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In this article, for a diffusive population model describing interaction of
pioneer-climax species, we explore the issues of spreading speed, linear determi-
nacy and traveling wave fronts. Applying the theory developed by Weinberger
et al. [J. Math. Biol. 2002;45:183–218], we identify some ranges of model param-
eters within which, the model is shown to have a single spreading speed which is
linearly determinate and coincides with the corresponding minimal speed for the
traveling wave fronts connecting two relevant equilibria, one being a boundary
equilibrium and the other being a coexistence equilibrium.

Keywords: single spreading speed; linear determinacy; traveling wave front;
reaction-diffusion system; pioneer and climax species

AMS Subject Classifications: 35K57; 34C12; 92D25

1. Introduction

In Buchanan [1], a reaction-diffusion system was proposed to model the interaction of a
pioneer species and a climax species. Assuming random dispersion for the two species, the
model system is given by⎧⎪⎨

⎪⎩
∂u(t, x)

∂t
= D1

∂2u(t, x)

∂x2
+ u(t, x) f (c11u(t, x)+ c12v(t, x)),

∂v(t, x)

∂t
= D2

∂2v(t, x)

∂x2
+ v(t, x)g(c21u(t, x)+ c22v(t, x)).

(1.1)

Here, u(t, x) and v(t, x) represent the population densities of the pioneer and climax species,
respectively, at time t and location x , the positive constants D1 and D2 are the diffusion
coefficients for the respective species, and the interacting matrix C = (ci j )2×2 gives the
weight distribution of resources among the two species. To reflect the nature of pioneer and
climax species, the two fitness functions f, g ∈ C1(R) are assumed to satisfy

f ′(z) < 0 for z ∈ R, f (z0) = 0 for some z0 > 0, f is concave up on [z0,∞).

∗Corresponding author. Email: xzou@uwo.ca
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2094 P. Weng and X. Zou
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Figure 1. Typical fitness functions for pioneer species and climax species.

and ⎧⎨
⎩

g(w1) = g(w2) = 0, where 0 < w1 < w2;
(w∗ − w)g′(w) > 0 when w > 0 and w �= w∗ for some w∗ ∈ (w1, w2);
g(w) is concave up on [w2,+∞).

The conditions on f simply indicate that the u species thrives best at lower densities and
thus, is a good candidate for pioneering (hence, the name “pioneer”); while the conditions
on g assume that the v species attains the maximal fitness at an intermediate-weighted
density w∗ (hence, the name “climax”). These features are depicted in Figure 1. Examples
of f and g satisfying the above conditions include f (u) = er(1−u) − a (see, e.g. [2]),
f (u) = r

(1+bu)p − a (see, e.g. [3]), and g(u) = uer(1−u) − a (see, e.g. [4–7]).
When ignoring the spatial factor, an ordinary differential equation version of (1.1) is

obtained by dropping the diffusion terms in (1.1). It turns out that the dynamics of the ODE
version can be very rich, due to the complicated structure of the equilibria of the ODE system
(number of the equilibria and their various distributions). For details on the dynamics of
the corresponding ODE model, a reader is referred to [4,7–11] and the references therein.
In particular, Buchanan [8] gave a nice summary of the ODE model.

When considering (1.1) in a bounded spatial domain, Buchanan [1] observed that
Turing instability can occur. That is, the diffusion may destroy the stability of an spatially
homogeneous steady state, leading to the formation of spatially heterogeneous patterns.
Almost simultaneously, Brown et al. [12] also studied (1.1) but for x ∈ (−∞,∞). By using
a singular perturbation approach, Brown et al. [12] established existence of traveling wave
front for (1.1) that connects two boundary equilibria. Such a traveling wave front accounts
for transition from one mono-culture steady state to another mono-culture steady state,
implying that within some range of model parameters, a spatial domain initially occupied
by the pioneer species will be eventually taken over by the climax species with a certain
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Applicable Analysis 2095

speed. Yuan and Zou [13] further explored (1.1) for x ∈ (−∞,∞), and they found that
within some other range of model parameters, the existence of co-invasive traveling wave
fronts that connect the pioneer-invasion-only equilibrium with a coexistence equilibrium is
also possible and this should be attributed to mild competition.

For a reaction-diffusion system with the spatial variable x ∈ (−∞,∞), another impor-
tant topic is the spreading speed, which is different from but closely related to the speed
of traveling wave front. See [14–16] for details of this concept. A natural question in this
regard for a system is that when there are more than one species in interaction, will different
species spread by different spreading speeds? Li et al. [17] and Weinberger et al. [18] have
observed that it sometimes happens, even in cooperative systems, that different species
spread at different speeds, so that there is the slowest speed and the fastest speed; while it is
also possible for a system to have a single spreading speed, meaning that all species spread
at the same rate (see [14–16]). It turns out that under some conditions on the nonlinearities,
the slowest spreading speed coincides with the minimal speed of the traveling wave fronts,
see [17,19] and the references therein.

