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This paper deals with scalar delay differential equations with dominant delayed
terms. Sufficient conditions are obtained for uniform stability, uniformly asymptotic
stability and globally asymptotic stability of the equations. The criteria extend and
improve some existing ones. The main results are applied to two physiological models.
Some counterexamples are also given to show the invalidity of some existing results.

1. Introduction

For 7 > 0, let C" be the space of continuous functions on [—7,0]. Define the norm
||l in C™ by

gl = sup |o(s)]

s€[—7,0]

for ¢ € C7. For H > 0, let
CT(H) = {p € C7 : |l¢ll < HY}.
Consider the scalar delay differential equation
2'(t) = —dx(t) + F(t,z), t=0, (1.1)

where A € R, F : [0,00) x C"(H) — R is continuous, F(¢,0) = 0 and z'(¢) denotes
the left-hand derivative of z(t). Our main concern is the uniform stability of the
trivial solution of (1.1).

Equation (1.1) includes many model equations (directly or after some transfor-
mation) arising from various fields, among which are the model for the survival of
red blood cells in an animal,

N'(t) = =AN(t) + pe ™NE=T) >0, (1.2)
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which has been studied in [3,8,9,11], the models of hematopoiesis (blood cell pro-
duction) proposed by Mackey and Glass [10],

N'(t)=—rN(t) + #ﬁzt—ﬂ, t =0, (1.3)
N'(t)=—rN(t) + %, t=>0, (1.4)

the model of Nicholson’s blowflies proposed by Gurney et al. [5],
N'(t) = —=6N(t) + pN(t — 7)e NE ¢ >0, (1.5)
and the model of hematopoiesis proposed by Gopalsamy and Weng [4]

k(s)

— % s, t>0. 1.6
T+ N (t—s) 0 (1.6)

N'(t) = —rN(t) —|—a/
0
Note that (1.2)—(1.5) are all autonomous, and thus the local stability of an equi-
librium for each of these equations is determined by the stability of its linearization
of the equation at the equilibrium, which is of the form

2(t)=—-Xa(t) —az(t—71), t=0. (1.7)

Equation (1.2) has been studied from early times in the development of stability
theory of delay differential equations. From the theory of characteristic equations it
is known (see, for example, [6,7]) that the zero solution of (1.2) is uniformly stable
if and only if A and « satisfy one of the following conditions:

(C1) A= al;
(Co) A=asinn,0< ar < (n+ %w)/cosn, —%w <n< %w;
(C3) - A=a,0<ar < 1.

Note that (C2) implies that o > |A|, which means the delayed term dominates the
instantaneous term.

When it comes to an non-autonomous equation, the theory of characteristic
equations is not applicable. In such a case, Lyapunov’s method is most frequently
employed to attack the stability problem. However, constructing a working Lya-
punov function/functional is never an easy job, and the resulting conditions on a
given equation for its stability heavily depend on the skills (and luck) an author
has in constructing the Lyapunov function/functional.

In the case A = 0 in (1.1), Yorke [17] developed a method, which is different from
Lyapunov’s, to show that if

(H1) there exists a constant o > 0 such that
—aM(¢) < F(t, ¢) < aM(=¢) fort>0, ¢cCT(H),
where M (¢) = max{0,sup,¢(_, o ¢(s)}; and

(Hg) T <

Nl

)
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then the zero solution of the equation
2'(t) = F(t,z;), t=>0, (1.8)

is uniformly stable. For related results, see [1,2,6,12]. Later, Yoneyama [14] and
Yoneyama and Sugie [16] extended (H;) and (Hg) to more general conditions:

(A1) there exists a continuous function a : [0,00) — [0, 00) such that
—a(t)M(¢) < F(t, ¢) < a(t)M(=¢) fort >0, ¢ CT(H),
where M (¢) is the same as in (H;); and

t
(o) [ al)as<d iz
t—7

In a recent paper, Yu [18] made an attempt to extend Yoneyama’s result to (1.1)
with A > 0, and showed that if A > 0 and (A;) holds, and

¢
/ a(s)er ™ ds < 1+ %ef)‘T, t>r, (1.9)

t—1

then the zero solution of (1.1) is uniformly stable.

