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Abstract In this paper, we show that a delayed discrete Hopfield neural network of two nonidentical neurons

with no self-connections can demonstrate chaotic behavior in a region away from the origin. To this end, we

first transform the model, by a novel way, into an equivalent system which enjoys some nice properties. Then,

we identify a chaotic invariant set for this system and show that the system within this set is topologically

conjugate to the full shift map on two symbols. This confirms chaos in the sense of Devaney. Our main result is

complementary to the results in Kaslik and Balint (2008) and Huang and Zou (2005), where it was shown that

chaos may occur in neighborhoods of the origin for the same system. We also present some numeric simulations

to demonstrate our theoretical results.
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1 Introduction

Chaotic behaviors in neural networks have attracted more and more attentions due to its potential

applications to various practical problems. For example, when using neural networks as computational

methods to solve combinatorial optimization problems, chaotic behaviors for the network systems can

provide global searching ability, which may prevent the objective function from getting trapped at local

extrema [2]. Chaotic dynamics existing in real neurons and neural networks play an important role in

neural activities [4].

Among the most frequently used and studied neural networks is the continuous Hopfield neural network,

which was first considered in [5]. Its various discrete versions have also been intensively and extensively

studied in literature. In particular, for the following simple discrete version:{
x(n+ 1) = βx(n) + αf(y(n− k)),

y(n+ 1) = βy(n) + αf(x(n − k)),
(1.1)

where α > 0, β ∈ (0, 1) and the delay k � 1, Wu and Zhang [10] showed that under some conditions

on the activation function f(x), for every positive integer p with p|2k, System (1.1) has several distinct
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asymptotically stable p-periodic solutions in a region of the x-y plane away from the origin (0, 0). In a

recent work, Huang and Zou [6] further showed that under certain technical conditions on the nonlinear

function f(x), System (1.1) actually demonstrates Li-Yorke chaotic behavior1) in a neighborhood of

the origin.

Model (1.1) is for a network consisting of two identical neurons with a uniform connection between

them. In a more recent work, Kaslik and Balint [7] considered the following generalization of (1.1):{
x(n+ 1) = β1x(n) + α12f2(y(n− k2)),

y(n+ 1) = β2y(n) + α21f1(x(n− k1)),
(1.2)

where n ∈ N, βi ∈ (0, 1) for i = 1, 2, and α12 and α21 are non-zero constants representing connection

strengths, and the delays ki � 0, i = 1, 2, are fixed integers. The activation functions fi : R → R, i = 1, 2,

are continuously differentiable. In addition to the stability and bifurcation analysis by central manifold

theory, Kaslik and Balint [7] also showed that under some conditions, (1.2) may exhibit Li-Yorke chaos

in the vicinity of the origin as well, and generalize the results reported in [6].

Notice that the chaotic behaviors obtained in [6] and [7] all occur in neighborhoods of the origin

(0, 0) in the x-y plane. One naturally wonders if chaos is possible in other regions in the x-y plane.

This constitutes the purpose of this paper. Note that (1.2) allows distinct neurons and non-uniform

connections, and hence, gives us more parameters to play in order to generate chaos. Thus, in this paper,

we consider (1.2) and investigate the possibility of chaos for System (1.2) in regions away from the origin.

Our method is motivated by the idea of establishing the horseshoe structure in families of generalized

Henon-type maps in [8,9], which is also called anti-integrable limit approach for systems with generating

functions inspired by Aubry and Abramovici in [1].

The rest of this paper is organized as follows. In Section 2, we construct a map Φ(λ, ·) from l∞ to l∞;

and by applying the implicit function theorem in Banach spaces to this parameterized map, we obtain

a uniform result for a family of implicit functions. This result will be used in Section 3 to construct a

conjugacy map from the full shift at certain values of the parameter to solutions to (1.2). To achieve

this, we rewrite the model (1.2) as a system of difference equations by a novel way which enjoys some

nice properties that the rewritings in [6] and [7] do not have. In particular, we are able to obtain an

invariant set away from the origin for the transformed system, and show that on this invariant set the

map representing the transformed system is topologically conjugate to the full shift on the symbolic

dynamical system with two symbols. This conjugacy implies chaos2) for (1.2) restricted on an invariant

set in the sense of Devaney [3]. See Theorem 3.2. Our main results are complementary to the results on

chaos in discrete Hopfield neural networks obtained in [6,7]. At the end, we present a particular example

and its numeric simulations, which confirm the chaotic phenomena predicted by our theoretical results.

