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We consider an in-host virus dynamics model with spatial heterogeneity on the
general bounded domain, and homogenous Neumann boundary condition. Under
the assumption that only the free virus diffuse and the host cells (infected and
uninfected) are not mobile, the model turns out to be hybrid in the sense that it
consists of two point-wise ODEs and an PDE. We explore the virus dynamics
by analyzing the model and identifying the basic reproduction number. When
all model parameters are constants, the global dynamics of the model are fully
determined.
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1. Introduction

There have been extensive investigations on population models for virus dynamics in of in
vivo. These in-host models can be used to estimate some key factors in viral infection and
replication, and to guide development of efficient anti-viral drug therapies (see, e.g. [1-4]
and the references therein).

Typically, an in-host compartmental model of viral dynamics contains three compart-
ments: the populations of uninfected susceptible host cells u1, infected host cells u,, and
free virus particles u3 that are produced by infected host cells. The governing equations
take the form:

% =A—auy — Buyus,
% = Buyuz — bus, (1.1)
—ujt( ) = ku2 — mus,

where X and a are the recruitment rate and death rate of the susceptible cells, respectively; b
is the death rate of the infected cells; k and m are the recruitment rate and removed rate for
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free viruses; Bujus represents the lost of susceptible cells by infection (or the recruitment
of infected cells). The parameters in (1.1) are all positive constants. System (1.1) has been
used to study the in vivo dynamics of HIV-1, HBYV, and other virus (see, e.g. [1-11]).

In (1.1), it is assumed that cells and viruses are well mixed, and the mobility of cells
and viruses is neglected. In fact, susceptible host cells and infected cells cannot move under
normal conditions while viruses move freely in the habitat. To incorporate the influences of
spatial structures on virus dynamics, Wang and Wang [12] introduced the random mobility
for viruses into (1.1) and proposed the following mathematical model to describe the
hepatitis B virus (HBV) infection:

DD — 3 quy (x, 1) — Bui (x, Dus(x, 1),
Quplx.t) = Bui(x, Huz(x, 1) — buy(x, 1), (1.2)

at
81433(;6,’) =dAusz(x,t) + kuy(x,t) — muz(x, t),

in (x,1) € (—o00, o0) x (0, 00). Here, uy(x, t), uy(x,t), and uz(x, t) are the densities of
uninfected cells, infected cells and free virus at location x at time ¢, respectively, and d is
the diffusion coefficient. The parameters in (1.2) are positive constants. In (1.2), the spatial
domain is taken as the one-dimensional whole space R = (—o00, 00), and accordingly, the
traveling waves is investigated by appealing to the geometric singular perturbation method.
Among the topics are the existence of traveling wave fronts and the minimal wave speed.[12]

More recently, Brauner et al. [13] modified (1.2) by allowing A to be space dependent,
and assumed that other parameters remain constants; in addition, for the spatial domain,
they considered a square domain (0, /) x (0, [), and proposed periodic boundary conditions
on this square. The dynamics of the model was explored via a principle eigenvalue.

In reality, a spatial domain where virus and cells stay and interact is bounded but
is typically not a square. Even in the square domain case, there may be other types of
boundary conditions. One frequently encountered scenario is zero-flux boundary condition
in a bounded domain. Moreover, in addition to A, other model parameters may also depend
on the location in the domain. All these motivate us to consider a more general situation. In
this paper, we consider a general bounded domain 2 C R" and pose zero-flux condition on
the boundary of 2 (i.e. homogeneous Neumann boundary condition). We further modify
the model system in Brauner et al. [13] to allow all parameters to be location dependent
except the diffusion coefficient d. These considerations lead to the following problem:

Pet) — o (x) — a()uy (x, 1) — B(X)ur (x, Huz(x, 1),

D) — Bxyuy (x, Dus(x, 1) — b(Xua(x, 1),  (x,1) € 2 x (0, 00) (1.3)
W30 — dAuz(x, 1) + k(uz(x, 1) — m(xX)uz(x, 1),

with the homogeneous Neumann boundary condition

ous(x,t)
= 7 =0, x €3, >0, (1.4)
av
and initial conditions
wi(x,0) =ud(x) >0, xeQ,i=123, (1.5)

where 3"—1) denotes the differentiation along the outward normal v to 9€2. In this paper, we
always assume that the location-dependent parameters are continuous and strictly positive
functions on 2.
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We point out that since the first two equations in (1.3) have no diffusion terms, the
semiflow associated with our model is not compact. To overcome this problem, we will
prove that the semiflow associated with a linearized system around the infection-free steady
state is k-contraction, where « is the Kuratowski measure of noncompactness (see, e.g.
[14]). Then, by a generalized Krein—Rutman Theorem and some new results in [15], we
can show that the principal eigenvalue of the associated eigenvalue problems exists, and
hence, the stability of the infection-free steady state can be determined. Next, we can derive
a condition under which, the semiflow associated with our systems is k-contracting and
thereby, conclude that the semiflow admits a connected global attractor using the results
in [16] (see also [17]). Finally, we show that the basic reproduction number serves as a
threshold parameter that predicts whether the infection will go to extinction or persist, by
appealing to the theory of uniform persistence and the comparison theorem.