This paper is a continuation of the aforementioned work. In § 2, we will improve

(1.9) to
2

t
1 A
/ a(s)e?e ™ ds <1+ 3 (1 + ;)e”, t>, (1.10)
t—1

where
a(t) < a forallt >0, (1.11)

and « is allowed to be 0co. Section 3 is dedicated to the case A < 0, and there we
will establish some convenient criteria for uniform stability of the trivial solution
of (1.1) in this case. In the last section, we will give two counterexamples to some
of the main theorems in [15], which deals with the stability of the zero solution of
an equation related to, but more general than, equation (1.1).

2. Case A >0

LEMMA 2.1. Assume that (A1) holds and X > 0. For some t1 = 0, let x(t) be a
solution (1.1) on [t1 — 27,t1] such that |z(t)| > 0 for all t € (t1 — 7,t1]. Then

:L’(tl)l’l(tl) < 0.

Proof. We may assume, without loss of generality, that 2(t) > 0 for allt € (t;—7,1].
Then, by (1.1) and (A1), we have

m(tl)m'(tl) = —>\£L'2(t1) + m(tl)F(tl, :Etl)
< =22 (ty) + a(t)x(t;) max {0, sup (—m(s))}
< =22 (ty) < 0.

The proof is complete. O
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LEMMA 2.2. Assume that (1.11) and (A1) hold, 0 < A < «, and that

¢
/ a(s)e*s ™ ds < D

t—1
and
D301 -)a e

=T OJae S

Let x(t) be a solution (1.1) on [t; — 27, T for some T >t; > 0 such that
2(t1) =0 and x(t) >0 forallte (t1,T].
Then
lz(t)] <6 sup |x(s)| for allt € (t1,T].
SE[t1—27,t1]

Proof. We may assume, without loss of generality that D > 1. Let

r= sup |z(s)l.
SE[t1—27,t1]

In view of (2.3), it suffices to show that, for each ¢ > 0,
xz(t) < O(r+e) forallte (t1,T).
Suppose that there exist € > 0 and t3 € (¢, 7] such that
z(ts) =0(r+¢€) and z(t) <O(r+e) forallte (t1,t3).

Then, from (1.1) (1.11), (A;) and (2.6), we have

(2.5)

(2.6)

0 < 2'(t3) = —Az(ts) + F(ts, x,) < —A0(r + €) + amax {0, sup (—ax(ts + s))}

s€[—7,0]
It follows that t3 < t; + 7 and there exists to € [t3 — 7, 1) such that
A
x(ta) = —59(7" +e).

From (1.1), (A7) and (2.6), we have

(z(t)er) = MF(t, x,) < ra(t)e, t1 — 7 <t<ty,
and

(z(t)er) = ME(t,x,) < (r + e)a(t)eM, t; <t < ts.
For t € [t1,t3] and s € [—7,t1 — t], integrating (2.8) from ¢ + s to ¢,

t1 t1

a(u)er ™t qu < re)‘T/ a(u)e* = du,

t—T1

—z(t+s) <r/

t+s
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Substituting this into (1.1) and using (A1) and (2.3), we have

(z(t)eM) = eMa(t) max {0, e[fu]i) 7t](—x(t + s))}

t1
< re)‘Ta(t)/ a(s)e?ds, t <t <ty (2.10)

t—7

There are now two possible cases to consider.

t3
CaskE 1. / a(s)er* ) ds < (1 — Ma)e .
¢
In this c:;se, by (2.1) and (2.10),

ts t1
z(t3) < re’\T/ a(t)e’\(t*t”/ a(s)es ™) dsdt

t1 t—T1

t3 t t
< re)‘T/ a(t)ert=te) (/ a(s)er*) ds — / a(s)ers7t2) ds> dt
t1 t—T t1

t3 1 t3 2
< re?” [D/ a(s)erst) ds — = (/ a(s)e st ds> }
t1 2 t1

t3

CASE 2. / a(s)e**t) ds > (1 — M a)e ™.
t1

In this case, there exists n € (¢, t3) such that

t3 )\
/ a(s)eMt) ds = (1 - —>e)‘7.
- a

t1 )\
/ a(s)ers7t) ds < e,
a

t2

If

then, by (2.1), (2.8), (2.9) and (2.10),

t1 n
x(ts) < x(ty)eMt27t) 4 r/ a(s)er7t) ds + (r + e)/ a(s)er57t) ds

to t1

t3 t1
+re)‘7/ a(t)e)‘(t*“)/ a(s)e?s™) dsdt
n t—71
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A "
<(r+e)|—=0e + a(s)er57t) ds
« ¢

