
July 21, 2014 13:19 WSPC/S0218-1274 1450093

International Journal of Bifurcation and Chaos, Vol. 24, No. 7 (2014) 1450093 (18 pages)
c© World Scientific Publishing Company
DOI: 10.1142/S021812741450093X

Persistence, Stability and Hopf Bifurcation in
a Diffusive Ratio-Dependent Predator–Prey

Model with Delay

Yongli Song∗
Department of Mathematics, Tongji University,

Shanghai 200092, P. R. China
05143@tongji.edu.cn

Yahong Peng
Department of Applied Mathematics,

Donghua University,
Shanghai 200051, P. R. China

Xingfu Zou
Department of Applied Mathematics,

University of Western Ontario, London,
Ontario N6A 5B7, Canada

Received June 12, 2013; Revised April 2, 2014

In this paper, we study the persistence, stability and Hopf bifurcation in a ratio-dependent
predator–prey model with diffusion and delay. Sufficient conditions independent of diffusion
and delay are obtained for the persistence of the system and global stability of the boundary
equilibrium. The local stability of the positive constant equilibrium and delay-induced Hopf
bifurcation are investigated by analyzing the corresponding characteristic equation. We show
that delay can destabilize the positive equilibrium and induce spatially homogeneous and
inhomogeneous periodic solutions. By calculating the normal form on the center manifold, the
formulae determining the direction and the stability of Hopf bifurcations are explicitly derived.
The numerical simulations are carried out to illustrate and extend our theoretical results.

Keywords : Predator–prey model; delay; stability; Hopf bifurcation; periodic solution.

1. Introduction

Based on different biological assumptions, several
predator–prey models are proposed. There is evi-
dence that when resources are scarce relative to
predator density and predators have to search for
food, the predator’s per-capita growth rate should
decline with its density [Akcakaya et al., 1995;
Arditi et al., 1991; Berryman, 1992; Cosner et al.,

1999]. However, in those traditional prey-dependent
predator–prey models, where the predation rate
(hence the per capita growth rate of the predator) is
a function of the prey population only and is inde-
pendent of the density of predators, such models
cannot reflect this feature. To accommodate this
feature, Arditi and Ginzburg [Akcakaya et al., 1995;
Arditi & Ginzburg, 1989] suggested that a more
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suitable predator–prey theory should be based on
the so-called ratio-dependent theory, which assumes
that the per capita predator growth rate should be a
function of the ratio of prey to predator abundance.
In this context, the following ratio-dependent type
predator–prey model with Michaelis–Menten type
functional response have received great attention
among theoretical and mathematical biologists



dN
dt

= rN
(

1 − N

K

)
− αNP
αβN + P

,

dP
dt

=
ηαNP

αβN + P
− γP,

(1)

where N,P stand for prey and predator densities,
respectively. r,K,α, β, η, γ are positive constants
that represent prey intrinsic growth rate, envi-
ronmental carrying capacity, total attack rate for
predator, handing time, conversion rate and preda-
tor death rate, respectively. System (1) and its more
general version have been widely studied by many
authors and these studies have shown that such
models exhibit much richer dynamics than the tra-
ditional ones (see, for example, [Fan et al., 2003;
Kuang & Beretta, 1998; Kuang, 1999; Hsu et al.,
2001; Ruan et al., 2010; Xiao & Ruan, 2001] and
references therein). The effects of discrete and dis-
tributed delays on dynamics of the system have
been investigated in [Xu et al., 2002; Beretta &
Kuang, 1998; Xiao & Li, 2003; Xu et al., 2009].

In reality, the species are distributed over space
and interact with each other within their spatial

domain. The importance of spatial models has been
recognized by biologists for a long time and these
models have been one of the dominant themes in
both ecology and mathematical ecology due to their
universal existence and importance [Gause, 1935;
Okubo & Levin, 2001; Murray, 2002]. On the other
hand, biological species often do not respond to
the variation of the environment instantaneously,
instead they generally respond to the variations
in the past. Incorporating time delay into a pop-
ulation model would more realistically reflect such
a fact. Moreover, as far as prey–predator interac-
tion is concerned, typically there is also a delay in
conveying the biomass of the prey to that of the
predator (often referred to as the gestation time).
Recently, there has been an extensive literature
and increasing interest in the studies of the joint
effect of delay and diffusion on predator–prey mod-
els (see, for example, [Chen et al., 2013; Faria, 2001;
Hu & Li, 2010; Liu & Yuan, 2004; Yan, 2007; Zuo &
Wei, 2011; Zuo, 2013] and references cited therein).
Recently, [Aly et al., 2011; Song & Zou, 2014a,
2014b] explored the dynamics of a diffusive ratio-
dependent predator–prey model that results from
adding a random diffusion term to each equation
in (1). Nevertheless, to the best of our knowledge,
there is no work yet investigating the dynamics of
the diffusive ratio-dependent predator–prey model
with delay. Considering that the reproduction of
predator after consuming the prey is not instanta-
neous, but is mediated by some time lag required for
gestation, we study the following ratio-dependent
predator–prey model with diffusion and delay



∂u(x, t)
∂t

= du�u(x, t) + ru(x, t)
(

1 − u(x, t)
K

)
− αu(x, t)v(x, t)
αβu(x, t) + v(x, t)

,

∂v(x, t)
∂t

= dv�v(x, t) +
(

ηαu(x, t − τ)
αβu(x, t − τ) + v(x, t− τ)

− γ

)
v(x, t),

(2)

where du and dv are the diffusion coefficients for the prey and predator, respectively, and τ ≥ 0 is the
delay required for gestation which vastly differs from species to species. To make our model general so
that it can be applied to as many species as possible, we do not specify the delay to any particular
value.