In the context of spreading speed, in the case of a single speed for all species, there is
an issue of how to determine or calculate this speed c∗. Linearizing the nonlinear system
under consideration at an unstable equilibrium leads to a linear system which also has
a single spreading speed c̄. If c∗ = c̄, then the nonlinear system is said to be linearly
determinate. The so-called “linear conjecture” in this context refers to a statement of belief
that under some conditions, a nonlinear system is linearly determinate. It has been shown
that the linear determinacy does not hold in general and conditions are needed for it to hold
(see, e.g. [18,20–22]). When a system describing the interactions of two species allows
anomalous speeds, for the slowest and fastest spreading speeds, there is also the issue of
linear determinacy. In addition to the recent works mentioned above, the earlier works
[23–27] also have good coverage on this topic.

For the reaction-diffusion model (1.1) with x ∈ (−∞,∞), the above issues have not
been addressed in the literature, and this constitutes the purpose of this paper. In other words,
we shall discuss, in the rest of the paper, single or multiple spreading speeds and the linear
determinacy for the spreading speed(s), as well as the minimal wave speed for traveling
wave fronts related to the co-invasion of the two species for the model (1.1). In Section 2, we
do some preparation by identifying certain ranges of the model parameters within which, we
are able to address the issues. This is mainly due to the nice structure of the equilibria within
these ranges of the parameters. In Section 3, we show the existence of single spreading speed
for the two species and confirm its linear determinacy, within the parameter ranges sorted
out in Section 2. In Section 4, we show that the single spreading speed indeed coincides with
the minimal speed of the traveling wave fronts of (1.1) connecting two relevant equilibria.

2. Preliminaries

Note that a re-scaling transforms system (1.1) into⎧⎪⎨
⎪⎩
∂u(t, x)
∂t = D1

∂2u(t, x)
∂x2 + u(t, x) f (c11u(t, x)+ v(t, x)),

∂v(t, x)
∂t = D2

∂2v(t, x)
∂x2 + v(t, x)g(u(t, x)+ c22v(t, x)),

(2.1)
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2096 P. Weng and X. Zou

which has the same dynamics as (1.1), and thus in the following, we shall consider (2.1)
only.

By the properties of the fitness functions f and g, we can easily see that (2.1) has the
following equilibria:

E0 = (0, 0), E1 =
(

0,
w1

c22

)
, E2 =

(
0,
w2

c22

)
, E3 =

(
z0

c11
, 0

)
,

regardless of the values of the parameters. In addition, the coexistence equilibria are obtained
by solving either

c11u + v = z0, u + c22v = w1, (2.2)

or

c11u + v = z0, u + c22v = w2 (2.3)

for positive solutions. Denote the possible positive solution of (2.2) by (u+, v+) and the
possible positive solution of (2.3) by (u∗, v∗). Directly solving gives

u+ = c22z0 − w1

c11c22 − 1
, v+ = c11w1 − z0

c11c22 − 1
,

u∗ = c22z0 − w2

c11c22 − 1
, v∗ = c11w2 − z0

c11c22 − 1
.

For convenience of discussion, we need the following assumptions:

(H1) z0 >
w2

c22
, w1 <

z0

c11
< w2;

(H2) z0 >
w2

c22
,

z0

c11
< w1.

We point out that either (H1) or (H2) implies c11c22 > 1. In fact, if (H1) holds, then we
have

z0c22 > w2 ⇒ c11z0c22 > c11w2 > z0 ⇒ c11c22 > 1;
if (H2) holds, then we have

z0c22 > w2 ⇒ c11z0c22 > c11w2 > c11w1 > z0 ⇒ c11c22 > 1.

Noting thatw1 < w2, it is obvious that under (H1), E∗ = (u∗, v∗) exists with u∗ < z0/c11;
while under (H2), in addition to E∗ = (u∗, v∗), there is the other coexistence equilibrium
E+ = (u+, v+). Also note that under the assumption (H1), we have f ( w2

c22
) > 0 and

g( z0
c11
) > 0; while under the assumption (H2), we have f ( w2

c22
) > 0 and g( z0

c11
) < 0.

We shall also consider two additional assumptions to restrict E∗ to a desirable region:

(A1) w∗
c22

≤ v∗;
(A2) w∗ ≤ u∗.

Clearly, (A2) is impossible under (H2), so we only have three possible cases: (H1)–(A1),
(H2)–(A1), and (H1)–(A2), which are depicted in Figures 2–4.
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Applicable Analysis 2097

c11u+v=z0

u+c22v=w2

u+c22v=w1
u

v

z0

w2/c22

w1/c22

(u*,v*)

w2w1
z0/c11

w*
+

Figure 2. Structure of equilibria of (2.1) under (H1)–(A1).

z0

w2/c22

w1/c22

z0/c11 w1 w2

(u*,v*)

 (u+,v+) u

v

c11u+v=z0

u+c22v=w2

u+c22v=w1

w*
+

Figure 3. Structure of equilibria of (2.1) under (H2)–(A1).

(I) Assume that either (H1)–(A1) or (H2)–(A1) hold. Let p = u and q = w2
c22

− v.
Then (2.1) is transformed to⎧⎪⎪⎨

⎪⎪⎩
∂p

∂t
= d1

∂2 p

∂x2
+ p f

(
w2

c22
+ c11 p − q

)
=: d1

∂2 p

∂x2
+ F1(p, q),

∂q

∂t
= d2

∂2q

∂x2
−
(
w2

c22
− q

)
g(w2 + p − c22q) =: d2

∂2q

∂x2
+ F2(p, q).