t3 n
+ (1 - e)‘T/ a(s)ers—t) ds> / a(s)er57) ds
U] t1

t3 n
+e)‘7/ a(t)e’\(t’“)/ a(s)ers=t dsdt}
t—1

t1
< (7”+6){——9€)\T+/ a A(s ts)ds

t2

t3 n
(1 -t / a(s)ers™ t3)ds>/ a(s)er57) ds
n t1
t3 1 t3 2
e [D/ a(s)eMsTt) ds — = (/ a(s)erst) ds> } }
7 2\/y

)\ t3 tl
< (7”+6){——9€ AT )\T/ a )\(3 t3) ds/ a(s)e)\(sits) ds
n
t3

to

(1—e” / a(s)e ’\(St3)ds> (D— / ’ a(s)e)‘(St3)ds>
AT (R]]

<(r+e) [——Oe)‘T +D ( > a(s)er57) ds

t3 2
e (/ a(s)ers7t) ds> }
n

=(r+e) [D - %(1 - Aje”} - %ef’\Tiﬂ(tB)'

+

o=

o

It follows that x(t3) < 6(r + €).

If

t1 )\

/ a(s)ers7t) ds > ZemT,
to «

then
t3 )\
/ a(s)er?Tt) ds < D — ST,
t1 «

Therefore, by (2.1), (2.9) and (2.10),

n t3 t1
:E(t;;) < (7”—|—6)/ a(s ) A(s—t3) ds—i—re / a(t )\(t t3)/ a(s)e)\(sft) dsdt
n _

t1 t—T

n t3 t1
< (r+e) [/ a(s)er7) ds 4 e / a(t)ert=te) / a(s)e*s™) dsdt
t1 n —

t—7
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t3 n
<(r+e) [(1 — eAT/ a(s)erst2) ds> / a(s)er5t) ds
n t1
t3 n
+e)\T/ a(t)e)\(tita)\/ a(s)eA(Sft) dsdt:|
t—1
t3 n
<(r+e) {(1 —e / a(s)er t3)ds>/ a(s)er57) ds
n t1
t3 1 t3 2
A-r [D a( ) A(s—t3) ds — > (/ a(s)eA(Sftg) ds> } }
n
ts
<(7"+6 {(1—6 / af )‘(5 t3)ds>
n
A ta
X (D — e —/ a(s)e A(Sts)ds>
«
ts t3 2
+eAT[D/ a(s)e A(s— ts)ds__(/ af )\(s t3)ds>:|}
n n

A A\ [
<(r+e) [—Ee)‘T +D - (1 = E) / a(s)er57t) ds
n

t3 2
+ %e” (/ a(s)ers7t) ds> }
n
1 >\2 —A\T
:(r—i-e)[D—E(l—i-;)e }
<O(r+e).
Cases 1 and 2 imply that we always have z(t3) < 6(r + €), which contradicts (2.6).
Thus (2.4) is true and the proof is complete. O

In a similar way, we can show the following lemma.

LEMMA 2.3. Assume that (1.11), (A1), (2.1) and (2.2) hold, 0 < X\ < «, and let
x(t) be a solution (1.1) on [t1 — 27,T) for some T > t; > 0 such that

z(t1) =0 and x(t) <0 forallte (t1,T]. (2.11)
Then (2.4) holds.
From lemmas 2.2 and 2.3, we immediately have the following result.

COROLLARY 2.4. Assume that (1.11), (A1), (2.1) and (2.2) hold, 0 < XA < «, and
let x(t) be a solution (1.1) on [ty — 27,T) for some T > t1 = 0 such that x(t1) = 0.
Then (2.4) holds.

We now state a theorem on the uniform stability of the zero solution of (1.1).
THEOREM 2.5. Assume that (1.11) and (A1) hold, X > 0, and that

k A(s—t) 1 >\2 —A\T
a(s)e ds < 1—1—5 1—1—5 e Tt (2.12)
t—T1

Then the zero solution of (1.1) is uniformly stable.
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Proof. Let € € (0,H) be given, and let § = feexp(—2 — 2¢*7). For ¢y > 0 and

¢ € C7(6), we shall prove that

lz(t)] = |z(t;to, )| < e fort > tp.