2 Preliminaries

To proceed, we need some preparations. The following implicit function theorem will be needed in

the sequel.

Lemma 2.1 (Implicit function theorem [11]). Let (Λ, d) be a metric space, Y and X be Banach spaces,

and U ⊂ Λ × Y be open and nonempty. Suppose that F : U → X is a continuous map and that there

exists a point (λ0, y0) ∈ U with the following conditions:

(i) F (λ0, y0) = 0;

(ii) DFy(λ, y) is continuous at (λ0, y0), where DFy(λ, y) is the Fréchet partial derivative of F (λ, y)

with respect to y;

(iii) DFy(λ0, y0) : Y → X is an invertible linear map.

Then there exist open balls Bδ0(y0) = {y ∈ Y : ‖y − y0‖ < δ0} and Br0(λ0) = {λ ∈ Λ : d(λ, λ0) < r0},
1) Let (X, d) be a metric space and g : X → X be continuous. g is called Li-Yorke chaos if there exists a uncountable set

S in X such that lim supn→∞ d(fn(x), fn(y)) > 0, ∀x, y ∈ S, x �= y and lim infn→∞ d(fn(x), fn(y)) = 0, ∀x, y ∈ S.
2) g is said to be Devaney chaos if g is topologically transitive and has density of periodic points.
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where δ0 > 0, r0 > 0, such that for any λ ∈ Br0(λ0), F (λ, y) = 0 has a unique continuous solution

y = h(λ) ∈ Bδ0(y0) with h(λ0) = y0.

Without loss of generality, let us assume k2 � k1. Letting α = α21 and α12 = Cα, (1.2) is rewritten as

{
x(n+ 1) = β1x(n) + αCf2(y(n− k2)),

y(n+ 1) = β2y(n) + αf1(x(n− k1)),
n ∈ Z. (2.1)

Note that C is non-zero since the connecting coefficients α12 and α21 are non-zero.

In what follows, we will need some assumptions on the activation functions f1 and f2:

(H1) fi : R → R is continuously differentiable for i = 1, 2; f2 has a simple zero point x̄, and f1 has two

distinct simple zero points x′, x′′ ∈ R, i.e., f1(x
′) = f1(x

′′) = f2(x̄) = 0 with f ′
1(x

′) �= 0, f ′
1(x

′′) �= 0 and

f ′
2(x̄) �= 0.

Now, we introduce some notations. Let l∞ be the usual space of bounded real sequences endowed with

the supreme norm. And let σ : l∞ → l∞ be the forward shift map defined by, for y = {yn} ∈ l∞,

(σy)n = yn+1, n ∈ Z. (2.2)

Obviously, σ is invertible with its inverse σ−1 given by

(σ−1y)n = yn−1, n ∈ Z.

Moreover, for any k ∈ Z,

(σky)n = yn+k, n ∈ Z.

Motivated by (2.1), for any λ ∈ R, we define Φ(λ, ·) : l∞ → l∞ by

{
Φ(λ,W )2n+1 = λ(−w2n+1 + β1w2n−1) + Cf2(w2(n−k2)),

Φ(λ,W )2n+2 = λ(−w2n+2 + β2w2n) + f1(w2(n−k1)−1),
∀W = (wn) ∈ l∞.

Then, W = {wn} ∈ l∞ such that (xn, yn) = (w2n+1, w2n)n∈Z is a solution to (2.1) if and only if W solves

Φ(1/α,W ) = 0.

Let

Γ = {W = (wn) ∈ l∞ | w2n = x̄, w2n+1 = x′ or x′′, n ∈ Z}, (2.3)

where x̄, x′ and x′′ are given by the condition (H1). Making use of Lemma 2.1, we can prove the following

lemma.

Lemma 2.2. Assume that (H1) holds. Then

(i) there are r0 > 0 and δ0 > 0 such that for every W̄ ∈ Γ and every λ ∈ Br0(0), there is a unique

W = W (λ) ∈ Bδ0(W̄ ) satisfying Φ(λ,W (λ)) = 0;

(ii) for every δ ∈ (0, δ0), there is r ∈ (0, r0) such that for every λ ∈ B̄r(0) = {λ : d(λ, 0) � r} and

every W̄ ∈ Γ, there is a unique W (λ) with W (λ) ∈ Bδ(W̄ ) and Φ(λ,W (λ)) = 0.