(2.4)

The u − v region given by u + c22v ≥ w∗ and 0 ≤ v ≤ w2
c22

is transformed to the p − q
region given by w2 + p − c22q = u + c22v ≥ w∗ and 0 ≤ q ≤ w22/c22. In this region,
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2098 P. Weng and X. Zou

c11u+v=z0

u+c22v=w2
u+c22v=w1

u

v

z0

w2/c22

w1/c22 (u*,v*)

w2w1
z0/c11w*

+

Figure 4. Structure of equilibria of (2.1) under (H1)–(A2).

F1(p, q) = f ( w2
c22

+ c11 p − q) is increasing in q and g(w2 + p − c22q) is decreasing in p
and hence F2(p, q) = −( w2

c22
− q) g(w2 + p − c22q) is increasing in p, meaning that (2.4)

is cooperative.
By the above transformation, the equilibria E0, E1, E2, E3, E∗ are transformed,

respectively, to

Ê0 =
(

0,
w2

c22

)
, Ê1 =

(
0,
w2 − w1

c22

)
, Ê2 = (0, 0),

Ê3 =
(

z0

c11
,
w2

c22

)
, Ê∗ =

(
u∗, w2

c22
− v∗

)

in the p − q plane. Although E+ also exists under (H2) and is transformed to Ê+ =
(u+, w2

c22
− v+), but this is outside the parallelepiped with vertices Ê2 and Ê∗. In other

words, under either (H1)–(A1) or (H2)–(A1), Ê2 and Ê∗ are ordered in the p −q plane and
there is no other equilibrium between Ê2 and Ê∗.

(II) Next, assume that (H1)–(A2) hold. Let p = z0
c11

− u and q = v. Then, (2.1) is
transformed to the following system⎧⎪⎪⎨

⎪⎪⎩
∂p

∂t
= d1

∂2 p

∂x2
−
(

z0

c11
− p

)
f (z0 − c11 p + q),

∂q

∂t
= d2

∂2q

∂x2
+ q g

(
z0

c11
− p + c22q

)
.

(2.5)

In this case, E+ does not exist and the other equilibria E0, E1, E2, E3, E∗ are trans-
formed respectively to

Ē0 =
(

z0

c11
, 0

)
, Ē1 =

(
z0

c11
,
w1

c22

)
, Ē2 =

(
z0

c11
,
w2

c22

)
,
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Applicable Analysis 2099

Ē3 = (0, 0), Ē∗ =
(

z0

c11
− u∗, v∗

)
,

with Ē3 and Ē∗ being ordered and there is no other equilibrium between Ē3 and Ē∗.
Moreover, between Ē3 and Ē∗ (i.e. 0 ≤ p ≤ z0

c11
− u∗, 0 ≤ q ≤ v∗), −( z0

c11
− p) f (z0 −

c11 p +q) is increasing in q and q g( z0
c11

− p +c22q) is increasing in p, meaning that (2.5) is
cooperative. It is worth emphasizing that u∗ > w∗ is an important condition that guarantees
the cooperative property of the system (2.5), and which is also a technical condition in
[13] for establishing the existence of traveling wave fronts that connect the monoculture
equilibrium E3 and the coexistence equilibrium E∗.

In the sequel, we will apply the theoretical results developed in [28] to investigate the
existence of a single spreading speed for the two species and the linear determinacy of this
speed under either (H1)–(A1) or (H2)–(A1) or (H1)–(A2). To this end, we will follow the
notations on equilibria for this purpose in [28] by letting

θ := (0, 0) =
{

Ê2 when considering (2.4); under (H1)–(A1) or (H2)–(A1);
Ē3 when considering (2.5); under (H1)–(A2);

β :=
{

Ê∗ when considering (2.4); under (H1)–(A1) or (H2)–(A1);
Ē∗ when considering (2.5). under (H1)–(A2);

3. Single spreading speed and linear determinacy

First, let us assume either (H1)–(A1) or (H2)–(A1) hold and consider (2.4). The linearization
of (2.4) at the equilibrium θ = (0, 0) is⎧⎪⎪⎨

⎪⎪⎩
∂p

∂t
= d1

∂2 p

∂x2
+ f

(
w2

c22

)
p,

∂q

∂t
= d2

∂2q

∂x2
− w2

c22
g′(w2)p + w2g′(w2)q.

(3.1)

Let F = (F1, F2). The Jacobian matrix in the linear system (3.1) is

DF(θ) =
⎛
⎜⎝ f

(
w2

c22

)
0

−w2

c22
g′(w2) w2g′(w2)

⎞
⎟⎠ .

which obviously has the Frobenius form (see, e.g. [28]).
To apply the results in [28], we need the following matrix

Cμ =
⎛
⎜⎝ d1μ

2 + f

(
w2

c22

)
0

−w2

c22
g′(w2) d2μ

2 + w2g′(w2)

⎞
⎟⎠

which is referred to as the coefficient matrix for (3.1) in [28].
The following proposition is a specialization of Theorem 4.2 in [28] for system (2.4):

Proposition 3.1 Suppose the system (2.4) has the following properties:

(i) θ = (0, 0) and β = (k1, k2) are equilibria with ki > 0, i = 1, 2, and there is no
other constant equilibrium (ω1, ω2) such that 0 < ωi ≤ ki , i = 1, 2.
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2100 P. Weng and X. Zou

(ii) The system is cooperative.
(iii) The reaction term in (2.4) does not explicitly depend on x and t.
(iv) The growth functions F1 and F2 are continuous and piecewise continuously differ-

entiable for (0, 0) ≤ (p, q) ≤ (k1, k2) and differentiable at (0, 0).
(v) The principal eigenvalue γ1(μ) of the first diagonal block for Cμ and the prin-

cipal eigenvalue γ2(μ) of the second diagonal block for Cμ satisfy γ1(0) > 0,
γ1(0) > γ2(0), and the (2, 1) element of C0 is positive.