In order to reduce the number of parameters, we rescale (2). Setting

ũ =
αβ

ηK
u, ṽ =

αβ

η2K
v, t̃ =

ηt

β

and then dropping the tilde for simplicity of notations, system (1) with the spatial interval x ∈ [0, π] and
Neumann boundary condition takes the form
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


∂u(x, t)
∂t

= d1�u(x, t) + au(x, t)
(

1 − u(x, t)
b

)
− bu(x, t)v(x, t)
bu(x, t) + v(x, t)

,

∂v(x, t)
∂t

= d2�v(x, t) +
(

bu(x, t− τ)
bu(x, t− τ) + v(x, t− τ)

− c

)
v(x, t),

ux(0, t) = ux(π, t) = vx(0, t) = vx(π, t) = 0, t ≥ 0,

u(x, t) = φ(x, t) ≥ 0 (�≡ 0), v(x, t) = ψ(x, t) ≥ 0 (�≡ 0), (x, t) ∈ [0, π] × [−τ, 0],

(3)

where

d1 =
duβ

η
, d2 =

dvβ

η
,

a =
rβ

η
, b =

αβ

η
, c =

γβ

η
,

and di (i = 1, 2), a, b, c can be interpreted as nor-
malized diffusion coefficient, intrinsic growth rate
for the prey, environmental carrying capacity, and
death rate for the predator, respectively. In the fol-
lowing, for simplification of notations, we always use
u(t) for u(x, t), v(t) for v(x, t), u(t − τ) for u(x,
t − τ) and v(t − τ) for v(x, t − τ) if no confusion
is caused. We would like to mention that for sys-
tem (3) or similar systems without delay, the local
and global stabilities of the unique positive con-
stant equilibrium, dissipation, persistence as well
as the existence of nonconstant positive steady
states, Turing instability and Hopf–Turing bifurca-
tion, spatiotemporal complexity, self-organized spa-
tial patterns and chaos have been studied by many
authors (see, for example, [Aly et al., 2011; Baner-
jee, 2010; Banerjee & Petrovskii, 2011; Bartumeus
et al., 2001; Fan & Li, 2006; Pang & Wang, 2003;
Song & Zou, 2014a, 2014b; Wang et al., 2007] and
references therein). The main object of this paper
is to investigate the effect of the delay and diffu-
sion on the dynamics of system (3). The persistence,
stability and delay-induced Hopf bifurcations are
studied. We will show that the delay will desta-
bilize the stable positive constant equilibrium to
become unstable and there exist infinite critical val-
ues of delay such that the spatially homogenous
and inhomogenous periodic orbits bifurcate from
the positive constant equilibrium.

The rest of the paper is organized as follows.
In Sec. 2, persistence and the global stability of
the boundary equilibrium are studied. In Sec. 3,
the local stability of the positive constant equilib-
rium, the existence of delay-induced Hopf bifurca-
tions will be investigated. In Sec. 4, the formulas

for determining the direction and stability of Hopf
bifurcations are derived by using the normal form
theory for partial functional differential equations.
In Sec. 5, some numerical simulations are presented
to illustrate and extend the theoretical results. The
paper ends with a conclusion.

2. Persistence and Global Stability
of the Boundary Equilibrium

Simple mathematical arguments show that sys-
tem (3) has three constant equilibria: the zero equi-
librium E0 = (0, 0) (total extinct); the boundary
equilibrium E1 = (b, 0) (extinction of predator);
and the positive equilibrium E∗ = (u∗, v∗) (coex-
istence of prey and predator) with

u∗ =
b(a+ (c− 1)b)

a
> 0,

v∗ =
b(1 − c)u∗

c
=
b2(1 − c)(a+ (c− 1)b)

ac
> 0,

which exists if and only if the following condition
holds:

(H1) 0 < c < 1, a > b(1 − c).

First, we can deduce the following persistence
properties.

Theorem 1. If 0 < c < 1 and 0 < b < 1, then
system (3) has the persistence properties for all
τ ≥ 0, that is, for any initial values φ(x, t) > 0
(�≡ 0), ψ(x, t) ≥ 0 (�≡ 0), t ∈ [−τ, 0], there exists a
positive constant ε0 such that

lim inf
t→+∞ min

x∈[0,π]
u(x, t) ≥ ε0,

lim inf
t→+∞ min

x∈[0,π]
v(x, t) ≥ ε0.

Proof. By the maximum principle, for the ini-
tial value φ(x, t) ≥ 0, ψ(x, t) ≥ 0, t ∈ [−τ, 0],
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the solutions (u(x, t), v(x, t)) of system (3) satisfy
u(x, t) ≥ 0 and v(x, t) ≥ 0. In terms of the first
equation of system (3), we have

∂u(t)
∂t

− d1�u(t) ≥ au(t)
(

1 − b− u(t)
b

)
.

Let z(t) be the solution of the ODE

ż(t) = az(t)
(

1 − b− z(t)
b

)
,

z(0) = max
x∈[0,π]

u(x, t), t ≥ 0.

Then limt→∞ z(t) = b(1 − b). It follows from the
comparison principle of parabolic equations that for
b < 1,

lim inf
t→+∞ min

x∈[0,π]
u(x, t) ≥ b(1 − b) > 0. (4)

So, there exists a positive number T1 > 0 such that

u(x, t) ≥ b(1 − b)
2

= ς > 0, x ∈ [0, π], t ≥ T1. (5)

From the second equation of system (3), we
have

∂v(t)
∂t

− d2�v(t) ≤ (1 − c)v(t). (6)

Let z(t) be the solution of the ODE

ż(t) = (1 − c)z(t), z(0) = max
x∈[0,π]

v(x, t),

then we get

z(t− τ) = e(c−1)τ z(t). (7)

From (6), (7) and the comparison principle, we have
v(x, t) ≤ z(t) for x ∈ [0, π], t ≥ 0 and then

v(x, t − τ) ≤ z(t− τ)

= e(c−1)τz(t), x ∈ [0, π], t ≥ τ.

By the second equation of systems (3), (5) and (7),
we obtain

∂v(t)
∂t

− d2�v(t)

≥ v(t)
(
−c+

bς

bς + v(t)e(c−1)τ

)

= v(t)
b(1 − c)ς − ce(c−1)τv(t)

bς + ce(c−1)τ v(t)
,

t ≥ T2 = max{T1, τ}. (8)

Let z(t) be the solution of the ODE

ż(t) = z(t)
b(1 − c)ς − ce(c−1)τ z(t)

bς + ce(c−1)τ z(t)
,

z(T2) = min
z∈[0,π]

v(x, t), t ≥ T2.