2. Analysis of the model system

In this section, we analyze the model system (1.3)—(1.5), intending to understand when the
disease will go to extinct and when it will persist. We start with some basic properties for
system (1.3)—(L.5).

Let X := C (€, R?) be the Banach space with the supremum norm || - ||x. Define X* :=
C(Q, Ri), then (X, XT) is a strongly ordered spaces. For every initial value functions
¢ = (P1, ¢2, ¢3) € C(Q, R?), define

Ti()g1 = e Vg1, Ta()gp = e "V @.1)
Let T3(t) : C(Q,R) — C(, R) be the Cy semigroups associated with d A — m(-) subject

to the Neumann boundary condition, that is,

(T3(1)¢3)(x) Z/Ql“(x,y,t)%(y)dy, 1 =0, 2.2

where I' is the Green function associated with dA — m(-) and the Neumann boundary
condition. From [18, Section 7.1 and Corollary 7.2.3], it follows that 73() : C(,R) —
C (2, R) is compact and strongly positive, ¥ ¢ > 0.

Define F = (Fy, F>, F3) : XT — X by

Fi(¢)(x) = A(x) = B(x)¢1(x)¢3(x),
F(9)(x) = B(x)¢1(x)p3(x),
F3(¢)(x) = k(x)¢a(x), Vxe€Q.

Then (1.3)—(1.5) can be rewritten as the integral equation:

'
u) =T(@)¢ —i—/ T(t—s)F(u(s))ds, 2.3)
0
where
uy (1) Ti(t) O 0
u@)=\u) |, T = 0 T O

us(t) 0 0 Ts(1)
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It is easy to show that

lim dist(¢ +hF(¢),XT) =0, V¢ eXF.
h—0F
By [19, Corollary 4], we obtain the following basic properties of the set X*:

Lemma 2.1 For every initial value functions ¢ := (¢1, ¢2, ¢3) € XT, system (1.3)—(1.5)
has a unique mild solution u(x, t, ¢) on [0, 1) with u(-,0,¢) = ¢ and u(-,t,$) € X,
Vit el0, 1), where Ty < oo.

In order to study the infection-free steady state and its stability, we need to consider the
following auxiliary point-wise scalar equation

ow(x,t)
ot
and the following scalar reaction-diffusion equation

{%—’:’ = dAw+g(x) —m@w, xeQ, >0,

=1(x) —AXw(x,1), xe€Q, t>0, (2.4)

f (2.5)

=0, xedQ, t >0,

where d > 0; g(x) and m(x) are continuous and positive functions on Q. For (2.4), by [20,
Theorem 2.2.1], we have the following result.

LemMa 2.2 The system (2.4) admits a unique positive steady state jx(();)) which is globally
asymptotically stable in C (2, R).

For (2.5), the following result is available from [21, Lemma 1].
Lemma 2.3 The system (2.5) admits a unique positive steady state w* (x) which is globally
asymptotically stable in C (2, R). Moreover, if g(x) = g, m(x) = m, V x € Q, then

w*(x) = £

‘We are in a position to show that solutions of system (1.3)—(1.5) exist globally on [0, 00),
and are ultimately bounded and uniformly bounded in X

Lemma 2.4 For every initial value function ¢ € X+, system (1.3)—(1.5) has a unique
solutionu(-, t, ¢) on [0, 00) withu(-, 0, ¢) = ¢, and solutions of (1.3)—(1.5) are ultimately
bounded and uniformly bounded in XV,

Proof LetU(x,t):=ui(x,t)+ uz(x,t). Then U(x, t) satisfies

oU (x,t -
% <A—cU(x,1), xeQ, t>0, (2.6)
where B
A =max A(x) and ¢ = min{min{a(x)}, min{b(x)}}. 2.7
xeQ xe2 xe

The comparison principle implies that U (x, ¢) is uniformly bounded, and hence, so are
u1(x,t) and us(x, t). This, together with a comparison argument, implies that u3(x, t) in
(1.3) is also uniformly bounded.
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Now, we show that solutions are also ultimately bounded (point dissipative). Comparing
(2.6) with (2.4), it follows from Lemma 2.2 and the comparison principle that

limsup U(x,?) < =, uniformly for x € Q.

—00

1o | >|

It then follows that there exist 0 < ny < 1 and 7y > O such that

W11+ 12 1) = UG, 1) < (1 + 770)%, Vi, 28)

and hence,

A A ~
w0 = dtmno)—,  ualn ) = (L4+no)=, Vi =lo. 2.9

This implies that u (-, ) and u; (-, t) are ultimately bounded.
From (2.9) and the third equation of (1.3), it follows that

WD) < g Aus(x, 1) + (14 0o) 2k — mus(x, 1), x € Q, 1 = fo,
D) — 0, x €992, 1 > 0,

where

E:ma}k(x) and m = minm(x). (2.10)
xeQ xeQ

By Lemma 2.3, it follows that there is a fo > fp > 0 such that

xk .
uz(-, 1) < (1+2no) - . Yi=>1o. (2.11)
c-m
It then follows that u3(x, t) is also ultimately bounded. O

From Lemma 2.4, (2.8), and (2.11), it follows that there exist#y > 0, K := (l—i—no)% >0
and K := (1 +219) - 2 > 0 such that

ur(ot) +ur( 1) < K, us(-,t) <K, Vit=>i.