(vi) There is a μ̄ ∈ (0,∞) such that infμ>0{�(μ)} = �(μ̄) and γ1(μ̄) > γ2(μ̄), where
�(μ) := γ1(μ)

μ
.

(vii) For any ρ > 0, F(ρζ(μ̄)) ≤ ρDF(θ)ζ(μ̄), where ζ(μ) = (ζ1(μ), ζ2(μ)) is the
eigenvector corresponding to γ1(μ).

Then, system (2.4) has a single spreading speed c∗ and it is linearly determinate. Moreover,
the speed is indeed equal to �(μ̄).

We are now in the position to state and prove the first main result.

Theorem 3.1 Assume that either (H1)–(A1) or (H2)–(A1) holds. If

(C1) d2
d1

≤ 2,

then system (2.4) has a single spreading speed c∗ and it is linearly determinate, with the
speed being given by

c∗ = 2

√
d1 f

(
w2

c22

)
.

Proof By the preparations in Section 2, the conditions (i)–(iv) in the above proposition
are easily verified for (2.4). The principal eigenvalues of the first diagonal block and the
second block are

γ1(μ) = d1μ
2 + f

(
w2

c22

)
, γ2(μ) = d2μ

2 + w2g′(w2) (3.2)

respectively. The eigenvector corresponding to γ1(μ) is ζ(μ) = (ζ1(μ), ζ2(μ)), where

ζ1(μ) = γ1(μ)− γ2(μ) = (d1 − d2)μ
2 +

[
f

(
w2

c22

)
− w2g′(w2)

]
,

ζ2(μ) = −w2

c22
g′(w2) > 0. (3.3)

Thus, by the properties of f and g, we have

γ1(0) = f

(
w2

c22

)
> 0 > w2g′(w2) = γ2(0). (3.4)

The (2, 1) entry in the matrix C0 is −(w2/c22)g′(w2) which is obviously positive. Thus,
the hypothesis (v) in Proposition 3.1 is satisfied.

Note that

�(μ) := γ1(μ)

μ
= d1μ+ f ( w2

c22
)

μ
(3.5)
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Applicable Analysis 2101

is a concave up function of μ > 0. Thus, there is a finite μ̄ > 0 such that �(μ̄) =
infμ>0�(μ). Indeed, simple calculations give

μ̄ =
√

f ( w2
c22
)

d1
and �(μ̄) = 2

√
d1 f

(
w2

c22

)
.

Since

γ1(μ̄) = 2 f

(
w2

c22

)
, γ2(μ̄) = d2

d1
f

(
w2

c22

)
+ w2g′(w2),

the hypothesis γ1(μ̄) > γ2(μ̄) in (vi) of Proposition 3.1 is equivalent to(
2 − d2

d1

)
f

(
w2

c22

)
> w2g′(w2), (3.6)

which is guaranteed by the condition (C1).
For any constant ρ > 0,

F(ρζ(μ̄)) =
⎛
⎝ ρζ1(μ̄) f ( w2

c22
+ c11ρζ1(μ̄)− ρζ2(μ̄))

−
[
w2
c22

− ρζ2(μ̄)
]

g(w2 + ρζ1(μ̄)− c22ρζ2(μ̄))

⎞
⎠

and

ρDF(θ)ζ(μ̄) =
(

f
(
w2
c22

)
ρζ1(μ̄)

−w2
c22

g′(w2)ρζ1(μ̄)+ w2g′(w2)ρζ2(μ̄)

)
.

Making use of (3.3), we can see that condition (vii) in Proposition 3.1 is equivalent to⎧⎪⎨
⎪⎩

f
(
w2
c22

+ c11ρζ1(μ̄)− ρζ2(μ̄)
)

≤ f ( w2
c22
),

g(w2 + ρζ1(μ̄)− c22ρζ2(μ̄))− ρg′(w2)[ζ1(μ̄)− c22ζ2(μ̄)]
+ ρg′(w2)g(w2 + ρζ1(μ̄)− c22ρζ2(μ̄)) ≥ 0.

(3.7)

By the formulas of μ̄, ζ1(μ̄) and ζ2(μ̄), and using (C1) again, we obtain

c11ρζ1(μ̄)− ρζ2(μ̄)

= ρc11

[
ζ1(μ̄)− 1

c11
ζ2(μ̄)

]
= ρc11

[
(2 − d2

d1
) f ( w2

c22
)− w2

(
1 − 1

c11c22

)
g′(w2)

]
≥ 0.

Thus, the first inequality in (3.7) follows from the monotone property of the fitness
function f .

For the second inequality in (3.7), first we note that ζ1(μ̄) − c22ζ2(μ̄) = (2 − d2/d1)

f (w2/c22) ≥ 0 leading to

w2 + ζ1(μ̄)− c22ζ2(μ̄) ≥ w2.