(2.13)

If A > «, then (1.9) holds and the conclusion follows from Yu [18, theorem 1]. In the
sequel, we only consider the case where 0 < A < a. Let D =1+ £(14 A\?/a?)e .

Then, by (2.2),
D — %(1 — M a)2e ™

= e ™

=1

From (1.1) and (A4),
w(t)2'(6) = —Ma?(t) + (O F (t,20) < alt) w2, ¢ > to,
which yields

t
ol < ol +2 [ ats)llds, 1> to
to

In view of Gronwall’s inequality, we have

t
e < llolen( [ atsas). o>
to
Thus, for tg <t < tg + 27, we have
|£L’(t)| < max{”xtoJrT”a ||5L't0+27—||}

to+27
<ol exp( [ ds)

< Sexp(2 + 2eM7)
< €.

Next we prove that
lz(t)| <€ fort>tg+ 2T

(2.14)

(2.15)

Assume that (2.15) is not true. Then there must be some T > ¢y + 27 such that
|z(T)| = € and |z(t)] < € for tg <t < T. Then z(T)z'(T) > 0. Thus, by lemma 2.1,
there exists ¢ty € [T — 7,T) such that x(¢;) = 0. Then it follows from corollary 2.4

that

lx(®)| <0 sup |z(s)| <e forte (t1,T],
SE[t1—27,t1)

which contradicts |z(T")| = e. The proof is now complete.

THEOREM 2.6. Assume that (1.11) and (A1) hold, X > 0, and that

2

t A(s—1) 1 A2\ s
a(s)e ds<D<1+= 1+¥ e T, t>T
t—r

Then the zero solution of (1.1) is uniformly asymptotically stable.

(2.16)
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Proof. In view of theorem 2.5, the zero solution of (1.1) is uniformly stable and so,
for any tg = 0, there exists § > 0, which is independent of ¢y, such that ¢ € C7(J)
implies

()| = |2(t;to, )| < 5H, ¢ = to. (2.17)
Next we prove that
tlim z(t) = 0. (2.18)

If A > a, then the inequality in (1.9) becomes strict and the conclusion follows
from [18, theorem 2]. In the sequel, we only consider the case where 0 < A < a. Set

D — %(1 — )\/a)Qe*AT

T aye

Then 6 < 1. If z(t) is non-oscillatory, then, by (1.1) and (A;), we eventually have

d
£ <
dt|x(t)| + Alz(t)] <0,

which implies that (2.18) holds. If z(¢) is oscillatory. Set v = limsup,_, . |z(t)|.
Then 0 < v < %H It suffices to show that v = 0. For any 0 < € < %H, there exists
T > tg + 27 such that

lzt—7)| <v+e fort>T. (2.19)

Let {l,} be an increasing sequence such that I, — oo as n — oo, I, > T,
z(lp)z(ln) = 0 and limy,—,o |2(l,)| = v. By lemma 2.1, there exists &, € [I, — 7, 1,)
such that z(&,) = 0. In view of corollary 2.4, we have

(1)) <6  sup  |z(s)|<B(v+e), n=12....
S€E[€n—278n]

Letting n — oo and € — 0, we have v < fv. Note that 6§ < 1. It follows that v = 0.
The proof is complete. O

REMARK 2.7. From the proof of theorem 2.6, we can see (by replacing %H with
M in the proof, where |z(t)] < M for t > tp) that, under the conditions of this
theorem, any bounded solution z(t) of (1.1) actually converges to 0 as t — oo.

REMARK 2.8. When equation (1.1) is in the following simpler form,
2'(t) = —dx(t) —a(t)f(z(t — 7)), t=0, (2.20)
it is easily seen that (A1) is implied by
zf(z) >0 and |[f(z)] <|z| for — My <z < Ms, (2.21)
where M7 and M5 can be oo.

To conclude this section, we apply the main results in this section to (1.2)
and (1.3) to obtain globally asymptotic stability of the positive equilibrium. Due to
the physiological or biological backgrounds of the model equations (1.2) and (1.3),
we assume that the initial conditions for (1.2) and (1.3) are of the type

N(s)=¢(s), se€[-7,0, ¢0)>0, ¢eC(-70]]0,00)). (2.22)
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THEOREM 2.9. Assume that \,p,r,7 >0 and

p ar 1 AN
S )<1+§(1+r2p2>e AT (2.23)

Then every solution of (1.2) and (2.22) tends to the positive equilibrium N* of (1.2)
ast — o0.

