η = 0.0300332104) and

µ = 0.02 (η = 0.0200332104),

for which the estimates of the amplitudes of the two
limit cycles are obtained from the normal form (59)

as:
r = 0.3290211246 (η = 0.0200332104) and

r = 0.2326530684 (η = 0.0300332104),

respectively. This shows that 50% increase in the
value of η results in 40% reduction in the ampli-
tude of bifurcating motion.
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Fig. 5. Simulated phase portraits, projected on x–y plane,
for system (7) when a = 0.93, c = 40, b = p = q = 5.6
with the initial condition, x(0) = 5.0, y(0) = 1.0, z(0) = 2.0,
v(0) = 0.5, w(0) = 4.0, showing stable limit cycles: (a) η =
0.02, d = 0.009755852; (b) η = 0.04, d = 0.0001138201.
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Fig. 6. Simulated phase portraits, projected on x–y plane,
for system (7) when a = 0.02, d = 0.0005, c = 40, b = p =
q = 5.6 with the initial condition, x(0) = 5.0, y(0) = 1.0,
z(0) = 2.0, v(0) = 0.5, w(0) = 4.0, showing stable limit
cycles: (a) η = 0.0200332104; (b) η = 0.0300332104.

The numerical simulation results for the above
two cases are shown in Figs. 6(a) and 6(b), respec-
tively. These figures indeed show a good agreement
with the theoretical predictions, confirming that
increasing η does help to control the disease.

To this end, we consider a couple of cases for
small a. Suppose a = 0.02, and other parameters
are still the same as that given in (39). Again we
treat η as bifurcation parameter and fix d = 0.02.

Then it can be shown that for these parameter
values, ηh = 0.3995538746. Then the normal form
for this case is

dr

dτ
= r(0.1996192042µ − 0.0624230311r2),

dθ

dτ
= 1.6338126963 + 0.0051686823µ

− 0.2300113030r2 ,

(60)

where η = ηh − µ. For this case, we give a compar-
ison for two relatively large values of µ = 0.05, 0.2,
with the corresponding values of η, given by

η = 0.3495538746 (µ = 0.05) and

η = 0.1995538746 (µ = 0.2).

For the above values, the estimates for the ampli-
tudes of the limit cycles are obtained from the
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Fig. 7. Simulated phase portraits, projected on x–y plane,
for system (7) when a = d = 0.02, c = 40, b = p = q = 5.6,
with the initial condition, x(0) = 5.0, y(0) = 1.0, z(0) = 2.0,
v(0) = 0.5, w(0) = 4.0, showing stable limit cycles: (a) η =
0.1995538746; (b) η = 0.3495538746.

1250062-18



April 3, 2012 14:13 WSPC/S0218-1274 1250062

Hopf Bifurcation in a HIV-1 Model with Injection of Recombinant

normal form (60) as:

r = 0.7997306324 (η = 0.1995538746) and

r = 0.3998653162 (η = 0.3495538746).

The numerical simulation results for the above
two cases are shown in Figs. 7(a) and 7(b), respec-
tively. These figures indeed show that large val-
ues of η decrease the amplitudes of motion, as
expected. Thus, the injection is beneficial to cure
the decease. However, due to large perturbation,
the error between the theoretical prediction and
numerical results is larger than that of small pertur-
bations. This can be seen by comparing Figs. 6(a)
and 6(b) (for smaller perturbation) with Figs. 7(a)
and 7(b) (for larger perturbation).
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Fig. 8. Simulated time history of w(t) for a = d = 0.02, c =
40, b = p = q = 5.6, with the initial condition, x(0) =
5.0, y(0) = 1.0, z(0) = 2.0, v(0) = 0.5, w(0) = 4.0, show-
ing stable limit cycles: (a) η = 0.1995538746; (b) η =
0.3495538746.

It may be noted that the phase portraits shown
in Figs. 3–7 are projected on the x–y plane, indi-
cating that increasing the value of η is indeed ben-
eficial in controlling the Hopf bifurcation, reducing
the amplitude of the motion with respect to the
variables x and y. This is also true for the vari-
ables z and v. For the variable w, it is not so obvi-
ous if increasing η will also help to decrease the
amplitude of w since η is a positive input for the
rate of change w [see the fifth equation of (7)].
However, the time history of w for the last two
cases [shown in Figs. 7(a) and 7(b)] actually indi-
cates that an increase in η is also good for con-
trolling the motion of w, as depicted in Figs. 8(a)
and 8(b). This is because changing the value of η
mainly affect the equilibrium solution, but not the
dynamical motion. In other words, for equilibrium
solutions, increasing η can help to stabilize the equi-
libria, while for periodic motions, increasing η can
decrease the amplitudes of motions. Hence, we can
conclude that increasing η is beneficial in control-
ling the disease.