It follows from the concave up property of g that

g(w2 + ρζ1(μ̄)− c22ρζ2(μ̄))− ρg′(w2)[ζ1(μ̄)− c22ζ2(μ̄)] ≥ 0.

Finally, the properties of g also imply

ρg′(w2)g(w2 + ρζ1(μ̄)− c22ρζ2(μ̄)) ≥ 0.
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2102 P. Weng and X. Zou

Hence, the second inequality in (3.7) also holds, implying that (vii) in Proposition 3.1 is
satisfied. The proof of this theorem is then completed by using Proposition 3.1. �

Remark 3.1 Assume that 0 ≤ p(x, 0) < u∗, 0 ≤ q(x, 0) < w2
c22

− v∗, and p(x, 0) and
q(x, 0) are zero outside a bounded set. By the meaning of c∗, we know that for any ε > 0,
the corresponding solution to (2.4) satisfies

lim
t→∞ sup

|x |≥(c∗+ε)t

[
p2(x, t)+ q2(x, t)

]
= 0;

and if (p(x, 0), q(x, 0)) � 0 on an interval, then

lim
t→∞ sup

|x |≤(c∗−ε)t

([
u∗ − p(x, t)

]2 +
[
w2

c22
− v∗ − q(x, t)

]2
)

= 0.

Next, we consider (2.5) under the assumptions (H1)–(A2). For convenience of applying
Proposition 3.1, we rewrite (2.5) as⎧⎪⎪⎨

⎪⎪⎩
∂q

∂t
= d2

∂2q

∂x2
+ q g

(
z0

c11
− p + c22q

)
=: d2

∂2q

∂x2
+ G1(q, p),

∂p

∂t
= d1

∂2 p

∂x2
−
(

z0

c11
− p

)
f (z0 − c11 p + q) =: d1

∂2 p

∂x2
+ G2(q, p).

(3.8)

The linearized system of (3.8) at the equilibrium θ = (0, 0) is⎧⎪⎪⎨
⎪⎪⎩
∂q

∂t
= d2

∂2q

∂x2
+ g

(
z0

c11

)
q,

∂p

∂t
= d1

∂2 p

∂x2
− z0

c11
f ′(z0)q + z0 f ′(z0)p.

(3.9)

Let G = (G1,G2). The Jacobian matrix of (3.8) at θ = (0, 0) is

DG(θ) =
⎛
⎜⎝ g

(
z0

c11

)
0

− z0

c11
f ′(z0) z0 f ′(z0)

⎞
⎟⎠ .

and accordingly, the so-called coefficient matrix of (3.9) is

Cμ =
⎛
⎜⎝ d2μ

2 + g

(
z0

c11

)
0

− z0

c11
f ′(z0) d1μ

2 + z0 f ′(z0)

⎞
⎟⎠ .

Parallel to Theorem 3.1 for (2.4), we have the following result for (3.8).

Theorem 3.2 Assume that (H1), (A2), and the following hold:

(C2) d1
d2

≤ 2,
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Applicable Analysis 2103

then system (3.8) (i.e. (2.5)) has a single spreading speed c∗ and it is linearly determinate.
Moreover, the speed is indeed given by

c∗ = 2

√
d2g

(
z0

c11

)
.

Proof Obviously, Proposition 3.1 is also valid for (3.8) with (2.4) replaced by (3.8), F
replaced by G and the order of p and q switched.Again it is easy to verify that the hypotheses
(i)–(iv) in Proposition 3.1 are satisfied for system (3.8). In the rest of the proof, we just need
to verify the conditions (v)–(vii).

The principal eigenvalues of the first diagonal block and the second block of Cμ are

γ1(μ) = d2μ
2 + g

(
z0

c11

)
, γ2(μ) = d1μ

2 + z0 f ′(z0) (3.10)

respectively. The eigenvector associated with γ1(μ) is ζ(μ) = (ζ1(μ), ζ2(μ)), where

ζ1(μ) = γ1(μ)− γ2(μ) = (d2 − d1)μ
2 +

[
g

(
z0

c11

)
− z0 f ′(z0)

]
,

ζ2(μ) = − z0

c11
f ′(z0) > 0. (3.11)

It follows from (H1) that γ1(0) = g(z0/c11) > 0 > z0 f ′(z0) = γ2(0), verifying (v).
To verify condition (vi), we calculate

�(μ) := γ1(μ)

μ
= d2μ+ g( z0

c11
)

μ
(3.12)

which attains its global infimum at μ̄ > 0 with

μ̄ =
√

g( z0
c11
)

d2
> 0 and �(μ̄) = 2

√
d2g

(
z0

c11

)
.

Note that

γ1(μ̄) = 2g

(
z0

c11

)
, γ2(μ̄) = d1

d2
g

(
z0

c11

)
+ z0 f ′(z0).