Let
D= {(ur,uz,u3) €R:0<uy+ur <K, 0=<uz=K)

Define the semiflow W, : X* — X¥ associated with (1.3)—(1.5) by
W (p) =u(-,t,¢), t=>0, (2.12)
where u(-, t, ¢) is the solution of (1.3)-(1.5) with u(-, 0, ¢) = ¢ € XT. Then
W (p)eD, Vt>1y, ¢eX . (2.13)

Moreover, it is easy to see that K and K are upper solutions of systems

oU(x,t —
%)ZK—QU(X,I), xeQ, t>0,
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and _

M) — dAus(x, 1) + 2k — mus(x, 1), x € Q, 1 = I,

e — 0, x €99, 1> 0,
respectively. These facts, together with a comparison argument, imply that D is positively
invariant for W, in the sense that V,(¢) € D, V¢t >0, ¢ € D.

For convenience, we let

S, ur, uz) = A(x) —a(x)uy — Bx)uius,
e, uy, uz, u3) = B(x)uruz — b(x)uz, (2.14)
g(x, uz, uz) = k(x)up — m(x)us.

Then (1.3)—(1.5) can be rewritten as follows

W = filx,u1,u3), x € 2, t >0,

% = fo(x,ur,uz,u3), x €2, t >0,

0D — dAuz(x, 1) + g(x, uz,u3), x € 2, t >0, (2.15)
dusled) — 0, x €99, >0,

ui(x,0) =ud(x) >0, x € Q, i =1,2,3,

Foru := (u1, up) and v := u3, we impose the following assumption: there exists a constant
r > 0 such that

of(x, u,
2’ [—(xa - v)} 2<—ri'z, VzeR: xeQ, uv)eD, 2.16)
u

where f(x, u, v) 1= (f1(x, u1, u3), folx, uy, uz, u3)).

Remark 2.1 Recall that K := (1+ 2770)5;5 > 0; A and ¢ are defined in (2.7); 1 is defined

in (2.9); k and m are defined in (2.10). Assume that
1—
E'BK —b <0, (2.17)

where E ‘=max, g B(x)and b := min g b(x). Itis easy to see that the assumption (2.17)
implies (2.16).

Since the first two equations in (1.3)—(1.5) have no diffusion terms, its solution semiflow
W, is not compact. In order to overcome this difficulty, we introduce the Kuratowski measure
of noncompactness (see [14]), k, which is defined by

k(B) := inf{R : B has a finite cover of diameter < R}, (2.18)

for any bounded set B. We set k (B) = oo whenever B is unbounded. It is easy to see that
B is precompact(i.e. B is compact) if and only if x (B) = 0. We have the following results:

LemMma 2.5 Let (2.16) hold. Then \V; is k-contracting in the sense that

lim « (¥, B) = 0 for any bounded set B C X*.
11— 00

Proof Let B be a given bounded subset in X*. Using a slight modification of the proof
in [17, Lemma 4.1], we can show that W, is asymptotically compact on B in the sense that
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for any sequences ¢, € B and #, — o0, there exist subsequences ¢,, and #,, — oo such
that W;, (¢,,) converges in C(Q,R3) ask — oo.

It follows from [22, Lemma 23.1 (2)] that w (B), the omega-limit set of B, is a nonempty,
compact, invariant set in XT, and o (B) attracts B. In view of [16, Lemma 2.1 (b)], we see
that

k(Y (B)) < k(w(B)) + (Vi (B), w(B)) = §(V:(B), w(B)) — 0ast — o0,
Completing the proof. (I
TueorREM 2.1  Let (2.16) hold. Then YV, admits a connected global attractor on X7

Proof By Lemma 2.4, it follows that W, is point dissipative on X and that the positive
orbits of bounded subsets of Xt for ¥, are bounded. Furthermore, ¥, is k-contracting on

XT by Lemma 2.5. By [16, Theorem 2.6], W, has a global attractor that attracts every point
in X+, O

The following results will play an important role in establishing the persistence of
(1.3)—(1.5).

LEmMMmA 2.6 Suppose u(x, t, ¢) is the solution of system (1.3)—(1.5) withu(-,0,¢) = ¢ €
X+,

(i) Forany ¢ € XT, we always have ui(x,t,¢) >0, Vx € Q, t>0and

liminf u;(x, t, ¢) > h(x),
11— 00

where h(x) is a strictly positive function on ; )
(1) Ifthere exists some to > 0 such that uz (-, ty, ¢) =0, thenuz(x,t,¢) >0, Vx € Q,
r > 1y,
(iii) Ifthere exists some 1o > Osuchthatu;(-, to, ¢) =0, fori € {2, 3}, thenuy(x,t, p) >
0, Vxet>ri.