Then,

lim
t→∞ z(t) =

b(1 − c)ςe(1−c)τ

c
.

Again by the comparison principle, we obtain that
for 0 < c < 1,

lim inf
t→+∞ min

x∈[0,π]
v(x, t) ≥ b(1 − c)ςe(1−c)τ

c
> 0. (9)

Therefore, for 0 < c < 1 and 0 < b < 1, letting
ε0 = min{b(1 − b), b(1−c)ςe(1−c)τ

c }, by (4) and (9)
the proof is complete. �

For the boundary equilibrium E1(1, 0), we
have the following results on the local and global
stabilities.

Theorem 2

(i) If c > 1, then for any initial values φ(x, t) ≥ 0
(�≡ 0), ψ(x, t) ≥ 0 (�≡ 0), t ∈ [−τ, 0], the bound-
ary equilibrium E1 of system (3) is globally
asymptotically stable for all τ ≥ 0;

(ii) If 0 < c < 1, the boundary equilibrium E1 of
system (3) is unstable for all τ ≥ 0.

Proof

(i) The inequality (6), together with the comparison
principle of parabolic equations, implies that when
c > 1,

lim sup
t→+∞

max
x∈[0,π]

v(x, t) ≤ 0.

In addition, note that v(x, t) ≥ 0. So, for c > 1,

lim
t→+∞ v(x, t) = 0, for x ∈ [0, π]. (10)

From the first equation of system (3), we have

∂u(t)
∂t

− d1�u(t) ≤ au(t)
(

1 − u(t)
b

)
.

By the comparison principle, we can obtain that

lim sup
t→+∞

max
x∈[0,π]

u(x, t) ≤ b. (11)

Therefore, for any sufficiently small ε1, there exists
a sufficiently large positive number T3 such that
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u(x, t) ≤ b + ε1 for t > T3, x ∈ [0, π]. In addi-
tion, note that u ≥ 0 and lim(u,v)→(0+,0+) buv/
(bu+ v) = 0. This, together with (10), implies that

lim
t→+∞

bu(x, t)v(x, t)
bu(x, t) + v(x, t)

= 0, for x ∈ [0, π]. (12)

By (12), ∀ ε ∈ (0, 1), there exists T (ε) > T3 > 0
such that

bu(x, t)v(x, t)
bu(x, t) + v(x, t)

< ε, for t > T (ε), x ∈ [0, π].

(13)

It follows from (13) and the first equation of
system (3) that for t > T (ε),

∂u(t)
∂t

− d1�u(t) > a(1 − ε)u(t)
(

1 − u(t)
b(1 − ε)

)
,

which leads to

lim inf
t→+∞ min

x∈[0,π]
u(x, t) ≥ b(1 − ε).

Since ε is a sufficiently small positive number, we
have

lim inf
t→+∞ min

x∈[0,π]
u(x, t) ≥ b. (14)

In terms of (11) and (14), we have

lim
t→+∞u(x, t) = b, for x ∈ [0, π]. (15)

By (10) and (15), the conclusion (i) of Theorem 2
is verified.

(ii) The linearization of system (3) at E1(b, 0) is


∂u

∂t
= d1�u− au− v,

∂v

∂t
= d2�v + (1 − c)v.

(16)

It is easy to verify that under the Neumann bound-
ary condition, the characteristic equations of the
linearized equations (16) are given by

(λ+ d1k
2 + a)(λ+ d2k

2 + c− 1) = 0,

k = 0, 1, 2, . . . . (17)

Clearly, when c < 1 and k = 0, (17) has a posi-
tive real root λ = 1 − c > 0. Thus, when c < 1,
the boundary equilibrium E1(b, 0) of system (3) is
unstable. This completes the proof. �

3. Stability of the Positive
Equilibrium and Hopf
Bifurcation Induced by Delay

In this section, we study the influence of the delay
on the stability of the positive equilibrium E∗ of
system (3) and delay-induced bifurcation scenario.

Let

f (1)(u, v) = au
(
1 − u

b

)
− buv

bu+ v
,

f (2)(u, v,w) =
buv

bu+ w
− cv.

(18)

Then linearization of (3) at the equilibrium E∗ is

∂u(t)
∂t

∂v(t)
∂t


 = d∆

(
u(t)

v(t)

)
+A0

(
u(t)

v(t)

)

+A1

(
u(t− τ)

v(t− τ)

)
, (19)

with

d∆ =

(
d1∆ 0

0 d2∆

)
, A0 =

(
a11 a12

0 0

)
,

A1 =

(
0 0

a21 a22

)
,

where

a11 =
∂f (1)

∂u
(u∗, v∗) = b− a− bc2,

a12 =
∂f (1)

∂v
(u∗, v∗) = −c2 < 0,

a21 =
∂f (2)

∂u
(u∗, v∗, v∗) = b(1 − c)2 > 0,

a22 =
∂f (2)

∂w
(u∗, v∗, v∗) = c(c − 1) < 0.

(20)

The characteristic equation of (19) is

det(λI −Mk −A0 −A1e
−λτ ) = 0, (21)

where I is the 2 × 2 identity matrix and Mk =
−k2 diag(d1, d2), k ∈ N0 = {0, 1, 2, . . .}. It follows
from (21) that the characteristic equations for the
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positive constant equilibrium E∗ are the following
sequence of quadratic transcendental equations

∆k(λ, τ) = λ2 + ((d1 + d2)k2 − a11)λ

+ d1d2k
4 − d2a11k

2

+ (J0 − d1a22k
2 − a22λ)e−λτ

= 0, (22)

where k ∈ N0, and

J0 = a11a22 − a12a21

= c(1 − c)(a+ bc− b) > 0.