Hence, the hypothesis γ1(μ̄) > γ2(μ̄) in (vi) of Proposition 3.1 is equivalent to(
2 − d1

d2

)
g

(
z0

c11

)
> z0 f ′(z0), (3.13)

which is guaranteed by the condition (C2).
It remains to verify the condition (vii) which is expressed as G(ρζ(μ̄)) ≤ ρDG(θ)ζ(μ̄)

for any constant ρ > 0. Note that for ρ > 0,

G(ρζ(μ̄)) =

⎛
⎜⎜⎝

ρζ1(μ̄)g

(
z0

c11
+ c22ρζ1(μ̄)− ρζ2(μ̄)

)

−
[

z0

c11
− ρζ2(μ̄)

]
f (z0 + ρζ1(μ̄)− c11ρζ2(μ̄))

⎞
⎟⎟⎠
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2104 P. Weng and X. Zou

and

ρDG(θ)ζ(μ̄) =
⎛
⎜⎝ g

(
z0

c11

)
ρζ1(μ̄)

− z0

c11
f ′(z0)ρζ1(μ̄)+ z0 f ′(z0)ρζ2(μ̄)

⎞
⎟⎠ .

Hence, (vii) in Proposition 3.1 is equivalent to⎧⎪⎪⎨
⎪⎪⎩

g

(
z0

c11
+ c22ρζ1(μ̄)− ρζ2(μ̄)

)
≤ g

(
z0

c11

)
,

f (z0 + ρζ1(μ̄)− c11ρζ2(μ̄))− ρ f ′(z0)[ζ1(μ̄)− c11ζ2(μ̄)]
+ ρ f ′(z0) f (z0 + ρζ1(μ̄)− c11ρζ2(μ̄)) ≥ 0.

(3.14)

By the formulas of μ̄, ζ1(μ̄), and ζ2(μ̄), as well as the condition (C2), we then have

c22ρζ1(μ̄)− ρζ2(μ̄)

= ρc22

[
ζ1(μ̄)− 1

c22
ζ2(μ̄)

]
= ρc22

[(
2 − d1

d2

)
g
(

z0
c11

)
− z0

(
1 − 1

c11c22

)
f ′(z0)

]
≥ 0.

Thus, by the monotone property of fitness function g on [ z0
c11
,∞) (noting w∗ < z0

c11
under

(A2)), the first inequality in (3.14) holds.
Note that ζ1(μ̄)− c11ζ2(μ̄) =

(
2 − d1

d2

)
g
(

z0
c11

)
≥ 0 by (C2), that is,

z0 + ζ1(μ̄)− c11ζ2(μ̄) ≥ z0.

Since the fitness function f is concave up on [z0,∞), we obtain

f (z0 + ρζ1(μ̄)− c11ρζ2(μ̄))− ρ f ′(z0)[ζ1(μ̄)− c11ζ2(μ̄)] ≥ 0.

Furthermore, we know from the property of f that

ρ f ′(z0) f (z0 + ρζ1(μ̄)− c11ρζ2(μ̄)) ≥ 0.

Thus, the second inequality in (3.14) also holds, implying that (vii) in Proposition 3.1 is
satisfied. The proof of this theorem is completed. �

Remark 3.2 Assume that 0 ≤ p(x, 0) < z0
c11

− u∗, 0 ≤ q(x, 0) < v∗, and p(x, 0) and
q(x, 0) are zero outside a bounded set. By the meaning of c∗, we know that for any ε > 0,
the corresponding solution to (2.5) satisfies

lim
t→∞ sup

|x |≥(c∗+ε)t

[
p2(x, t)+ q2(x, t)

]
= 0;

and if (p(x, 0), q(x, 0)) � 0 on an interval, then

lim
t→∞ sup

|x |≤(c∗−ε)t

([
z0

c11
− u∗ − p(x, t)

]2

+ [v∗ − q(x, t)]2

)
= 0.

Summarizing the above results, we obtain the following theorem for the original
pioneer/climax system (2.1).
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Applicable Analysis 2105

Theorem 3.3 The following conclusions hold for system (2.1).

(i) Suppose either (H1)–(A1) or (H2)–(A1) hold. Assume that d2
d1

≤ 2. Then (2.1) has

a single spreading speed c∗ given by c∗ = c̄ = 2
√

d1 f ( w2
c22
) and it is linearly

determinate. Moreover, if 0 ≤ u(x, 0) < u∗, v∗ < v(x, 0) ≤ w2
c22

, and u(x, 0) = 0
and v(x, 0) = w2

c22
outside a bounded set, then for any ε > 0,

lim
t→∞ sup

|x |≥(c∗+ε)t

(
u2(x, t)+

[
w2

c22
− v(x, t)

]2
)

= 0;

in addition, if u(x, 0) > 0 and v(x, 0) < w2
c22

on an interval, then

lim
t→∞ sup

|x |≤(c∗−ε)t

([
u∗ − u(x, t)

]2 + [
v∗ − v(x, t)

]2
)

= 0.

(ii) Suppose (H1)–(A2) hold. Assume that d1
d2

≤ 2. Then (2.1) has a single spreading

speed c∗ given by c∗ = c̄ = 2
√

d2g( z0
c11
)which is linearly determinate. Moreover, if

u∗ < u(x, 0) ≤ z0
c11

, 0 ≤ v(x, 0) < v∗, and u(x, 0) = z0
c11

and v(x, 0) = 0 outside
a bounded set, then for any ε > 0,

lim
t→∞ sup

|x |≥(c∗+ε)t

([
z0

c11
− u(x, t)

]2

+ v2(x, t)

)
= 0;

in addition, if u(x, 0) < z0
c11

and v(x, 0) > 0 on an interval, then

lim
t→∞ sup

|x |≤(c∗−ε)t

([
u∗ − u(x, t)

]2 + [
v∗ − v(x, t)

]2
)

= 0.