Proof. Firstly, for any W̄ ∈ Γ, we have Φ(0, W̄ ) = 0, verifying Lemma 2.1(i). Condition (ii) in

Lemma 2.1 is ensured by Assumption (H1). Finally, denote by DΦW (0, W̄ ) the Fréchet derivative of

Φ(0,W ) with respect to W at W̄ . Then, calculations show that

{
(DΦW (0, W̄ )W )2n+1 = Cf ′

2(w̄2(n−k2))w2(n−k2),

(DΦW (0, W̄ )W )2n+2 = f ′
1(w̄2(n−k1)−1)w2(n−k1)−1,

∀n ∈ Z.

By (H1), Cf ′
2(w̄2(n−k2)) = Cf ′

2(x̄) �= 0 and f ′
1(w̄2(n−k1)−1) = f ′

1(x
′) or f ′

1(x
′′) which also does not vanish.

This implies that DΦW (0, W̄ ) is an invertible linear operator, which verifies Lemma 2.1(iii). Therefore,

for every W̄ ∈ Γ, by Lemma 2.1, there are r = r(W̄ ) > 0 and δ = δ(W̄ ) > 0 such that for every λ ∈ Br(0),

there exists a unique W = W (λ) ∈ Bδ(W̄ ) satisfying Φ(λ,W (λ)) = 0.
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To prove (i), it suffices to show that the above r = r(W̄ ) > 0 and δ = δ(W̄ ) > 0 can be chosen to

be independent of W̄ . This can be achieved by showing that there exist r0 > 0 and δ0 > 0 which are

independent of W̄ ∈ Γ but can play the same role as r = r(W̄ ) > 0 and δ = δ(W̄ ) > 0 do for every

W̄ ∈ Γ. To this end, let

M =
1

min{|f ′
1(x

′)|, |f ′
1(x

′′)|, |Cf ′
2(x̄)|}

, b = max{β1, β2}.

Note that (H1) implies that 0<M<∞ and b > 0. Then, for any W̄ ∈Γ, one has ‖(DΦW (0, W̄ ))−1‖�M .

Since f ′
1(x) is continuous at x = x′ and x′′ and Cf ′

2(x) is continuous at x = x̄, there exists δ0 such that⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

|f ′
1(x)− f ′

1(x
′)| � 1

4M
, for x ∈ Bδ0(x

′),

|f ′
1(x)− f ′

1(x
′′)| � 1

4M
, for x ∈ Bδ0(x

′′),

|Cf ′
2(x)− Cf ′

2(x̄)| �
1

4M
, for x ∈ Bδ0(x̄).

(2.4)

Note that, for W̄ = (w̄n) ∈ Γ and any W = (wn) ∈ l∞, we have⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(DΦW (λ,W ) −DΦW (0, W̄ )Y )2n+1

= λ(−y2n+1 + β1y2n−1) + (Cf ′
2(w2(n−k2))− Cf ′

2(w̄2(n−k2)))y2(n−k2),

(DΦW (λ,W ) −DΦW (0, W̄ )Y )2n+2

= λ(−y2n+2 + β2y2n) + (f ′
1(w2(n−k1)−1)− f ′

1(w̄2(n−k1)−1))y2(n−k1)−1,

∀n ∈ Z. (2.5)

Choose r1 = 1
4M(1+b) . It then follows from (2.5) that for any W̄ ∈ Γ, W ∈ l∞ with ‖W − W̄‖ � δ0 and

|λ| � r1, we have

‖DΦW (λ,W )−DΦW (0, W̄ )‖ � |λ|(1 + b) +
1

4M
� 1

2M
.

We further choose r2 = δ0
2M(1+b) . Then, for |λ| � r2, by the definition of Φ(λ, ·), we have

‖Φ(λ, W̄ )‖ � |λ|(1 + b) � δ0
2M

.