Proof. Tt is easy to show that the solution N (t) of (1.2) and (2.22) exists on [0, 00)
and satisfies 0 < N(t) < M for some M > 0 for all ¢ > 0. Let z(t) = N(t) — N*.
Then —N* < z(t) < M — N* and (1.2) is transformed to (2.20), with a(t) = rp and

flz) = ripAN*(l — ),

By a simple calculation, we can verify that
zf(x) >0 and |[f(x)] <|z] for —N* <z < 0.
The conclusion follows from remarks 2.7 and 2.8, and the proof is complete. O
For (1.3), we have the following result.

THEOREM 2.10. Assume that 3,0,r,7 > 0,n > 1 and

ﬂ(n + 1)(n+1)/n(n _ 1)(n71)/n(1 _ efrr)
16(rnd)?
32
Then every solution N (t) of (1.3) and (2.22) tends to the positive equilibrium N*

of (1.3) as t — oo.

4rnf

1
<l+g|l+ (n+41)72+D/n(y —1)72=D/n o= (2.94)

Proof. Tt is easily seen that a solution N(t) of (1.3) and (2.22) exists on [0,00)
and satisfies 0 < N(t) < M for some constant M > 0, and all ¢ > 0. Let
z(t) = N(t) — N*, and

_ 4nf

f(z) 7(n 4+ 1)~ D/ (g — )=/ N 50"

S0+ (x+ N
Then z(t) satisfies —N* < z(t) < M — N* and the following equation:

2 (t) = —rz(t) — iﬂ(n + 1)/ - YDt — 7)), >0, (2.25)

4nb
Note that
rey 4n2g" ! \n—1 —(n4D)/n; _ 1\—(n—1)/n
and
() = n20"(n —1)0" — (n+1)(z + N*)"](z + N*)" 2

(0" + (z + N*)"]3(n + 1)(ntD/n(p — 1)(n=1/n
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Since n > 1, f(z) has a unique inflection point at xo = ((n —1)/(n + 1))}/"0 — N*.
It follows that

zf(z) >0 and |f(x)| <|z] for — N* <z <M—N~*.

Hence the conclusion follows from remarks 2.7 and 2.8, and the proof is complete.

O

REMARK 2.11. Kuang [9] also considered the globally asymptotic stability of (1.3)
and obtained (see [9, corollary 8.2, p. 156]) the following criterion:

lka

m(n+1)<"+1>/”(n— D=/ <, (2.26)
Noting that
1 . e*TT
—_— <
T

we see that (2.24) improves (2.26).

REMARK 2.12. It is interesting to compare, in the case A < «, condition (2.12)
in theorem 2.5 with condition (Cs) for the linear autonomous equation (1.7) (and
hence for the local stability of the corresponding nonlinear equation). In this case,
a(t) = a and ¢ := A/ < 1. Then (2.12) reduces to

1 o ar
“(1-e MY <1+ L1+ e, (2.27)
which is equivalent to
3
ar < L 2er e
¢ 2(1—-¢)
1 1 3
= Z[ln(l—i—g(c—l—c ) —In(1 —¢)]
1
= =[G+ ) = 3((c+ )+ 5((c+ 7)) =)
1.2, 1.3 1.4
+(etge”+3¢7+ ¢+
:%—F%c—k%cQ—écB—k---. (2.28)

On the other hand, condition (C3) can be rewritten as
ar < (arcsinc + £7)(1 — )12
=@Grdct+gl+ )1+ + 30+
=irtc+in®+2F+Enct+--- . (2.29)
When ¢ = 0 (corresponding to A = 0), equation (2.28) reduces to the well-known

criterion at < % for the globally asymptotic stability of the positive equilibrium of
the delayed logistic equation

2'(t) = az(t)[1 —z(t — 7)), (2.30)

while (2.29) reduces to at < %w, which is exactly the necessary and sufficient con-
dition for the local stability of the positive equilibrium of (2.30). We point out that
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the range of ar for global stability of (2.30) can be further extended beyond %, say,
at least t;) 3L (see, for example, [13] or [9, p. 125]). Note that 23X = 1.541... is very

close to 5m =1.571.... Whether or not the range can be extended exactly to %w

has been a long-lasting open problem.
3. The case A <0

In this section, we consider the case A < 0. We further assume that
A <a(t) <a forallt>0 (3.1)

and
A<0 and —-AT <1 (3.2)

See [15] for a justification for conditions (3.1) and (3.2). Moreover, as a replacement
of (A1), we need the following condition.