When τ = 0, the characteristic equation (22)
becomes the following sequence of quadratic poly-
nomial equations

λ2 + Tkλ+ Jk = 0, (23)

where
Tk = (d1 + d2)k2 − (a11 + a22),

Jk = d1d2k
4 − (d1a22 + d2a11)k2 + J0.

(24)

Equation (24) has been studied in detail in [Song &
Zou, 2014a] and the related Turing instability, Hopf
bifurcation and their interactions for system (3)
without delay have been studied in [Song & Zou,
2014a, 2014b]. Here, we are interested in how the
delay affects the stability of the positive equilibrium
E∗ of system (3) and delay-induced periodic oscil-
lations. So, in the following, we always assume that
the positive equilibrium E∗ of system (3) without
delay is asymptotically stable, which is equivalent
to the condition Tk > 0, Jk > 0 for any k ∈ N0.

Assume that iω (ω > 0) is a root of Eq. (22).
Then we have

−ω2 + ((d1 + d2)k2 − a11)iω + d1d2k
4 − d2a11k

2

+ (J0 − d1a22k
2 − a22ωi)e−iωτ = 0. (25)

Separating the real and imaginary parts of Eq. (25)
leads to


−ω2 + d1d2k
4 − d2a11k

2

+ (J0 − d1a22k
2) cosωτ − a22ω sinωτ = 0,

((d1 + d2)k2 − a11)ω − a22ω cosωτ

− (J0 − d1a22k
2) sinωτ = 0,

(26)

which implies that

ω4 + Pkω
2 +Qk = 0, k = 0, 1, 2, . . . , (27)

where

Pk = (d2
1 + d2

2)k
4 − 2d1a11k

2 + a2
11 − a2

22

= (d1k
2 − a11)2 + (d2k

2 + a22)(d2k
2 − a22),

Qk = Jk(d1d2k
4 + (d1a22 − d2a11)k2 − J0).

(28)

Setting

Q̃k = (d1d2k
4 + (d1a22 − d2a11)k2 − J0)

= (d1k
2 − a11)(d2k

2 + a22) + a12a21, (29)

then the sign of Qk coincides with that of Q̃k since
Jk > 0.

Notice that Q̃k is a quadratic polynomial with
respect to k2 and −J0 < 0. Thus, by (29) we can
conclude that there exists k1 ∈ N0, such that

Q̃k < 0 for 0 ≤ k ≤ k1 and

Q̃k > 0 for k ≥ k1 + 1, k ∈ N0.
(30)

Denote the positive real root of the equation Q̃k = 0
by k0. Then k1 < k0 < k1 + 1 since Jk > 0
and Eq. (22) has zero root for k ∈ N0. It follows
from (29) that

k2
0 =

d2a11 − d1a22 +
√

(d2a11 − d1a22)2 + 4d1d2J0

2d1d2
(31)

and

(d1k
2
0 − a11)(d2k

2
0 + a22) = −a12a21 = bc2(1 − c)2 > 0. (32)

By (31), we have

d1k
2
0 − a11 =

−(d1a22 + d2a11) +
√

(d2a22 − d2a11)2 − 4d1d2a12a21

2d2
> 0 (33)

since a12a21 < 0. It follows from (32) and (33) that

d2k
2
0 + a22 > 0. (34)
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By (28), we have

Pk0 = (d1k
2
0 − a11)2

+ (d2k
2
0 + a22)(d2k

2
0 − a22)

> 0, (35)

where we have used (34) and a22 < 0.
Notice that k1+1 > k0. Thus, by (30) and (35),

we get

Pk > 0, for k ≥ k1 + 1, k1 ∈ N0. (36)

From (30) and (36), we can conclude that for each
k ∈ {0, 1, . . . , k1}, Eq. (27) has only one positive
real root ω+

k , where

ωk =
√

2
2

√
−Pk +

√
P 2

k − 4Qk, (37)

but for k ∈ N0 and k ≥ k1 + 1, Eq. (27) has no
positive real roots.

According to the above discussions, the follow-
ing results on Eq. (22) follow immediately.

Lemma 1. Assume that (H1) holds, Jk, Tk > 0
for all k ∈ N0, and k1 and ωk are defined by
(30) and (37), respectively. Then Eq. (22) has a
pair of purely imaginary roots ±iωk for each k ∈
{0, 1, . . . , k1} and has no purely imaginary roots for
k ≥ k1 + 1.

By (26), we have

sinωτ =
a22ω(d1d2k

4 − d2a11k
2 − ω2) + ((d1 + d2)k2 − a11)(J0 − d1a22k

2)ω
(J0 − d1a22k2)2 + a2

22ω
2

� Fks(ω),

cosωτ =
(ω2 − d1d2k

4 + d2a11k
2)(J0 − d1a22k

2) + ((d1 + d2)k2 − a11)a22ω
2

(J0 − d1a22k2)2 + a2
22ω

2
� Fkc(ω).

(38)

For k ∈ {0, 1, . . . , k1}, define

τkj =




1
ωk

(arccosFkc(ωk) + 2jπ), if Fks ≥ 0,

1
ωk

(2π − arccosFkc(ωk) + 2jπ), if Fks < 0.

(39)

Clearly, τk0 = minj∈N0{τkj}. Let λ(τ) = α(τ) + iβ(τ) be the roots of Eq. (25) near τ = τkj satisfying
α(τkj) = 0, β(τkj) = ωk. Then, we have the following transversality condition.

Lemma 2. For k ∈ {0, 1, . . . , k1} and j ∈ N0,
d Re(λ)

dτ |τ=τkj
> 0.

Proof. Differentiating the two sides of Eq. (22) with respect to τ , we obtain

(
dλ

dτ

)−1

=
(2λ+ (d1 + d2)k2 − a11)eλτ − a22

λ(J0 − d1a22k2 − a22λ)
− τ

λ
.