Recall that in the proof of Lemma 2.1 (see [11]), the constants r0 and δ0 are decided so that ‖DΦW (λ,W )

− DΦW (0, W̄ )‖ and ‖Φ(λ, W̄ )‖ are bounded, when W is in the δ0-neighborhood of W̄ and λ is in the

r0-neighborhood of 0. Let r0 = min{r1, r2}. Then the constants r0 and δ0 obviously serve the purpose

stated in (i), and the proof of (i) is completed.

(ii) follows from (i) by letting

r = min

{
1

4M(1 + b)
,

δ

2M(1 + b)

}

for every δ < δ0. This completes the proof.

By Lemma 2.2, for sufficiently large α > 0, we can define a map Tα : Γ → l∞ by

Tα(W̄ ) = W

(
1

α

)
,

where W ( 1
α ) is the unique solution to Φ( 1

α ,W ) = 0 satisfying ‖W ( 1
α )− W̄ )‖ � δ. The following lemma

reveals a nice property of the map Tα.

Lemma 2.3. For sufficiently large α > 0, Tα commutes with the shift map σ2, i.e.,

σ2 ◦ Tα = Tα ◦ σ2.

Moreover, σ2(Γα) = Γα, where Γα = Tα(Γ).
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Proof. Note that if W is a solution to Φ(1/α,W ) = 0, so is σ2(W ). Then for any W̄ ∈ Γ, it follows

that σ2 ◦ Tα(W̄ ) = σ2(W ( 1
α )) is a solution to Φ(1/α,W ) = 0. On the other hand, ‖W ( 1

α )− W̄‖ � δ by

Lemma 2.2, which leads to ‖σ2(Tα(W̄ ) − σ2(W̄ )‖ = ‖σ2(W ( 1
α )) − σ2(W̄ )‖ = ‖W ( 1

α )− W̄‖ � δ. Hence,

by the uniqueness of W (λ) in Lemma 2.2, we have σ2(Tα(W̄ )) = Tα(σ
2(W̄ )). Note that σ2(Γ) = Γ, it

follows that σ2(Γα) = Γα.

Let η(n) = (η1(n), . . . , ηk1+k2+2(n)) where⎧⎪⎪⎨
⎪⎪⎩

η2j+1(n) = x(n− k1 + j), ∀ j = 0, 1, 2, . . . , k1,

η2j+2(n) = y(n− k2 + j), ∀ j = 0, 1, 2, . . . , k1,

η2k1+2+i(n) = y(n+ k1 − k2 + i), ∀ i = 1, 2, . . . , k2 − k1,

∀n ∈ Z. (2.6)

Then, (2.1) is further rewritten as the following discrete dynamical system on R
k1+k2+2:

η(n+ 1) = Fα(η(n)), n ∈ Z, (2.7)

where Fα : Rk2+k1+2 → R
k2+k1+2 is given by

Fα

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

η1(n)

η2(n)
...

η2k1+1(n)

η2k1+2(n)
...

ηk2+k1+1(n)

ηk2+k1+2(n)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

η3(n)

η4(n)
...

β1η2k1+1(n) + Cαf2(η2(n))

η2k1+3(n)
...

ηk2+k1+2(n)

βηk2+k1+2(n) + αf1(η1(n))

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

We remark that this transformation is different from the ones used in [6, 7]. One novelty of this array

is that it enables us to identify an invariant set for the transformed system (2.7), as will be seen in

Lemma 2.4 below. To describe this invariant set, we introduce a family of projections from l∞ onto

R
k1+k2+2, which plays the key in the proof of the main theorem.

For every k ∈ Z, define Πk : l∞ → R
k1+k2+2 as

Πk(W ) = η(k), ∀W ∈ l∞, (2.8)

where, for W = (wn) ∈ l∞, η(k) = (η1(k), . . . , ηk1+k2+2(k)) ∈ R
k1+k2+2 is defined by

η2j+1(k) = w2(k−k1)+2j−1, j = 0, 1, 2, . . . , k1,

η2j+2(k) = w2(k−k2)+2j , j = 0, 1, 2, . . . , k1,

η2k1+2+i(k) = w2(k−k2+k1+i), i = 1, 2, . . . , k2 − k1.

The following facts follow easily from the definitions and Lemma 2.3.

Lemma 2.4. Let Λα = Π(Γα), then Λα is invariant for Fα. Here Π = Π0.