(A7) There exists a continuous function a : [0,00) — [0, c0) such that

—a(t) sup o(s) < F(t,¢0) <a(t) sup (—o¢(s) fort>0, ¢e€C"(H).
s€[—T,0] s€[—7,0]

For A < 0 and o > 0, equation (1.2) is an example of (1.1), and if either —A > «
or —A7 > 1, then the zero solution of (1.1) is unstable. For a continuous function
w : [0,00) — R, we let w, (¢t) = max{0,w(t)} and w_(t) = max{0, —w(t)}. The
first three lemmas are taken from [15, lemmas 4.1-4.3].

LEMMA 3.1. Assume that (A7), (3.1) and (3.2) hold. For some t1 = 0 and
T >t +7, let z(t) be a solution of (1.1) on [t1,T] such that x(t) > 0 for all
t € (t1,T]. Then

N

t t1+7
—AT !
/t1+'r z!, (s)ds < T /t1 2! (s)ds for allte [ty +7,T). (3.3)
LEMMA 3.2. Assume that (A7), (3.1) and (3.2) hold. For some t1 = 0 and
T >t +7, let z(t) be a solution of (1.1) on [t1,T] such that x(t) < 0 for all
t € (t1,T]. Then

N

t t1+71
Y 1
/t1+r 2 (s)ds < T ;\—T /t1 2" (s)ds forallt € [ty +7,T). (3.4)

LEMMA 3.3. Assume that (A7), (3.1) and (3.2) hold. For some t1 > 0 and T > tq,
let z(t) be a solution of (1.1) on [t1—27,T) such that |z(t)| > 0 for allt € (t1—7,T].
Then

—Ar?
14+ A1

lz(t)] < [1 + (a — )\)} sup  |xz(s)| for allt € [t1,T]. (3.5)

SE[t1—27,t1]

As replacements of [15, lemmas 4.4, 4.5], which may not be correct (see our
counterexamples and discussion in §4), we can establish the following lemmas.
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LEMMA 3.4. Assume that (A7), (3.1) and (3.2) hold. For some t; = 0 and
T >t +71, let x(t) be a solution of (1.1) on [t1 — 27,T] such that x(t1) = 0 and
z(t) > 0 for all t € (t1,T], and let 7= sup,ecpy, _or4,) [2(s)]. Suppose that there
exists 7 = 0 such that

_i/\ [(e)‘T — 14 A7)+ _%(e” 1 AT)} <1—n+Ar (3.6)
or
A A
%(ef)\r_l) >1 and _i)\(e)\r_’_a_—’;\ lna+>\ —2> <1—n+A7r (3.7)
Then .
x(t) < / ' (s)ds < (1 —n+Ar)r for allt € [ty,t + 7). (3.8)
t1

Proof. Suppose that there exists t4 € (t1,t1 + 7] such that z(t4) > (1 — n+ A7)r.
Then we can choose t3 < t4 so that z(t) < (1 —n+ Ar)r for all t € (¢1,t3) and

z(ts) = (1 —n+ Ar)r. (3.9)

By (1.1), (3.1) and (AY),

(x(t)eM) = ME(t,x) < are, ) —71 <t <t (3.10)
For t € [t1,t3], first integrating (3.10) from ¢; to ¢,

#(t) < Sp(e X ),
and then integrating (3.10) from ¢ + s to ¢; with s € [—7,0],
—z(t +5) < f‘—gu — e At—t=))y,

Substituting these into (1.1) and using (3.1) and (A7}), we have

2
2!, (1) < ar(e” 70 — 1) —|—min{on"7 Oi—;:(l — e)‘(ttlT))}, ty <t <ts (3.11)