By (26), (28) and (37), we have

Re

(
dλ

dτ

∣∣∣∣
τ=τkj

)−1

= Re
(

(2iωk + (d1 + d2)k2 − a11)eiωkτkj − a22

iωk(J0 − d1a22k2 − a22ωki)

)

=
((d1 + d2)k2 − a11)(a22ωk cosωkτkj + (J0 − d1a22k

2) sinωkτkj)
(a2

22(ωk)2 + (J0 − d1a22k2)2)ωk

+
2((J0 − d1a22k

2) cos ωkτkj − a22ωk sinωkτkj) − a2
22

a2
22(ωk)2 + (J0 − d1a22k2)2
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=
2(ωk)2 + ((d2

1 + d2
2)k

4 − 2d1a11k
2 + a2

11 − a2
22)

a2
22(ωk)2 + (J0 − d1a22k2)2

=
2(ωk)2 + Pk

a2
22(ωk)2 + (J0 − d1a22k2)2

=

√
P 2

k − 4Qk

a2
22(ωk)2 + (J0 − d1a22k2)2

> 0.

This completes the proof. �

By Lemmas 1 and 2 and the qualitative the-
ory of partial functional differential equations [Wu,
1996], we arrive at the following results on the
stability and Hopf bifurcation.

Theorem 3. Assume that (H1) holds, Tk, Jk >
0 for all k ∈ N0, and ωk and τkj are defined
by (37) and (39), respectively. Denote the min-
imum of the critical values of delay by τ∗ =
mink∈{0,1,...,k1}{τk0}.
(i) The positive equilibrium E∗ of system (3) is

asymptotically stable for τ ∈ [0, τ∗) and unsta-
ble for τ ∈ (τ∗,+∞);

(ii) System (3) undergoes Hopf bifurcations near
the positive equilibrium E∗ at τ = τkj for
k ∈ {0, 1, . . . , k1} and j ∈ N0.

4. Direction and Stability of
Spatially Hopf Bifurcation

From Theorem 3, we know that system (3) under-
goes Hopf bifurcations near the equilibrium E∗ at
τ = τkj, i.e. a family of spatially homogeneous and
inhomogeneous periodic solutions bifurcate from
the positive constant steady state E∗ of (3). In this
section, we investigate the direction and stability of
these Hopf bifurcations by using the normal formal
theory of partial functional differential equation due
to [Faria, 2000]. Without loss of generality, denote
any one of these critical values by τ∗ at which the
characteristic equation (22) has a pair of simply
purely imaginary roots ±iω∗.

Let

X =
{

(u, v) ∈W 2,2(0, π),

∂u

∂x
=
∂v

∂x
= 0 at x = 0, π

}
.

Setting ũ(·, t) = u(·, τ t) − u∗, ṽ(·, t) = v(·, τ t) − v∗,
Ũ(t) = (ũ(·, t), ṽ(·, t)) and then dropping the
tildes for simplification of notation, system (3)

can be written as the equation in the space C =
C([−1, 0],X)

dU(t)
dt

= τd∆U(t) + L(τ)(Ut) + f(Ut, τ), (40)

where for ϕ = (ϕ1, ϕ2)T ∈ C, L(µ)(·) : C → X and
f : C ×R→ X are given, respectively, by

L(τ)(ϕ) = τ

(
a11ϕ1(0) + a12ϕ2(0)

a21ϕ1(−1) + a22ϕ2(−1)

)
,

f(ϕ, τ)

= τ




∑
i+j≥2

1
i!j!

f
(1)
ij ϕ

i
1(0)ϕ

j
2(0)

∑
i+j+l≥2

1
i!j!l!

f
(2)
ijlϕ

i
1(−1)ϕj

2(0)ϕ
l
2(−1)



,

(41)

where f (1), f (2) are defined by (18) and

f
(1)
ij =

∂i+jf (1)

∂ui∂vj
(u∗, v∗),

f
(2)
ijl =

∂i+j+lf (2)

∂ui∂vj∂wl
(u∗, v∗, v∗).

Note that in the following, for ϕ = (ϕ1, ϕ2)T ∈
C = C([−1, 0],R2), we also use the same formulae
L(τ)(ϕ) as in (41).

Letting τ = τ∗ +α,α ∈ R, and then Eq. (40) is
written as

∂U(t)
dt

= τ∗d∆U(t) + L(τ∗)(Ut) + F (Ut, α), (42)

where

F (ϕ,α) = αd∆ϕ(0) + L(α)(ϕ)

+ f(ϕ, τ∗ + α), for ϕ ∈ C.
So, α = 0 is the Hopf bifurcation value for Eq. (42)
and Λ0 = {−iτ∗ω∗, iτ∗ω∗} is the set of eigenvalues
on the imaginary axis of the infinitesimal generator
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associated with the flow of the following linearized
system of Eq. (42) at the origin

∂U(t)
dt

= τ∗d∆U(t) + L(τ∗)(Ut). (43)

The eigenvalues of τ∗d∆ on X are µi
k =

−diτ∗k2, i = 1, 2, k ∈ N0, with corresponding nor-
malized eigenfunctions βi

k, where

β1
k(x) =

(
γk(x)

0

)
, β2

k(x) =

(
0

γk(x)

)
,

γk(x) =
cos(kx)

‖cos(kx)‖2,2
, k ∈ N0.

Let Bk = span{[v(·), β i
k]β

i
k | v ∈ C, i = 1, 2},

where the inner product [·, ·] is defined by

[u, v] =
∫ �π

0
uT vdx, for uT = (u1, u2)T ,

v = (v1, v2)T ∈ X.

Then it is easy to verify that L(τ∗)(Bk) ⊂ span{β1
k,

β2
k}, k ∈ N0. Assume that zt(θ) ∈ C = C([−1,

0],R2) and

zT
t (θ)

(
β1

k

β2
k

)
∈ Bk.

Then, on Bk, the linear equation (43) is equivalent
to the ODE on R

2

ż(t) =

(
µ1

k 0

0 µ2
k

)
z(t) + L(τ∗)(zt) (44)

with the characteristic equation given by (22). Sup-
pose that there exists k ∈ N0 such that when τ = τ∗,
Eq. (22) for fixed k has a pair of purely imaginary
roots ±iω∗ and all other roots of Eq. (22) have neg-
ative real parts. Define the adjoint bilinear form on
C∗ × C, C∗ = C([0, 1],R2∗), as follows

〈ψ(s), φ(θ)〉

= ψ(0)φ(0) −
∫ 0

−1

∫ θ

0
ψ(ξ − θ)dη(θ)φ(ξ)dξ,

for ψ ∈ C∗, φ ∈ C.