Proof. For each η(0) ∈ Λα, there exists W ∈ Γα such that Π(W ) = η(0). Therefore,

Fα(η(0)) = η(1) = Π(σ2(W )) ∈ Π(σ2(Γα)) = Π(Γα) = Λα.

This proves Fα(Λα) ⊂ Λα.

On the other hand, By Lemma 2.3, we have σ2(Γα) = Γα. Thus there exists W ′ ∈ Γα such that

W = σ2(W ′). Since

η(0) = Π(W ) = Π(σ2(W ′)) = η′(1) = Fα(η
′(0)) = Fα(Π(W

′)) ∈ Fα(Λα),

Λα ⊂ Fα(Λα) is proved. Hence Fα(Λα) = Λα. The conclusion of the lemma holds on.
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3 Main results

In this section, we shall show that the dynamical system (Λα, Fα) is topological conjugate to a symbolic

dynamical system. To proceed, we define

Σk = {(· · · i−1i0i1 · · · ) | in ∈ {1, 2, . . . , k}, n ∈ Z},

which is a symbolic space with k symbols. Equipping it with the usual metric

d(s, t) = max{2−|n||tn �= sn, n ∈ Z}, t = (· · · t−1t0t1 · · · ), s = (· · · s−1s0s1 · · · ) ∈ Σk,

Σk becomes a compact metric space. The shift map σ defined in (2.2) can be viewed as a shift map

on Σk. Thus, (Σk, σ) defines a symbolic dynamical system with k symbols and has a particular name: a

Markov shift.

In Section 2, the set Γ defined in (2.3) is a subset of l∞. Now we treat it as a subset of Σ3. It is easy

to see that Γ is closed under the topology on Σ3 and σ2(Γ) ⊂ Γ. Moreover, we have

Lemma 3.1. σ2 restricted on Γ is topological conjugate to (Σ2, σ).

Proof. Define g : Γ → Σ2 by

g(W ) = (· · ·w−2n−1w−2n+1 · · ·w−1w1w3 · · ·w2n−1w2n+1 · · · ),

for

W = (· · ·w−2nw−2n+1w−2n+2 · · ·w−2w−1w0w1w2 · · ·w2n−2w2n−1w2n · · · ) ∈ Γ.

That is, g(W ) is obtained by deleting the even indexed elements in W , and hence it is easy to see that g

is homeomorphism and

g ◦ σ2 = σ ◦ g,
completing the proof.

We are now in the position to state and prove our main result.

Theorem 3.2. Assume that (H1) holds. Then there exists α0 > 0 such that for any α > α0, (Λα, Fα)

is topologically conjugate to the full shift map (Σ2, σ); and therefore, Fα restricted on Λα is chaotic in

the sense of Devaney.

Proof. By Lemma 3.1, it suffices to prove that there exists α0 > 0 such that for any α > α0, (Λα, Fα)

is topological conjugate to (Γ, σ2). Note here that Γ is a closed invariant set under σ2.

Let ‖ · ‖∗ denote the supreme norm on the Euclidean space R
k1+k2+2. That is,

‖η‖∗ = sup
1�i�k1+k2+2

|ηi|, for η = (η1, . . . , ηk1+k2+2) ∈ R
k1+k2+2.

Let Ω = Π(Γ), where Π = Π0 is defined in (2.8). Then Ω is a finite set in R
k1+k2+2 with cardinality

of Ω being 2k1+1. Denote it by

Ω = {ξ1, ξ2, . . . , ξ2k1+1}.
Let δ0 and r0 be given as in Lemma 2.2, and let δ ∈ (0, δ0) be small enough such that the family of closed

balls {Ai = B̄(ξi, δ)}2k1+1

i=1 in R
k1+k2+2 are piecewise disjoint.

For the given δ and any W̄ = (w̄n) ∈ Γ, by Lemma 2.2(ii), there exists a α0 = 1
r > 0 such that for

every α > α0 there exists a unique Tα(W̄ ) = W ( 1
α ) satisfying ‖W ( 1

α )− W̄‖ � δ and Φ( 1
α ,W ( 1

α )) = 0.