7. Conclusion and Discussion

In this paper, in order to study the consequence
of the continuous constant injection of a genetically
modified virus in the therapy of “fighting HIV virus
with another virus”, we incorporate a new term into
the model considered in [Revilla & Garcia-Ramos,
2003; Jiang et al., 2009] to describe the interac-
tion of the CD4+T cells, the HIV virus and the
recombinant virus. The added injection measure-
ment (η) helps one understand the mechanism of
therapy treatment and how to control the injection
in controlling the disease. This new model includes
the one in [Revilla & Garcia-Ramos, 2003; Jiang
et al., 2009] as a special case. However, mathe-
matically it has been shown that the dynamics of
this model with η > 0 has a significant difference
from that of the model with η = 0. For example,
unlike the previous model in [Revilla & Garcia-
Ramos, 2003; Jiang et al., 2009] which has three
equilibrium solutions: infection-free equilibrium E0,
single-infection equilibrium Es and double-infection
equilibrium Ed; this new model only allows two
equilibrium solutions: infection-free equilibrium Eη

0
and double-infection equilibrium Eη

d . Biologically,
this is reasonable because a continuous injection
would keep the population of the recombinants per-
sistent, and thus, an HIV-infection-only equilibrium
becomes impossible. This has caused a difference

1250062-19



April 3, 2012 14:13 WSPC/S0218-1274 1250062

P. Yu & X. Zou

in the path of the cascading bifurcations for the model with η > 0 and the model with η = 0, as is shown
below:

System without injection (η = 0) : E0
R0=1===⇒ Es

R0=R1====⇒ Ed
R0=Rh====⇒ Hopf;

System with injection (η �= 0) : Eη
0

R0=Rη
1====⇒ Eη

d

R0=Rη
h====⇒ Hopf,

where R1 = 1 + bq
cdp and Rη

1 = 1 + η
aq .

An immediate biological implication is that,
while the treatment without subsequent injection
(η = 0) does not help at all eliminate the HIV
virus completely, the treatment with a constant
injection rate does. To see this, we first note that
R0 is independent of η. If R0 > 1, then the HIV
virus will remain persistent if η = 0, although
the HIV load will be reduced by the introduc-
tion of the recombinants (see [Jiang et al., 2009]).

But with η > 0, even if R0 > 1, as long as η >
aq(R0 −1), HIV virus will be eventually eliminated
(Theorem 3).

When considering bifurcation to the double-
infection equilibrium, we notice that Rη

1 is usually
smaller than R1, however the critical value Rη

h is
usually much larger than Rh, implying that Eη

d is
more stable than Ed. For the numerical example
given in Sec. 6 with the parameter values given
in (39) we have

System without injection (η = 0) : E0
R0=1===⇒ Es

R0=3.6917=======⇒ Ed
R0=7.8911=======⇒ Hopf;

System with injection (η = 0.01) : Eη
0

R0=1.0019=======⇒ Eη
d

R0=11.7092========⇒ Hopf,

(η = 0.02) : Eη
0

R0=1.0038=======⇒ Eη
d

R0=18.9066========⇒ Hopf,

(η = 0.04) : Eη
0

R0=1.0077=======⇒ Eη
d

R0=373.6955========⇒ Hopf,

which shows that an increase in η greatly increases
the Hopf critical value. Moreover, the numerical
example with the normal form analysis and simula-
tion, presented in Sec. 6, indicates that an increase
in η is also beneficial in controlling the amplitudes
of bifurcating periodic motions.

In summary, the results obtained in this paper
based on the modified HIV-1 model (7) clearly
indicates that increasing η is beneficial for con-
trolling/eliminating the HIV virus. We point out
that the adoption of a constant injection rate is
just for simplicity of analysis in this first attempt.
In reality, other types of injection strategies may
be more feasible. For example, impulsive injec-
tion strategy and periodic injection strategy are
more reasonable injection mechanism. Of course,
adopting such injection strategies will increase the
difficulty level in analyzing the resulting model
system.
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