Then, for Eq. (44) with fixed k, the dual bases Φk

and Ψk for its eigenspace P and its dual space P ∗

are, respectively, given by

Φk = (peiω∗τ∗θ, pe−iω∗τ∗θ) and

Ψk = col(qT e−iω∗τ∗s, qT eiω∗τ∗s)

such that 〈Φk,Ψk〉 = I2, where I2 is a 2×2 identity
matrix and

p =

(
p1

p2

)
=




1

iω∗ + d1k
2 − a11

a12


,

q =

(
q1

q2

)
= q1




1

iω∗ + d1k
2 − a11

a21
eiω∗τ∗


,

with

q1 =
(

1 + τ∗(iω∗ + d1k
2 − a11)

+
(τ∗a22 + eiω∗τ∗)(iω∗ + d1k

2 − a11)2

a12a21

)−1

.

Following the procedure of [Faria, 2000] closely,
we can obtain the following normal form on the cen-
ter manifold

ż = Bz +

(
Ak1z1α

Ak1z2µ

)
+

(
Ak2z

2
1z2

Ak2z1z
2
2

)

+O(|z|µ2 + |z4|). (45)

The coefficient Ak1 of the normal form (45) is easily
calculated by

Ak1 = −k2(d1q1p1 + d2q2p2) + iω∗qTp. (46)

The coefficient Ak2 of the normal form (45) is
defined by

Ak2 =
i

2ω∗τ∗

(
ak20ak11 − 2|ak11|2 − 1

3
|ak02|2

)

+
1
2
(ak21 + bk21). (47)

ak20, ak11, ak02 and ak21 can be calculated as
follow:

ak20 =



τ∗√
π

(b1q1 + b2q2), k = 0,

0, k �= 0,

ak11 =



τ∗√
π

(b3q1 + b4q2), k = 0,

0, k �= 0,
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ak02 =



τ∗√
π

(b1q1 + b2q2), k = 0,

0, k �= 0,

ak21 =




τ∗
π
b4, k = 0,

3τ∗
2π

b4, k �= 0,

with

b1 = f
(1)
20 p

2
1 + 2f (1)

11 p1p2 + f
(1)
02 p

2
2,

b2 = f
(2)
200p

2
1e

−2iω∗τ∗ + f
(2)
002p

2
2e

−2iω∗τ∗ + 2f (2)
110p1p2e

−iω∗τ∗ + 2f (2)
101p1p2e

−2iω∗τ∗ + 2f (2)
011p

2
2e

−iω∗τ∗ ,

b3 = f
(1)
20 |p1|2 + 2f (1)

11 Re{p1p2} + f
(1)
02 |p2|2,

b4 = f
(2)
200|p1|2 + f

(2)
002|p2|2 + 2f (2)

110Re{p1p2e
−iω∗τ∗} + 2f (2)

101Re{p1p2} + 2f (2)
011Re{|p2|2eiω∗τ∗},

b5 = q1(f
(1)
30 p1|p1|2 + f

(1)
03 p2|p2|2 + f

(1)
21 (p2

1p2 + 2|p1|2p2) + f
(1)
12 (p2

2p1 + 2|p2|2p1))

+ q2((f
(2)
300p1|p1|2 + f

(2)
003p2|p2|2 + f

(2)
201(p

2
1p2 + 2p2|p1|2) + f

(2)
102(p

2
2p1 + 2p1|p2|2))e−iω∗τ∗

+ f
(2)
210(p

2
1p2e

−2iω∗τ∗ + 2p2|p1|2) + f
(2)
012p2|p2|2(2 + e−2iω∗τ∗)).

The calculation of bk21 is somewhat tedious. We first calculate hk20(θ) and hk11(θ) as follows:

hk20(θ) = − 1
iω∗τ∗

(
ak20e

iω∗τ∗θp+
1
3
ak02e

−iω∗τ∗θp

)
+ e2iω∗τ∗θWk1,

hk11(θ) =
2

iω∗τ∗
(ak11e

iω∗τ∗θp− ak11e
−iω∗τ∗θp) +Wk2,

where Wk1 =
(
W

(1)
k1 ,W

(2)
k1

)T
,W2 =

(
W

(1)
k2 ,W

(2)
k2

)T with

W
(1)
k1 =

ckj(b1(2iω∗ − a22e
−2iω∗τ∗) + b2a12)

(2iω∗ − a11)(2iω∗ − a22e−2iω∗τ∗) − a12a21e−2iω∗τ∗
,

W
(2)
k1 =

ckj(b1a21e
−2iω∗τ∗ + b2(2iω∗ − a11))

(2iω∗ − a11)(2iω∗ − a22e−2iω∗τ∗) − a12a21e−2iω∗τ∗
,

W
(1)
k2 =

2ckj(b4a12 − b3a22)
a11a22 − a12a21

, W
(2)
k2 =

2ckj(b3a21 − b4a11)
a11a22 − a12a21

and

ckj =




1√
π
, j = k = 0,

1√
π
, j = 0, k �= 0,

1√
2π
, j = 2k �= 0,

0, otherwise.

(48)
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And then we have

bk21 =



M0, k = 0,

M0 +
√

2
2
M2k, k �= 0,

where for j = 0, 2k,

Mj =
2τ∗√
π
qT



c1h

(1)
j11(0) + c2h

(2)
j11(0) + c1h

(1)
j20(0) + c2h

(2)
j20(0)

c3h
(1)
j11(−1) + c4h

(2)
j11(−1) + c3h

(1)
j20(−1) + c4h

(2)
j20(−1)

+ c5h
(2)
j11(0) + c5h

(2)
j20(0)




with

c1 = f
(1)
20 p1 + f

(1)
11 p2,

c2 = f
(1)
11 p1 + f

(1)
02 p2,

c3 = f
(2)
200p1e

−iω∗τ∗ + f
(2)
110p2 + f

(2)
101p2e

−iω∗τ∗ ,

c4 = f
(2)
002p2e

−iω∗τ∗ + f
(2)
101p1e

−iω∗τ∗ + f
(2)
011p2,

c5 = f
(2)
110p1e

−iω∗τ∗ + f
(2)
011p2e

−iω∗τ∗ .