Proof From the first equation of (1.3), it is easy to see that uj(x,t,¢) > 0, Vx € Q,
t > 0, for any ¢ € XT. From (2.11), it follows that there is a fo > 0 such that

us( 1) < K, Vt=>i.

From the first equation of (1.3), it follows that

% > A(0) — (@) + KB)ui (x. 1), x € @ 1> .

By Lemma 2.2 and the comparison theorem, it follows that
.. A(x) _
liminf uy(x,7,¢) > ————, VxeQ.
100 a(x) + KB(x)

Thus, Part (i) is proved.
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It is easy to see that u3 satisfies the following inequality:

au3a(_f’t) > dAuz(x,t) —mx)uz(x, 1), x € Q, t >0,
B3 =0, x €99, t > 0.

By the similar arguments as in [23, Lemma 2.1] and [24, Proposition 3.1], it follows from
the strong maximum principle (see, e.g. [25, p. 172, Theorem 4]) and the Hopf boundary
lemma (see, e.g. [25, p. 170, Theorem 3]) that part (ii) is valid.

Assume by contradiction that the conclusion of (iii) is false, that is, there exist xg € Q
and f > fo such that u(xo, 7, ¢) = 0. From the second equation of (1.3), it follows that

dua (x, 1) A . .
0= = B(xo)uy(xo, Huz(xo, t) — b(xe)uz(xo, 1),
and hence,
0 = B(xo)ui(xo, t)uz(xo, 1),
which implies that u3(xo, ) = 0. This contradicts (ii). Part (iii) is proved. O

Itis easy to see that (u1k (x), 0, 0) is the infection-free steady-state solution for the system
(1.3)~(1.5), where u7 (x) = % Linearizing the system (1.3)—(1.5) at (4} (x), 0, 0) and we
get the following cooperative system for the infected host cells and free virus particle:

WD — —p(x)Us(x, 1) + BOuF () Us(x, 1), x € R, 1 >0,

Jt
W) — gAU3(x, 1) — m(x)Us(x, 1) + k(x)Ua(x, 1), x € 2, t > 0, (2.19)

0
"Vg—{mzo,xeasz,mo,

and initial conditions. We first consider the following generalized version of system (2.19):

S — —b(x)Ua(x, 1) + BVH () Us(x, 1), x € Q, 1 >0,
W) — gAUs(x, t) — m(x)Us(x, 1) + k(x)Ua(x, 1), x € 2, t > 0, (2.20)

ar
Wated) =0, x €09, > 0,

and initial conditions, where H(x) > 0,V x € Q. It is easy to see that system (2.20) is
cooperative while its solution semiflows are not compact since the first equation in (2.20) has
no diffusion term. Let Y = C (2, R?). For every initial value functions ¢ = (¢2, ¢3) € Y,
the solution semiflows IT; : Y — Y associated with the linear system (2.20) is defined by

Ht(‘P):(UZ("ta ¢)5U3('at’ ¢))v V¢ EY7 t ZO

It is easy to see that IT; is a positive Co-semigroup on C (€2, R?), and its generator B can
be written as

BH — (—b(x) B(x)H (x) >
T\ k(x) dA —m(x) )

Further, B is a closed and resolvent positive operator (see, e.g. [26, Theorem 3.12]).
Substituting U; (x, 1) = e™;(x), i = 2, 3, into (2.20) we get the following associated
eigenvalue problem:

N (x) = =b(x)Y2(x) + Bx)H (x)P3(x), x € Q,
nY3(x) = dAys(x) — m(x)¥3(x) + k(x)Pa(x), x € @, (2.21)
e =0, x €dQ.
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The following lemma concerns with the existence of the principal eigenvalue of (2.21).
LEMma 2.7 Suppose H(x) > 0, ¥ x € Q and s(B™) is the spectral bound of BY.

() If s(Bf) > 0 then s(BM) is the principal eigenvalue of the eigenvalue problem
(2.21) which has a strongly positive eigenfunction;

(i) Ifb(x) = b, ¥ x € Q, then s(B) is always the principal eigenvalue of the
eigenvalue problem (2.21) which has a strongly positive eigenfunction.

Proof We first prove Part (i). Recall that b := min g b(x) and it is easy to see that
b(x)>b, VYxeQ. (2.22)

We first show that for each ¢ > 0, Il; is an k-contraction on Y := C(Q, Rz) in the sense
that

(T, B) < e 2k (B),

for any bounded set B in Y, where « is the Kuratowski measure of noncompactness as defined
in (2.18). Let T>(¢) and T3(¢) be the semigroup defined by (2.1) and (2.2), respectively.
Define a linear operator

Lt)¢ = (T2(1)¢2,0), V¢ = (¢2,¢3) € Y, (2.23)

and a nonlinear operator

N@)¢ = ( /0 PO GO U 5. )ds. Uy, ¢>) Vo= (¢2. 43) €Y.
It is easy to see that
M,(¢) = L(t)p + N()¢p. V¢ € Y, 1 > 0.
By (2.22) and (2.23), it follows that

L(t b0t e
L)l < su I 2l <su I 2|l <ot
sey 119l peY ol ey ol

)

and hence | L(7)| < e~ 2.