If (3.6) holds, it then follows from t3 < ¢1 + 7 that
t
x(t) </ z! (s)ds
t1

ts a’r
< / [ar(e)‘(Stl) _ 1) + _)\(1 _ e)\(st1-r)):| ds
t1 -

ti+71 Oz27"
< / [ar(e)‘(Stl) —-1)+ —)\(1 — e)‘(StlT))} ds
t1

— f—g [(e)‘T —14+ A7)+ %(e)‘T —1- )\T):|

<A —=n+Ar)r
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If (3.7) holds, then choose ty € [t1,t1 + 7) so that

e)\(tlJrTftz) _ o+ >\
(0%

Hence, by (3.11), we have
t
x(t) </ z! (s)ds
t1

ti+7 t2 o’r ti+7
< ar/ (e7Ae7t) 1) ds —|—/ ards + — (1 —e M=ty g5

t1 ty t2

ar [ _y a+ A !
=— T 1 -2
—A(e R >

<A —=n+Ar)r

In either case, we have a contradiction to (3.9) at ¢t = t3, and at the same we have

t
/tmlJr(S)dS< (L=n+Ar)r forallt € [ts,t1 + 7).
1

The proof is complete. O

LEMMA 3.5. Assume that (A7), (3.1) and (3.2) hold. For some t1 = 0 and
T >t + 71, let x(t) be a solution of (1.1) on [t; — 27,T] such that x(t;) = 0 and
z(t) < 0 for all t € (t1,T], and let 7= Sup|yeq, _or4,) [2(5)]. Suppose that there
exists 1 2 0 such that (3.6) or (3.7) holds. Then

t
|x(t)|</ 2 (8)ds < (1—=n+ Ar)r forallt€ [ty +7,T).
t1

Proof. The proof is similar to that of lemma 3.4, and is omitted here. O
With [15, lemmas 4.4, 4.5] being replaced by the above lemmas 3.4, 3.5, respec-
tively, we now can easily follow the same line in the proofs of [15, theorems 4.1,

4.2], but using lemmas 3.1-3.5 now, to prove the following theorem on the uniform
stability of the zero solution of (1.1).

THEOREM 3.6. Assume that (A7), (3.1) and (3.2) hold, and that

o

= [(e)‘T — 14 A7)+ _%(e” —1- AT)} <14 A7 (3.12)

or

A « A o+ A «
— —_— — < . .

-
Then the zero solution of (1.1) is uniformly stable.

REMARK 3.7. When X\ — 0, equation (3.13) deduces to 1 < ar < 2.
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THEOREM 3.8. Assume that (A7), (3.1) and (3.2) hold, and that

/(a(s)—i—)\)ds:oo (3.14)
0
and
& —A\T & AT
= (e —1+)\T)+_—>\(e —1=A7)| <147 (3.15)
or
a+ A, a [ o oat A o
Y (e 1)>1 and _)\(e + Y lna+>\ 2><1+>\T. (3.16)

Then the zero solution of (1.1) is uniformly asymptotically stable.

Proof. In view of theorem 3.6, the zero solution of (1.1) is uniformly stable and so,
for any tg = 0, there exists § > 0, which is independent of ¢y, such that ¢ € C7(J)
implies

z(t)] = [x(t;to, @) < $H, = to. (3.17)
Next we prove that
tlim z(t) = 0. (3.18)

First, assume that z(t) is eventually positive solution. Then there exists T3 > 0
such that z(t) > 0 for all ¢ > T;. By lemma 3.1,

/TOO z! (s)ds < 0. (3.19)
From (1.1), (A}) and (3.1), we have
2 (t) = =Xx(t) + F(t, zy)

—Az(t) + a(t) sup (—z(t+s))
s€[—7,0]

= —-Xz(t) —a(t) inf z(t+s)
s€[—7,0]

t
< —)\/ z! (s)ds — [a(t) + A] i[nf " x(t + 8).
t—1 se|—T,

Integrating the above from 77 + 7 to T' > T} + 47, we obtain

T
2(T)—z(Ty+71) < / / s)dsdt — / [a(t) + A] inf x(t+s)dt
Tyt Jt—7 Ti+7 s€[—7,0]

)\T/T z! (s )ds_/7“+r[a(t)+>\] inf x(t+s)dt.

s€[—7,0]
Suppose that liminf; .o 2(¢) > 0. Then it follows from (3.14) and (3.19) that
z(T) — —oc0 as T — oo,
which contradicts the fact that «(¢) > 0 for all ¢ > T7. Thus we have
liminf z(t) = 0. (3.20)

t—o0
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Suppose that limsup, . «(t) > 0. Then, by (3.20), there exist ¢ > 0 and two
sequences {s,} and {t,} tending to oo such that s, < t, < Sp41, T(sn) = 3€,
1e<a(t) <eforallt € (sy,t,) and z(t,) = e. Hence, by (3.19),