So, the coefficients Ak1 and Ak2 of the normal
form (45) are completely determined. Through the
change of variables z1 = w1 − iw2, z2 = w1 + iw2

and w1 = ρ cos ξ, w2 = ρ sin ξ, the normal form (45)
becomes the following polar coordinate system

ρ̇ = ιk1αρ+ ιk2ρ
3 +O(α2ρ+ |(ρ, α)|4),

ξ̇ = −ω∗τ∗ +O(|(ρ, α)|)
with ιk1 = ReAk1, ιk2 = ReAk2.

It is well known from [Chow & Hale, 1982] that
the sign of ιk1ιk2 determines the direction of the
bifurcation (supercritical if ιk1ιk2 < 0, subcritical
if ιk1ιk2 > 0), and the sign of ιk2 determines the
stability of the nontrivial periodic orbits (stable if
ιk2 < 0, unstable if ιk2 > 0). Thus, if system (3) is
given, then the direction and stability of the Hopf
bifurcation at τ = τ∗ can be determined by the
parameters of the system. For the Hopf bifurcation
corresponding to k = 0, the normal form is the same
as for the system without diffusion.

5. Numerical Simulations

In this section, we perform some numerical simula-
tions to confirm and extend our analytical results.
Since the true values of the model parameters are
very difficult and costly, if not impossible, here we

can only choose some artificial values to test our
theoretical results. Taking d1 = 0.02, d2 = 0.2, c =
0.6, Fig. 1 shows the bifurcation diagram in the b−a
plane for system (3) without delay (see [Song & Zou,
2014a] for details). The critical curves in Fig. 1 are
defined by the following

H0 : a =
16
25
b− 6

25
, b > 1;

�1 : a =
28
55
b− 1

50
,

11
60

< b ≤ 143
180

;

�2 : a =
38
65
b− 2

25
,

143
180

< b ≤ 221
60

;

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.5

1

1.5

2

2.5

3

b

a

D
11

:  Stable

D
12

D
2

D
3

�1

�3

�2

(0.7944,0.3844)

(3.6833,2.0733 )

H
0

H
0

Boundary of E*

TH

Fig. 1. Bifurcation diagram for system (3) with d1 =
0.02, d2 = 0.2, c = 0.6, in the b–a plane. The positive equi-
librium E∗ is asymptotically stable in D11 and unstable oth-
erwise. In D12, Turing instability occurs. In D2, only Hopf
bifurcations occur. In D3, there exist Hopf and steady state
bifurcations.
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�3 : a =
52
85
b− 9

50
,

221
60

< b ≤ 731
60

.

When (b, a) ∈ D11, Dk > 0, Jk > 0 for all k ∈ N0

then the positive equilibrium E∗ of system (3) with-
out delay is asymptotically stable. Theorem 3 shows
that when (b, a) ∈ D11, there exists a critical value
of delay, say τ∗, such that the positive equilib-
rium E∗ of system (3) is asymptotically stable for
τ ∈ [0, τ∗) and unstable for τ ∈ (τ∗,+∞).

Taking a = 0.5, b = 0.4 such that (a, b) ∈ D11,
then the positive equilibrium is E∗ .= (0.2720,
0.0725), which is asymptotically stable for τ = 0.
From (28), we have

Pk =
101
2500

k4 +
61

6250
k2 +

121
62500

> 0, for all k ∈ N0

and

Qk =
(

1
250

k4 +
67

1250
k2 +

51
625

)(
1

250
k4

+
11
250

k2 − 51
625

) {
< 0, k = 0, 1,

> 0, k ≥ 2.

So, Hopf bifurcations induced by delay occur for
k = 0 and k = 1. From (39), we obtain the critical
values of delay as follows

τ00
.= 4.9501, τ01

.= 27.0765, . . . ;

τ10
.= 9.9936, τ11

.= 38.9345, . . . .

By Theorem 3, the positive equilibrium E∗(0.2720,
0.0725) is asymptotically stable for τ < τ00.

Figure 2 is the numerical simulation of system (3)
for τ = 4.5. When the delay increasingly crosses
through the critical value τ00

.= 4.9501, the posi-
tive equilibrium E∗ loses its stability and the Hopf
bifurcation occurs. The direction and stability of
the Hopf bifurcation can be determined by the
signs of ιk1 and ιk2. By the procedure in Sec. 4,
ι01

.= 0.0514, ι02
.= −0.5371. So, the Hopf bifur-

cation occurring at τ00 is supercritical and the
corresponding Hopf bifurcating periodic orbits are
stable. Taking τ = 5.2 > τ00, the numerical simula-
tion results of system (3) are shown in Fig. 3, which
is in agreement with the theoretical results. In the
numerical simulations for Figs. 2 and 3, the initial
conditions are u(x, t) = 0.2 + 0.1 cos x; v(x, t) =
0.1 − 0.01 cos x, (x, t) ∈ [0, π] × [−τ, 0]. If τ is
increasing across the critical value τ10

.= 9.9936, a
spatially inhomogenous periodic solution like cos(x)
shape occurs near the positive equilibrium E∗. For
this Hopf bifurcation, we have ι11

.= 0.6784, ι12
.=

−0.9256, which means that the Hopf bifurcation is
supercritical and the bifurcating periodic solution is
stable on the center manifold. However, the bifur-
cating periodic solution bifurcating from the criti-
cal value τ10 must be unstable on the whole phase
space since the characteristic equation always has
roots with positive real parts for τ > τ00

.= 4.9501.
Taking the initial values as u(x, t) = 0.2720 −
0.002 cos x; v(x, t) = 0.0725 + 0.0025 cos x, (x, t) ∈
[0, π] × [−τ, 0], close to the center subspace,
Fig. 4 shows the numerical simulation result for
τ = 10 > τ10. Figures 4(a) and 4(c) also show that
the spatially inhomogenous periodic solution bifur-
cating from the critical value τ10 is unstable.