From the boundedness of I1; and the compactness of 73(¢) for t+ > 0, it follows that
N() : Y — Y is compact for each r+ > 0. For any bounded set B in Y, there holds
k(N (t)B) = 0 since N(¢)B is precompact, and consequently,

k(M B) < k(L(t)B) + k(N(1)B) < |IL(1)|lKc(B) < e ?k(B), V1> 0.

Thus, I1, is a k-contraction on Y with a contracting function e 2. This implies that the
essential spectral radius r,(I1;) of I, satisfies

re(M) <e® <1, Vi>0.
On the other hand, the spectral radius r (I1;) of I1; satisfies

r(M,) =B > 1 viso.
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This implies that . (TT;) < r(I1;), Y ¢ > 0. Since I1; is a strongly positive and bounded
operator on Y, it follows from a generalized Krein—Rutman Theorem (see, e.g. [27]) that
the conclusion of Part (i) is true.

Next, we are in a position to prove Part (ii). In order to make use of the results in [15,
Theorem 2.3 (i)], we define an one-parameter family of linear operators on C(Q, R):

k(x)B(x)H (x)

_l’_ e ——
n+b

Let A :=min, glk(x)B(x)H (x)] > 0. Itis easy to see that the eigenvalue problem

ng(x) =dA¢(x) —m(x)p(x), x €,
WO — 0, x €99,

Ly, =dA —m(x) , VYn>-—b.

has a principal eigenvalue, denoted by 1°, with an associated eigenvector ¢° > 0. Let

"=y [(nO — )+ (10 — b+ 4(A + nOb)] .

Then, n* = % [(no -+ +b)2+ 4A] > —b. It is easy to see that

k(x)B(x)H (x)

OB 4o > 0 4 —
n*+0b 1

By [15, Theorem 2.3 (i)], we complete the proof of (ii). O

A
— b)¢>° = n*¢’.

Lyd” = dAg® — m(x)¢° +

Notice that the second and the third equations are decoupled from the first one in (2.19)
and they form a subsystem which is closely related to the basic reproduction number. In the
following, we shall adopt the same ideas as in [15,28-30] to identify the basic reproduction
number for system (1.3)—(1.5). To this end, we first need to separate the transfer part from
the infection part in the u» — u3 subsystem of (2.19) as below.

Let S(r) : C(,R?) — C(Q,R?) be the Co-semigroup generated by the following
system

WD — _p(x)Usp(x, 1), x € Q, t > 0,

ot
LD _ GAU(x, 1) — m()Us(x, 1) + k(U (x, 1), x € Q, 1= 0,
Wsted) =0, x €99, >0,
Uz(x,0) = ¢2(x), Usz(x,0) = @3(x), x € Q.

(2.24)

In order to define the basic reproduction number for the system (1.3)—(1.5), we assume
that the population is near the Disease-free equilibrium (u7(x), 0, 0). Then, we introduce
the distribution of initial infection described by ¢ := (¢2, ¢3) € C(L, RR?). Hence, S(t)p
represents the distribution of those infective members as time evolves. Thus, the distribution

of new infection at time 7 is
0 BCHui()
(0 01 > (S ().

Consequently, the distribution of total new infections is

Lo = [ (8 g (')g‘(')) (SOPO)dr.
0
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Then L is a continuous and positive operator which maps the initial infection distribution ¢
to the distribution of the total infective members produced during the infection period. Fol-
lowing the idea of next generation operators (see, e.g. [15,26,30-32]), the basic reproductive
number for system (1.3)—(1.5) is given by the spectral radius of L, that is,

Ro :=r(L). (2.25)

By the general results in [26] and [15, Theorem 2.5 and Remark 2.3], we have the following
observation.

LemMma 2.8 Rg—1and s(B“T) have the same sign.

Now we are ready to prove the main result of this section, which indicates that Ry is a
threshold index for disease persistence.

THEOREM 2.2 Assume that (2.16) is true. Suppose u(x,t,§) is the solution of system
(1.3)~(1.5) with u(-, 0, ¢) = ¢ € X*. Then the following statements hold.

(i) IfRo<landb(x)=b, Vx € Q, then the disease-free equilibrium (u’f(x), 0,0)

is globally attractive in XT, where uT(x) = %;

(i1) IfRg > 1, then system (1.3)—(1.5) admits at least one positive steady state ii(x) and
there exists a o > 0 such that for any ¢ € XT with ¢;(-) £0 fori =2, 3, we have

liminf u;(x,t) >0, Vi=1,2,3,
—00
uniformly for all x € Q.