4. Spreading speed as the minimal wave speed

As mentioned in the introduction, the notion of a traveling wave front is closely related to the
concept of spreading speed. In this section, we shall consider a suitable family of traveling
wave fronts of the model (2.1) within the same range of model parameters as identified in
Section 3.

A traveling wave solution of (2.1) is a solution of (2.1) of the form u(x, t) = φ

(x+ct), v(x, t) = ψ(x+ct), whereφ,ψ ∈ C2(R,R) are called the profiles of the traveling
wave solution and c > 0 is a constant which accounts for the wave speed. Substituting
u(t, x) = φ(x + ct) and v(t, x) = ψ(x + ct) into (2.1) and letting s = x + ct , one finds
that the profile functions φ(s) andψ(s) satisfy the following system of ordinary differential
equations {

d1φ
′′(s)− cφ′(s)+ φ(s) f (c11φ(s)+ ψ(s)) = 0,

d2ψ
′′(s)− cψ ′(s)+ ψ(s)g(φ(s)+ c22ψ(s)) = 0.

(4.1)

When the limits lims→±∞ φ(s) and lims→±∞ ψ(s) exist, the traveling wave solution is
referred to as a traveling wave front.

We will confine ourselves to the range of the parameters considered in Sections 2
and 3. Accordingly, we will only consider the traveling wave fronts satisfying the following
asymptotic boundary conditions:
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2106 P. Weng and X. Zou

under either (H1)–(A1) or (H2)–(A1):

{
lim

s→−∞φ(s) = 0, lim
s→∞φ(s) = u∗,

lim
s→−∞ψ(s) = w2

c22
, lim

s→∞ψ(s) = v∗; (4.2)

under (H1)–(A2):

{
lim

s→−∞φ(s) = z0
c11
, lim

s→∞φ(s) = u∗,
lim

s→−∞ψ(s) = 0, lim
s→∞ψ(s) = v∗. (4.3)

Note that (H1)–(A2) give the exact range of parameters considered in [13] where the
following result has been established:

Theorem 4.1 Assume that (H1)–(A2) hold and that d1
d2

≤ 2. Then c∗ = 2
√

d2g( z0
c11
) is

the minimal wave speed of traveling wave fronts of (2.1) connecting E3 = (z0/c11, 0) and
E∗ = (u∗, v∗), in the sense that for any c ≥ c∗, there is a co-invasion traveling wave front
with speed c connecting E3 and E∗; and for c ∈ (0, c∗) there is no such traveling wave
front with speed c, connecting these two equilibria.

From this theorem, we see that under (H1)–(A2), the single spreading speed confirmed
in Section 3 is nothing but the minimal wave speed. In the sequel, we will show that under
either (H1)–(A1) or (H2)–(A1), a similar conclusion holds, as is stated in the following
theorem.

Theorem 4.2 Assume that either (H1)–(A1) or (H2)–(A1) hold and d2
d1

≤ 2. Then

c∗ = 2
√

d1 f ( w2
c22
) is the minimal wave speed of (2.1) in the sense that for c ≥ c∗, (2.1)

has a traveling wave front with speed c connecting the climax-invasion-only equilibrium
E2 = (0, w2

c22
) and the coexistence equilibrium E∗ = (u∗, v∗); and for c ∈ (0, c∗) there is

no such traveling wave front with speed c, connecting these two equilibria.

Proof By equivalence, we only need to consider the traveling wave fronts of (2.4)
connecting Ê2 = (0, 0) and Ê∗ = (u∗, w22/c22 − v∗). Let p(t, x) = P(s) and q(t, x) =
Q(s) with s = x + ct . Then the profile functions P(s) and Q(s) need to satisfy{

d1 P ′′(s)− cP ′(s)+ F1(P(s), Q(s)) = 0,
d2 Q′′(s)− cQ′(s)+ F2(P(s), Q(s)) = 0,

(4.4)

as well as the following asymptotic boundary conditions{
lim

s→−∞ P(s) = 0, lim
s→∞ P(s) = u∗,

lim
s→−∞ Q(s) = 0, lim

s→∞ Q(s) = w2
c22

− v∗. (4.5)

Let

D = {(φ, ψ) ∈ C(R, R2) : 0 ≤ φ(s) ≤ u∗, 0 ≤ ψ(s) ≤ w2

c22
− v∗, s ∈ R}.

We define the following wave profile set for the traveling wave fronts for (2.4):


=
⎧⎨
⎩(φ,ψ) ∈ D :

(i) φ(s) is non-decreasing in R, lim
s→−∞φ(s) = 0, lim

s→∞φ(s) = u∗,
(i i) ψ(s) is non-decreasing in R, lim

s→−∞ψ(s) = 0, lim
s→∞ψ(s) = w2

c22
− v∗.

⎫⎬
⎭
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Applicable Analysis 2107

A pair of continuous functions (φ, ψ) is called an upper solution of (4.4) if φ,ψ are
twice continuously differentiable on R \ S and satisfy

d1φ
′′(s)− cφ′(s)+ F1(φ(s), ψ(s)) ≤ 0,

d2ψ
′′(s)− cψ ′(s)+ F2(φ(s), ψ(s)) ≤ 0,

(4.6)

for s ∈ R \ S, where S consists of at most finitely many points. (φ, ψ) is called a lower
solution of (4.4) if the inequalities in (4.6) are reversed.