Fig. 2. Numerical simulations of system (3) for d1 = 0.02, d2 = 0.2, c = 0.6, (b, a) = (0.4, 0.5) ∈ D11 and τ = 4.5 < τ00. The
positive equilibrium E∗(0.2720, 0.0725) of system (3) is asymptotically stable for τ ∈ [0, τ00).
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Fig. 3. Numerical simulations of system (3) for d1 = 0.02, d2 = 0.2, c = 0.6, (b, a) = (0.4, 0.5) ∈ D11 and τ = 5.2 > τ00.
When τ > τ00, the positive equilibrium E∗(0.2720, 0.0725) becomes unstable and there exist stable spatially homogeneous
periodic solutions.

(a) (b)

(c) (d)

Fig. 4. Numerical simulations of system (3) for d1 = 0.02, d2 = 0.2, c = 0.6, (b, a) = (0.4, 0.5) ∈ D11 and τ = 10 > τ10.
There exist unstable spatially inhomogeneous periodic solutions. Numerical simulation also show that there exists solutions
connecting the unstable spatially inhomogenous periodic solution to spatially homogenous periodic solution.
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(a) (b)

(c) (d)

(e) (f)

Fig. 5. Numerical simulation of system (3) for d1 = 0.02, d2 = 0.2, c = 0.5, (b, a) = (1.1, 0.5) ∈ D12, and τ = 1.8 < τ00. The
steady state is stable for τ < τ00.
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(a) (b)

(c) (d)

(e) (f)

Fig. 6. Numerical simulation of system (3) for d1 = 0.02, d2 = 0.2, c = 0.5, (b, a) = (1.1, 0.5) ∈ D12, and τ = 2.4 > τ00. The
steady state is unstable for τ > τ00 and there exists a stable spatially homogeneous periodic solution.
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However, the long-term behavior [see Figs. 4(b)
and 4(d)] is stable homogenous periodic solution
similar to Fig. 3. So, there exists solutions con-
necting the unstable spatially inhomogenous peri-
odic solution to stable spatially homogenous peri-
odic solution, as shown in Figs. 4(b) and 4(d).

Taking a = 0.5, b = 1.1 such that (a, b) ∈ D12,
the positive constant equilibrium of system (3) is
E∗ .= (0.1320, 0.0968). This positive constant equi-
librium is unstable and a supercritical pitchfork
bifurcation occurs, which implies that system (3)
has two stable steady states like cos 2x shape. In the
following, we numerically investigate the influence
of delay on the dynamics of the system. From (28),
we have

Pk =
101
2500

k4 − 51
6250

k2 − 999
62500

=

{
< 0, k = 0,

> 0, k ≥ 1

and

Qk =
(

1
250

k4 − 9
250

k2 +
9

625

)(
1

250
k4

− 57
1250

k2 − 9
625

) {
< 0, k = 0, 3

> 0, otherwise.

Thus, Eq. (27) has positive real roots only for
k = 0, 3. From (39), we have

τ+
00

.= 1.8399 < τ+
30

.= 37.6515.

The positive constant equilibrium E∗(0.1320, 0.0968)
is unstable for all τ ≥ 0. The first critical value
of τ for Hopf bifurcation is τ00

.= 1.8399. In
the following numerical simulations, we choose
u(x, t) = 0.1320 − 0.13 cos x; v(x, t) = 0.0968 −
0.08 cos x, (x, t) ∈ [0, π] × [−τ, 0], as the initial val-
ues. When τ < τ00, the numerical simulation shows
that the steady state is still stable (see Fig. 5).
Although the short-term behavior is oscillating [see
Figs. 5(b) and 5(e)], the long-term behavior is a
stable steady state [see Figs. 5(c) and 5(f)]. When
τ > τ00, the steady state becomes unstable and
there exists a periodic solution as shown in Fig. 6.
At first, the solution oscillates near the steady state
[see Figs. 6(b) and 6(e)], but finally converges to
a stable spatially homogeneous periodic solution
[see Figs. 6(c) and 6(f)]. Figures 6(a) and 6(b) also
show the existence of the heteroclinic orbit connect-
ing the steady state to periodic solution.

6. Conclusion

A ratio-dependent predator–prey model with diffu-
sion and delay is investigated. The sufficient con-
ditions independent of diffusion and delay for the
persistence, global stability of the boundary equi-
librium are given. If the normalized intrinsic growth
for the prey and death rate for the predator are
small (0 < b, c < 1), then the system has the persis-
tence properties regardless of the quantities of diffu-
sion and delay. If the positive constant equilibrium
does not exist and the normalized death rate for
the predator then is large (c ≤ 1), then the bound-
ary equilibrium is global stability. For the positive
constant equilibrium, we found that the time delay
due to the gestation plays an important role. It was
shown that the asymptotic stability or instability of
positive equilibrium depends upon the magnitude of
delay. We also found that delay can drive a stable
constant equilibrium to an unstable one, i.e. there
is a critical value τ∗ such that for τ < τ∗, the pos-
itive equilibrium is stable and it reduces as delay
passes through this critical magnitude from lower
to higher values. Also, there exists a sequence of
critical values of delay such that spatially homo-
geneous and inhomogeneous periodic solutions can
arise through Hopf bifurcations.

We have derived the analytical expressions
that determine the properties of bifurcating peri-
odic solutions by using the normal form theory.
These analytical results are supported with numer-
ical examples. Our analytical results are based on
the basic assumption that the positive constant
equilibrium of the system without delay is stable.
But numerical examples, also extend the analytical
results. If the positive constant equilibrium of the
system without delay is unstable, numerical results
show that delay has an important effect on the spa-
tiotemporal dynamics of the system. The hetero-
clinic orbit connecting the spatially inhomogeneous
steady state to spatially homogeneous periodic solu-
tion has been found in the numerical simulations.
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