Proof We first assume that Ry < 1, that is, s(B”T) < 0 by Lemma 2.8. It follows from
Lemma 2.7(ii) that s(B“T) is the principal eigenvalue of the eigenvalue problem (2.21)
with H = u}. By Lemma 2.7(ii) and the continuity, there is a pg > 0 such that s(B“TJ"’O)
is still the principal eigenvalue of the eigenvalue problem (2.21) with H = u} + po and
s(BYiTP0) < 0.

From the first equation of (1.3), it follows that
ad t
HED 5@~ a0, (2.26)

From Lemma 2.2, (2.26) and the comparison principle, it follows that there is a 7y := f(¢)
such that

ur(x, t,¢) <uf(x)+po, Vit>ty, x €Q.
Thus,

el < B(x)(uh (x) + po)us(x, 1) — b(ua(x, 1), x € R, t > 1.
Ml — dAus(x, D) + k(Dua(x, ) —m@us(x, 0, x € Q, 12100, (227)

3 =0, x €99, t > 1.



Downloaded by [University of Western Ontario] at 09:42 03 February 2015

Applicable Analysis 2323

By Lemma 2. 7(11) there is a strongly positive eigenfunction 1@ = (1/72, 1/73) corre-
sponding to s(B"1 it/). Since for any given ¢ € X, there exists some a > 0 such that
(ua(x, to, @), usz(x, to, @)) < om//(x) V x € Q. Note that the following linear system

Eel) — B(x) (e (x) + po)us(x, 1) — b(Xua(x, 1), x € Q, 1= fp.
M3D — dAuz(x, 1) + k(uz(x, 1) — mxuz(x, 1), x €, t >19.  (2.28)
M3 =0, x €99, 1 > 1o,

admits a solution a.e’ B0 (x) V¢ > 1. The comparison principle implies that

U ~
ur(x. 1, ¢). uz(x. £, ) < ae” BTG V> g,

and it then follows that lim;_, oo (u2(x, t, @), u3(x, t, ¢)) = 0 uniformly for x € Q. Then,
the equation for 1 is asymptotic to

dup(x, )

o7 =Ax)—ax)ui(x,t), (2.29)

and then we get lim; . u1(x,t, ) = u’f(x) uniformly for x € Q by Lemma 2.2 and the
theory for asymptotically autonomous semiflows (see, e.g. [33, Corollary 4.3]). Thus Part
(i) is proved.

We consider the case where Rg > 1, that is, s(B“T) > 0 by Lemma 2.8.

Let

Wo = {¢p € X : ¢2(-) £0 and ¢3(-) £0},
and
IWo = XT\Wo = {¢ € XT : ¢2(-) =0 or ¢3(-) = 0}.

By Lemma 2.6, it follows that for any ¢ € Wy, we have u;(x,t,¢) > 0, Vx € Q, 1>
0, i =2, 3. In other words, ¥, Wy C Wy, V¢ > 0. Let

={pcdWy: W ecdW,, V=0l

and @ (¢) be the omega limit set of the orbit O (¢) := {¥;¢ : t > 0}.

Claim: () = {(u7,0,0)}, V¢ € Mj.

Since v € My, we have W, vy € My, Yt > 0. Thus, us(-, ¢, %) = 0 or uz(-, t,¢¥) =
0, V¢ > 0. In case where u3z(-, ¢, %) =0, V¢ > 0. Then, u; satisfies the Equation (2.29),
V t > 0; and hence, we get lim;_, o u1(x, 1, ) = u’f(x) uniforznly for x € Q. Further, it
is easy to see that lim;_, o u2(x, f, ¥) = 0 uniformly for x € Q from the equation of u»
in (1.3). In case where u3(-, fy, ¥) = 0, for some 7y > 0. Then Lemma 2.6 implies that
us(x,t,¥) >0, Vx € Q,Vr > iy Hence, us(-, 1, %) =0, YV > 1. In view of the u3
equation in (1.3), it is easy to see that lim;_, o, u3(x, t, ) = 0 uniformly for x € Q. Again,
the equation for u is asymptotic to the Equation (2.29) and the theory for asymptotically
autonomous semiflows (see, e.g. [33, Corollary 4.3]) implies that lim,_, o u1 (x, ¢, V) =
u’} (x) uniformly for x € Q. Hence, w(y) = {(u%,0,0)}, V¢ € M.

By the similar arguments to those in Lemma 2.7 (i) and [34, Lemma 4.5], we can show
that there is a small §9 > O such that s (B3"1 "30) is the principal eigenvalue of the eigenvalue
problem (2.21) with H = “1 — 8o and s(B” ‘30) > 0. Let w (1//2 1p3) be the strongly
positive eigenfunction corresponding to s (3“1 1%,
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Claim: (u7, 0, 0) is a uniform weak repeller for Wy in the sense that

limsup |W:¢ — (u7,0,0)[ = 8o, V¢ e W.