Next, we proceed to construct a pair of required upper and lower solutions for (4.4). To
this end, we make use of the principal eigenvalue γ1(μ) and its corresponding eigenvector
ζ(μ) given by (3.2) and (3.3). By (H1), 0 < w2

c22
< z0, and thus

γ1(μ) = d1μ
2 + f

(
w2

c22

)
> 0 for μ > 0.

Note that as a function of μ,

ζ1(μ) = γ1(μ)− γ2(μ) = (d1 − d2)μ
2 +

[
f

(
w2

c22

)
− w2g′(w2)

]

is either increasing on [0, μ̄] (if d1 > d2) or decreasing on [0, μ̄] (if d1 < d2). On the other
hand, we have shown in Section 3 that

γ1(0) > γ2(0), γ1(μ̄) = 2 f

(
w2

c22

)
>

d2

d1
f

(
w2

c22

)
+ w2g′(w2) = γ2(μ̄),

implying ζ(0) > 0 and ζ(μ̄) > 0. Therefore, ζ(μ) is in fact a strictly positive eigenvector
corresponding to γ1(μ) for all μ ∈ [0, μ̄].

Note that c∗ = infμ>0�(μ) = �(μ̄). It is obvious that �(μ) = d1μ+ f ( w2
c22
)/μ has

the following properties: (i) �(μ) → ∞ as μ → 0+; �(μ) → ∞ as μ → ∞. (ii) �(μ)
is decreasing for μ ∈ (0, μ̄) and increasing for μ ∈ (μ̄,∞).

Let c > c∗ be given. By the above properties, we know that on the interval (0, μ̄) the
equation �(μ) = c has exactly one solution, denoting it by μ1 = μ(c). Choose ε > 0
sufficiently small so that με = μ1 + ε < μ̄ and ζε = (ζ1(με), ζ2(με)) � 0. Let

γε = γ1(με), cε = �(με).

Obviously, c∗ < cε < c.
Define

P̄(s) := min{u∗, ζ1(μ1)eμ1s}, Q̄(s) := min
{
w2
c22

− v∗, ζ2(μ1)eμ1s
}
,

P(s) := max{0, ζ1(μ1)eμ1s − δζ1(με)eμεs}, Q(s) := 0,

where δ > 0 is sufficiently large. Then we have

P(s) ≤ P̄(s), Q(s) ≤ Q̄(s) for s ∈ R.

Straightforward but tedious verifications show that (P̄(s), Q̄(s)) is an upper solution of
(4.4), and (P(s), Q(s)) is a lower solution of (4.4) if δ > 0 is large. Noting that the
cooperative property of (2.4) means that the F(p, q) = (F1(p, q), F2(p, q)) satisfies the
so-called quasi-monotonicity condition. Therefore, the standard iteration approach using
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2108 P. Weng and X. Zou

the upper solution (P̄(s), Q̄(s)) as the initial function lead to existence of a solution to (4.4)
satisfying (4.5), implying that (2.4) has a traveling wave front with speed c connecting Ê
and Ê∗. For details of such iteration schemes see, e.g. [29,30].

For the critical case c = c∗, by an argument of perturbing c and taking a limit,
similar to that in [29,31], one can also show that (2.4) has a traveling wave front with
speed c∗ connecting Ê and Ê∗. For c ∈ (0, c∗), the second limit in Remark 3.1 will
prevent the existence of a traveling wave front with speed c connecting Ê and Ê∗, see, e.g.
[19, Theorem 4.3]. The proof is completed. �

Remark 4.1 In the proof of Theorem 4.2, we have made use of the positive eigenvector
ζ(μ) associated with the principal eigenvalue γ1(μ) of the matrix Cμ to construct the
required upper-lower solutions. For an irreducible nonnegative matrix, the existence of such
a positive principal eigenvalue and the corresponding positive eigenvector is guaranteed by
the Perron-Frobenius Theorem. In our case, Cμ is nonnegative but it is reducible. Thus, the
Perron-Frobenius Theorem can not be applied. However, we have shown that Cμ also has
a positive principal eigenvalue γ1(μ) and a corresponding positive eigenvector ζ(μ).

5. Conclusion and discussion

The work [13] considered the existence of traveling wave fronts connecting the pioneer-only
boundary equilibrium and a coexistence equilibrium under some conditions on the model
parameters. In this work, we have identified some other new ranges of model parameters in
the context of traveling wave fronts. Moreover, both within the range of parameters given
in [13] and the new ranges newly identified in this paper, we have also confirmed that the
two species spread by a single spreading speed, and this speed is linearly determinate and
it coincides with the minimal speed of traveling wave fronts connecting the two relevant
equilibria. Note that among the two relevant equilibria is a coexistence equilibrium. Thus,
these ranges present a scenario of mild (or friendly) competition, leading to an ultimate
coexistence state.

We point out that a common feature for these identified ranges is that the model system
(2.1) is quasi-monotone in the corresponding region depending on the two relevant equilibria
under consideration, which makes it possible to apply the theory developed in [28]. As the
structure of equilibria for this model system is rich, it is also interesting and worthwhile to
investigate the same issues as addressed in this paper but for other parameter ranges allowing
different equilibrium structure. A complete classification of parameters in this regard will
surely help us better understand the causes of biological diversity in nature.
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