For α > α0, define h : Γ → Λα by h = Π ◦Tα. We claim that h is a conjugacy from σ2 to Fα. To prove

our claim, it suffices to show that both h and h−1 are continuous and

h ◦ σ2 = Fα ◦ h, on Γ. (3.1)

Let

S = {s = (. . . , s−1, s0, s1, . . .) | si ∈ {1, 2, . . . , 2k1+1}, ξsi = Πi(W̄ ) for some W̄ ∈ Γ}
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be the subset of the symbolic space with symbols {1, 2, . . . , 2k1+1}. For any s = (. . . , s−1, s0, s1, . . .) ∈ S,

we define

Vs−i···s0···sj = F−j
α (Asj ) ∩ · · · ∩As0 ∩ · · · ∩ F i

α(Asi), i > 0, j > 0,

Vs =
⋂

i>0,j>0

Vs−i···s0···sj .

We claim the following two facts:

(a) for each s ∈ S, Vs contains only one point;

(b)
⋃

s∈S Vs = Λα.

In fact, for each s ∈ S, note that

Vs−i···s0···sj = {η ∈ R
k1+k2+2 | F−i

α (η) ∈ Asi , . . . , η ∈ As0 , . . . , F
j
α(η) ∈ Asj}.

From the definition of s, there is a unique W̄ ∈ Γ such that Πi(W̄ ) = ξsi ∈ Ω, ∀ i ∈ Z. By Lemma 2.2, there

is a unique Tα(W̄ ) = W ( 1
α ) with ‖W ( 1

α )− W̄‖ � δ and Φ( 1
α ,W ( 1

α )) = 0. So {Πn(W ( 1
α )) = η(n)}n∈Z is

a bounded global orbit of Fα, which implies that η(n) = Fn
α (η(0)) ∈ Asn , ∀n ∈ Z. Thus η(0) ∈ Vs and

so Vs is nonempty.

On the other hand, for any η′ ∈ Vs, we know that Fn
α (η

′) ∈ Asn for n ∈ Z and {Fn
α (η

′)}n∈Z is a

bounded global orbit of Fα. Thus there exists W ∈ l∞ such that Πn(W ) = Fn
α (η

′) with ‖W − W̄‖ � δ

and Φ( 1
α ,W ) = 0. Again by Lemma 2.2, we have W = Tα(W̄ ) and hence, η′ = η(0), confirming (a).

For (b), let η ∈ Λα. Then there exists a W̄ ∈ Γ such that η = Π(Tα(W̄ )). Let s = (· · · s−1s0s1 · · · ) ∈ S

be the corresponding sequence of W̄ . Similar to the above argument, we have η ∈ Vs. Therefore,

Λα ⊂
⋃
s∈S

Vs.

The converse inclusion follows from the fact that each Vs contains only one point which belongs to Λα,

proving (b).

From the definition of h, it is obvious that h is surjective. Therefore, it follows from Lemma 2.2 and

Claim (a) that h is bijective. We now prove the continuity of h. Let W̄ ∈ Γ, and s̄=(. . . , s̄−1, s̄0, s̄1, . . .)∈S

be its corresponding subindex sequence. It follows from Claim (a) that

lim
i,j→+∞

diam(Vs−i···s0···sj ) = 0,

where the notation diam(·) denotes the diameter of a set. For any ε > 0, there exists an integer n such

that diam(Vs̄−n···s̄0···s̄n) < ε. Let δ1 = 1/2n+k1+1. Then for any W̃ ∈ Γ with d(W̃ , W̄ ) < δ1, it follows

that W̃ agrees with W̄ in the terms with indices from i = −n− k1 to i = n+ k1, which implies that the

sequence s̃ ∈ S corresponding to W̃ agrees with s̄ ∈ S corresponding to W̄ in the terms with indices from

i = −n to i = n. Thus h(W̃ ), h(W̄ ) ∈ Vs̄−n···s̄0···s̄n and ‖h(W̃ ) − h(W̄ )‖ < ε. This shows the continuity

of h.

Since Γ is compact, Λα is Hausdorff, and h : Γ → Λα is continuous and bijective, we conclude that h

is a homeomorphism.

Finally, for any W̄ ∈ Γ, we have

h(W̄ ) = Π ◦ Tα(W̄ ) = η(0) = (η1(0), η2(0), . . . , ηk1+k2+2(0))
T.