—>00

Suppose, by contradiction, there exists ¢9 € Wy such that

lim sup || — (u}. 0, 0) | < So.

t—0o0

Then, there exists #; > 0 such that u(x,t, ¢g) > uT(x) — 80, V1t > 1, x € Q. Thus,
u(x,t, ¢o) satisfies

Bl > B(x) W} (x) — So)uz(x, 1) — b(Xuar(x.1), x €Q, t =11,

Balel) = dAus(x, 1) + k(ua(x, ) —m()uz(x, 1), x € Q, 1 =1,  (230)
=0, x€dQ, 121,

Since u;(x,t,¢9) > 0, V x € Q, t >0, i = 2,3, there exists € > 0 such that

~ ut—§ ~
(u2(x, 11, ¢0), u3(x, 1, do)) > €or. Note that ege’ B! 0)(’_’1)1ﬁ is a solution of the
following linear system:

P — Bx)(u(x) — So)us(x, 1) — b(Nuz(x, 1), x € Q, 1 > 11,

WD) — dAus(x, 1) +k(Dua(x, 1) —mXus(x, 1), x € Q, t 211, (2.31)
M =0, x €9Q, t > 1.

The comparison principle implies that

w8, ~ -
wa(x, t, do), us(x, 1, ¢0)) = €0’ B G Vs, xe Q.

Since s(B”T_‘SO) > 0, it follows that u(x, #, ¢9) is unbounded. This contradiction proves
the claim.
Define a continuous function p : Xt — [0, oo) by

p(¢) := min{min ¢>(x), minp3(x)}, V¢ e X',
xe xe2

By Lemma 2.6, it follows that p~1(0, c0) € Wy and p has the property that if p(¢) > 0
or ¢ € Wy with p(¢) = 0, then p(¥;¢) > 0, V¢ > 0. That is, p is a generalized distance
function for the semiflow ¥, : X+ — X7 (see, e. g. [35]). From the above claims, it follows
that any forward orbit of W, in My converges to (u’f, 0, 0) which is isolated in Xt and
W* w7y, 0,0) N Wy = @, where W*(u7, 0, 0) is the stable set of (u7, 0, 0) (see [35]). It is
obvious that there is no cycle in Mj from {(u], 0, 0)} to {(u}, 0, 0)}. By [35, Theorem 3],
it follows that there exists an 6 > 0 such that

min p(yY) >0o, V¢eW,.
wew((p)lﬂﬁ ® 0

Hence, liminf, o u; (-, t,¢) > 7, V¢ € Wy, i = 2, 3. From Lemma 2.6, there exists an
0 < o < ¢ such that

liminf u; (-, 1,¢) >0, Y eWy, i=1,2,3.
11— o0

Hence, the uniform persistence stated in the conclusion (ii) are valid. By [16, Theorem 3.7
and Remark 3.10], it follows that W, : Wy — W has a global attractor Ag. It then follows
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from [16, Theorem 4.7] that W, has an equilibrium (-) € Wy. Further, Lemma 2.6 implies
that () is a positive steady state of (1.3)—(1.5). The proof is complete. O

Remark 2.2 If Ry < 1 and b(x) is not a constant function, then we are unable to show that
the disease-free equilibrium (u7(x), 0, 0) is globally attractive in X+. This is because we
can NOT prove s(B"1) is the principal eigenvalue of the eigenvalue problem (2.21) with
H = uj (see Lemma 2.7(ii)) in this situation.

3. Global attractivity — spatially homogeneous case

In this section, we shall consider a special case where all the coefficients in (1.3) are
independent of the variable x, that is,

W =X —aui(x,t) — Bui(x, Huz(x, ),

200D — Buy (x, Duz(x, 1) — bua(x, 1), (3.1

W =dAusz(x,t) 4+ kuy(x,t) — musz(x, t),
in (x, 1) € Qx (0, co) with the homogeneous Neumann boundary condition (1.4) and initial
conditions (1.5). In such a special case, the global dynamics can be completely obtained,
as is shown below.

Following,[12] the basic reproduction number for ODE model corresponding to the
system (3.1), is given by ;‘%, which describes the average number of newly infected cells
generated from one infected cell at the beginning of the infectious process. In the following,
we are going to find the basic reproduction number for the system (3.1):

Lemma 3.1  The basic reproduction number for the system (3.1), is also given by Ry =
kB
abm*

Proof By the similar arguments to those in [15, Lemma 4.2, Theorem 3.2], we first consider
the following eigenvalue problem:

k *
—dAG () +mp(x) = nTle(x), x € Q, (32)
90 — 0, x €99,
where uT = % Note that (no,qbo(x)) = (0, 1) is the pair of principal eigenvalue—

eigenfunction of
ng(x) =dA¢p(x), x € Q,
20 — 0, x € 9Q.
Let 141 be the principal eigenvalue of (3.2), it then follows that m — 11 @ = 0, that is,

n1 = k;l;# = ‘,‘(bT’; > 0. Hence, (3.2) admits a unique positive eigenvalue ;| with a positive
1
eigenfunction ¢°(x). By [15, Theorem 3.2], it follows that Ry = % = fg;; The proof is

complete. [l

Clearly, system (3.1) has an infection-free steady-state solution Q¢ := (%, 0,0). Itis

not hard to see that O = (i1, fi2, ii3) = (%RLO’ %—’Z(Ro -1, %(’Ro — 1)) is the unique

constant positive steady-state solution of (3.1), provided that Ry > 1. In the following, we
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shall adopt a technique of Lyapunov functional to prove Ry is the threshold index for the
global attractivity of the positive steady state Q := (i1, il2, i13).