(V] O

tn
e =x(tn) —z(sp) < / z/ (s)ds — 0 asn — oo,

n

which yields a contradiction. Thus (3.18) holds. In a similar way, we can show
that (3.18) holds for any eventually negative solution z(¢) of (1.1). Finally, we
show (3.18) for any oscillatory solution z(t) of (1.1). In view of (3.15) or (3.16),
there exists 7 > 0 such that (3.6) or (3.7) holds. Choose a sequence {t,} tending
to oo such that z(t,) = 0 and x(t) # 0 for ¢ # t,. Let 7, = sup,epy, —or¢,1 [2(s)[- In
order to prove (3.18), it suffices to show that, for each n,

lz(t)] < (1 —n)r, forallt € [t,,tni1].

We may assume that z(t) > 0 for all ¢ € (¢, tn41), since the proof in the other case
is similar. If ¢,41 < ¢, + 7, then, by lemma 3.4,

z) <L =n+A)rp, < (L —n)r, forallt € [ty, thi1].

If t,41 > t, + 7, then, by lemma 3.4,

t
z(t) < /t :E'Jr(s) ds <(1—n+ Ar)r, forallt € [t,,t, + 7],

and, by lemma 3.1,

x(t) < x(ty +7) —|—/ z! (s)ds

tn+T1
— AT
<(1=n4 M)y + ——(1 + A7),
(1 =0+ AT + =2 (1 A
= (1 - 77)7"n
for all t € (¢, tn41). Thus the proof is complete. O

4. Counterexamples

In this last section, we will give two counterexamples to show that some of the main
theorems in [15] are not true. For convenience, we first state [15, theorem 3.1].

THEOREM 4.1 (cf. theorem 3.1 of [15]). Suppose that X > 0 and there exist o > 0
such that (Hy) holds and that A > « or

a_2{1_a;)\[1+( 2Aa)2€ﬂ”2}<1' (4.1)

a—A
Then the zero solution of (1.1) is uniformly stable.
EXAMPLE 4.2. Consider the equation

2’ (t) = —esin(f5m)z(t) —ca(t —7), t=0, (4.2)
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where ¢ > 0, 7 > 0. In view of (Cs), the zero solution of (4.2) is uniformly stable if
and only if

1 1 1
<77+§7T_E7r+§7r

= = 1.8972.
cosn cos(5m)

CT

But, when 1.8972 < ¢7 < 2.1870, by a simple calculation, we see that

2 _ 1/2
a_{l_a )\[1+ 2\ e)‘T} }
A2 a (a0 — )2

— {1 - 0|1+ L‘”))) o) ”2}

Thus [15, theorem 3.1] implies that the zero solution of (4.2) is uniformly stable.
This is a contradiction, which shows that [15, theorem 3.1] is not true.

Let us take a further look into the source that leads to the invalidity of [15,
theorem 3.1]. In the proof of [15, theorem 3.1], the following key lemma (cf. [15,
lemma 2.1]) is employed.

LEMMA 4.3. Let x(t) be a continuously differentiable function on [Ty, Ts] such that
z(t1) = 0 for some t1 € [T1,T5] and

d
E|x(t)| <Az +¢ for allt € [Ty, T, (4.3)

where A # 0 and ¢ > 0. Then
lz(t)] < %(eklf*fll ~1) forallt € [T, Ty]. (4.4)
However, the above lemma is false. A counterexample is as follows.

EXAMPLE 4.4. Consider the function

E(e)\(tfh)_l), t>t,
A

z(t) =<
—(1—eMt=t) <y,
A1

where Ay > A > 0. It is easy to verify that the above function x(¢) satisfies (4.3)

for all t € [t; — 1,t1 + 1]. But when t € [t1 — 1,14],

_ St CoAt—t]
(0] = (e 1> M),

which contradicts (4.4), and so lemma 4.3 is false.

In addition to [15, theorem 3.1], the proofs of lemmas 4.4, 4.5 and theorems 3.2,
4.1, 4.2 in [15] also all make use of [15, lemma 2.1], and thus these lemmas and
theorems may not be correct as well. Actually, the above observation is one of the
motivations of this paper (the others are stated in §1).
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