Thus

Fα(h(W̄ )) = (η1(1), η2(1), . . . , ηk1+k2+2(1))
T

= Π ◦ σ2 ◦ Tα(W̄ )

= Π ◦ Tα ◦ σ2(W̄ ) (by Lemma 2.3)

= h ◦ σ2(W̄ ).

This shows that (3.1) holds. Therefore, h is a conjugacy from σ2 to Fα and thus, (Γ, σ2) is topological

conjugate to (Λα, Fα). This completes the proof.
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We have several remarks about Theorem 3.2.

Remark 3.3. Theorem 3.2 assures the Fα is chaotic on Λα for α sufficiently large. But Λα is contained

in a small neighborhood of {ξ1, . . . , ξ2k1+1}, which is far away from the origin as long as the zero points

of f1 and f2 are nonzero. In this case, the delayed discrete Hopfield neural network can demonstrate

chaotic behavior outside the neighborhood of the origin. This is complementary to the results in Kaslik

and Balint [7], where it was shown that the same system can have chaotic behavior near the origin.

Remark 3.4. We can easily extend Theorem 3.2 to a more general case. Indeed, we can show that

if f1 and f2 have m1 > 1 and m2 > 1 simple zeros respectively, then there exists α0 > 0 such that for

any α > α0, Fα on Λα is topologically conjugate to the full shift map σ on Σm1m2 in the system (1.2).

Remark 3.5. We can also apply this method to more general cases of discrete-time, delayed neural

networks with more than two neurons with or without self-connections.

To illustrate the result of Theorem 3.2, let us consider the following discrete network of two identical

neurons with exciteatory interactions:

{
x(n) = βx(n − 1) + αf(y(n− k)),

y(n) = βy(n− 1) + αf(x(n − k)),
k � 1, (3.2)

which was considered by Huang and Zou [6]. In that paper, it was shown that for α large enough, the

system has chaotic behavior near the origin under the assumptions that f : R → R is continuously

differentiable and has two distinct simple zero points. By Theorem 3.2, under the same assumptions, we

see that Fα on Λα is topologically conjugate to the shift map σ on Σ4 = Σ2·2, implying that this system

also demonstrates chaotic behavior in a region away from the neighborhood of the origin.

4 Some simulations

In this section, we provide some numeric simulation results which support our theoretical result obtained

in Section 3. To this end, we choose f1(t) = sin(t) and f2(t) = tanh(t), and set β1 =
1
4 , β2 =

3
4 , α12 = a,

α21 = b, k1 = 1, k2 = 2. With these specifications, (2.1) becomes

⎧⎪⎪⎨
⎪⎪⎩
x(n+ 1) =

1

4
x(n) + a tanh(y(n− 2)),

y(n+ 1) =
3

4
y(n) + b sin(x(n− 1)),

∀n � 2. (4.1)

Figures 1 and 2 give the simulation results.
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Figure 1 Bifurcation diagram for system (4.1) for a ∈ (2, 5) and b = 1 in the (a, x)-plane
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Figure 2 Simulations for system (4.1) in x-y plane for a ∈ (2, 100), b = 1

In Figure 1, for each a value, the initial conditions were reset to y0 = 0.01, y1 = 0.02, y2 = 0.1,

x1 = 6.2, x2 = 0.02 and 104 time steps were iterated before plotting the data which consists of 104 points

per a value. The plotting is for x vs the parameter a. Plotting for y vs a is similar and hence is omitted.

In Figure 2, we show the results on the x-y plane. For each a value, the initial conditions were reset to

y0 = 0.01, y1 = 0.02, y2 = 0.1, x1 = 6.2, x2 = 0.02 and 2×104 time steps were iterated before plotting the

data which consists of 2×104 points per a value. Kaslik and Balint [7] showed that under some conditions,

the system (4.1) may exhibit chaos in the vicinity of the origin in [7]. But the result in [7] cannot well

explain some simulation results in Figures 1–2. For example, for a = 3.7, 4.3 and 4.38, respectively, the

simulation results in Figure 2 show that there are chaotic invariant sets for the system (4.1) which are

in some disjoint closed sets outside the vicinity of the origin and they actually correspond to the disjoint

closed sets constructed in the proof of Theorem 3.2 in this paper. Also, for a = 2.6, 4.8 and particularly

for a = 100, the chaotic invariant sets is seen to be quite large (although they all include the the origin)

and hence, contain points far away from origin.
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