TrHEOREM 3.1 Let Rp = % Then the following statements hold

() IfRo > 1, then Q = (ii1, ii2, i13) exists and is globally asymptotically stable in
the interior of X;
(1) IfRo < 1, then Qp := (%, 0, 0) is globally asymptotically stable in X .

Proof We first prove Part (i). Motivated by [36, Theorm 1.1], we define

Vi(ui, uz, u3) = Ml(— —1In —) + uz(— —In —) + —Ma(r —1In —)
U

W(t)=/ V@ui(x, 1), uz(x, 1), uz(x, 1))dx,
Q

where (u1(x,t), uz(x,t), u3(x,t)) is an arbitrary positive solution of (3.1). Denote the
reaction terms of (3.1) as follows:

Si(ur,uz, uz) = A —auy — Buyuz, fr(uy, uz, u3)
= Bujuz — buy, f3(uy, us, u3z) = kuy — mus. 3.3)

By direct computations and similar arguments to those in the proof of [36, Theorem 1.1],
we get

Vi, i, uz, uz) fi(uy, uz, uz) + Vi, (ui, uz, u3) fo(uy, uz, u3)
+ Vi, uz, us) f3(ur, uz, uz)

u u u u u M
—au1(2————)+bu2(3——1——1-—3~—2—72~—3).

~

ui ui up uz uz uz us3

Since the arithmetical mean is greater than or equal to the geometrical mean, the functions

A A

i wy usz Uy ur U3
2_ B — a d3 - - — "X T — <
o u up Uy U3z Uz U2 U3z

are nonnegative for all u; > 0, i =1, 2, 3. Hence,

Vi, ey, uo, uz) f1(uy, uz, uz) + Vi, (uy, uz, u3) fo(uy, uz, u3)
+Viuy (w1, uz, u3) f3(ur, uz, u3) <0,

forallu; >0, i =1,2,3.
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It then follows that

. duy ouy ou3

W) = Vi, i, uz, uz) —— + Vi, (1, uz, uz) —— + Vg (uy, ua, uz) — | dx
o at at at

b 1 1
= —b%/g (— - —) (dAuz)dx + /Q [Viy (1w, uz) fiur, ua, us)

k U3 u3

+ Viy (ur, uz, u3) fo(uy, uz, uz) + Vi (ur, ua, u3) f3(uy, uz, uz)| dx
b, 1
= —d—u3/ —2|Vu3|2dx+/ [ Vi, i, w2, u3) fi(uy, uz, u3)
k Q u3z Q
+ Viy (w1, uz, u3) fo(uy, uz, uz) + Vi ur, uz, u3) f3(uy, uz, uz)]dx

<0.

Therefore, W is a Lyapunov functional for the system (3.1), namely, forany 7 > 0, W) <0
along trajectories. Let C := {(u1, us, u3) € X+ : W(t) = 0}. Note that

W) =0 (ur, uz, us) = (i1, iz, i3).

By the similar arguments as in Theorem 2.1, we can show that the solution maps of (3.1)
admit a connected global attractor on X+ and

tl_i)rgo(m(-, 1), uz(-, ), u3(-, 1)) - C

by LaSalle Invariant Principle (see, e.g. [37, Theorem 4.3.4]). Thus, (i1, i3, i3) is globally
asymptotically stable for (3.1).

We next point out that the result in Part (ii) is a special case of that in Theorem 2.2 (i).
For the completeness, we define the following functional ([36, Theorm 1.1]):

. oujy Ui b
Uui,uz,uz) =i1(=— —In —) +uz + —us,
uj i k
W(t)=/ Uui(x, 1), uz(x, 1), uz(x, t))dx,
Q

where (u1(x, t), uz(x, t), u3(x, t)) is an arbitrary positive solution of (3.1) and it = %

By direct computations and the same arguments as in the proof of [36, Theorm 1.1], we
get

Uy, (uy, uz, uz) fi(uy, up, uz) + Uy, (ur, uz, u3) fo(uy, uz, uz)

+Uu; (ur, uz, u3) f3(u1, uz, u3)
b

uj 7 m .
=22-—=—-—)+ k (Ro—Duz <0, Yu; >0, i =1,2,3,

ui ui
where f; is defined in (3.3), for all i = 1, 2, 3. By the similar arguments as in Part(i), we
can also prove that JV is a Lyapunov functional for the system (3.1), namely, for any 7 > 0,
W(t) < 0 along trajectories. The proof is completed. U
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