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Abstract This paper deals with the existence of travelling wave fronts of delayed reaction diffusion systems
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1 Introduction

It is known that in certain situations traveing wave solutions play a key role in characterizing
the behavior of general solutions of reaction diffusion systems with given initial conditions.
For reaction diffusion systems without time delay, existence of travelling wave solutions have
been extensively and intensively studied, see Gardner[3], Fife[2], Britton[1], Murray[9], Volpert
et al.[17] and so on. However, little is known on travelling wave solutions for reaction diffusion
systems with time delay. Schaaf[11], in a pioneer work, systematically studied a scalar reaction
diffusion equation with a single discrete delay by using the phase-plane technique, the maximum
principle for parabolic functional differential equations and general theory for ordinary func-
tional differential equations. Recently Schaaf’s work has drawn much attention and initiated
the study of travelling wave solutions to delayed reaction diffusion systems. Zou and Wu[21]

considered systems with quasimonotonicity and a single delay, and established existence of trav-
elling wavefronts by first truncating the unbounded domain and then passing to infinity. Smith
and Zhao[14] also considered a delayed reaction diffusion equation with quasi-monotonicity and
studied the global asymptotic stability, Lyapunov stability, and uniqueness of travelling wave
solutions by the elementary super- and subsolution comparison and squeezing methods. By
establishing some spectral properties for the variation equations for delayed systems, Huang[7],
obtained monotone heteraclinic orbits, corresponding to travelling wave fronts in the setting of
delayed reaction diffusion systems.

Recently, Wu and Zou[19] further studied general reaction diffusion systems with general
finite delays, where both quasimonotone and a type of weakened quasimonotone (we will call it
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exponetially quasimonotone) reaction terms were considered. More precisely, Wu and Zou[19]

considered systems of the form

∂

∂t
u(x, t) = D

∂2

∂x2
u(x, t) + f(ut(x)), t > 0, x ∈ R. (1.1)

Here, u ∈ Rn,D = diag(d1, . . . , dn) with di > 0, i = 1, · · · , n; f : C([−τ, 0]), Rn) → Rn is con-
tinuous, f(0) = 0 = f(K) and f(u) �= 0 for u ∈ (0,K). ut(x) ∈ C([−τ, 0], Rn), parameterized
by x ∈ R, is defined by ut(x)(θ) = u(t + θ, x) for any θ ∈ [−τ, 0]. In the sequel, when there is
no danger confusion, we will suppress the x and write ut(x) = ut. By quasi-monotonicity of
(1.1), we mean the following

(QM) There exists a matrix β = diag(β1, · · · , βn) with βi ≥ 0, i = 1, · · · , n, such that

f(φ(x)) − f(ψ(x)) + β[φ(x)(0) − ψ(x)(0)] ≥ 0

for φ(x), ψ(x) ∈ X = C([−τ, 0];Rn) with 0 ≤ ψ(x)(s) ≤ φ(x)(s) ≤ K for s ∈ [−τ, 0].

Here and in the sequel, an inequality in Rn is in the sense of standard ordering in Rn, that is, in
the componentwise sense. If β = 0, (QM) reduces to the usual monotonocity. By exponentially
quasi-monotonicity for (1.1), we mean the following weakened quasi-monotonicity

(QM∗) There exists a matrix β =diag (β1, · · · , βn) with βi ≥ 0, i = 1, · · · , n, such that

f(φ(x)) − f(ψ(x)) + β[φ(x)(0) − ψ(x)(0)] ≥ 0

for φ(x), ψ(x) ∈ X = C([−τ, 0];Rn) with (i) 0 ≤ ψ(x)(s) ≤ φ(x)(s) ≤ K for s ∈ [−τ, 0];
and (ii) eβs[φ(x)(s) − ψ(x)(s)] non-decreasing in s ∈ [−τ, 0].

The approach in Wu and Zou[19] is a combination of the upper-lower solutions and a mono-
tone iteration scheme for functions defined on the whole real line (thus, no truncation is needed),
and therefore, has the advantage of numerical approximations. In applying the main results
in Wu and Zou[19] to particular models, one faces two major chanllenges: (A) verifying (QM)
or (QM∗); (B) under (QM) or (QM∗), constructing the required pair of upper-lower solutions
starting with which the iteration generates a monotone sequence that converges to the profile
of the travelling wave front. There have been some successes in these two aspects, reported in
the application section of Wu and Zou[19], as well as in the recent work of Gourley[4], Huang
and Zou[5], So, Wu and Zou[15] and So and Zou[16]. In the mean time, there have been more
unsuccesful attempts for many other model systems.

Addressing (B), Ma[8], and Huang and Zou[6] employ the Schauder’s fixed point theorem
to relax the requirements for the upper-lower solutions, but with the cost of sacrificing the
monotonicity of the iteration sequence. For (A), it is quite common that the reaction terms in
model systems arising from a practical problem may not satisfy (QM) or (QM∗). One can find
many such systems, and an immediate yet simple one is the following Lotka-Volterra system of
competition-cooperation type

⎧
⎪⎨

⎪⎩

∂u(x, t)
∂t

= d1
∂2u(x, t)
∂x2

+ r1u(x, t)[1 − a1u(x, t− τ1) − b1v(x, t)],

∂v(x, t)
∂t

= d2
∂2v(x, t)
∂x2

+ r2v(x, t)[1 + a2u(x, t) − b2v(x, t− τ2)].
(1.2)

Therefore, it is of both theoretic and practical importance and interest to find ways to establish
the existence of travelling wave fronts for delayed reaction diffusion systems that do not satisfy
(QM) and (QM∗), and this constitutes the purpose of this paper.
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In this paper we will consider systems with “partial quasi-monotonicity” (PQM) or weakened
“partially exponential quasi-monotonicity” (PQM∗) in the sense to be specified later. In order
for the mathematical ideas not to be obscured by the complexity of a system, we only focus on
delayed systems of two equations of the form

⎧
⎪⎨

⎪⎩

∂

∂t
u(x, t) = d1

∂2

∂x2
u(x, t) + f1

(
ut(x), vt(x)

)
,

∂

∂t
v(x, t) = d2

∂2

∂x2
v(x, t) + f2

(
ut(x), vt(x)

)
.

(1.3)

The approach can be extended to systems of more than two equations without essential diffi-
culties. Our new partial quasi-monotonicity conditions are motivated by (1.2) and many other
systems such as diffusive competition-cooperation system, while our approach to tackle such
systems is a combination of the cross iteration method which has been used to study the initial
and boundary value problems for reaction diffusion systems without delay (see, e.g., Pao[10]

or Ye and Li[18] and the references therein), and the Schauder’s fixed point theorem technique
employed in Ma[8], and Huang and Zou[6].

The rest of this paper is organized as follows. In Section 2, some preliminaries are given.
The main theorems on the existence of travelling wavefronts for System (1.3) satisfying partial
quasi-monotonicity (PQM) or (PQM∗) are presented in Sections 3 and 4.

2 Preliminaries

Throughout this paper, we adopt the usual notations for the standard ordering in R2. Thus,
for u = (u1, u2)T and v = (v1, v2)T , we denote u ≤ v if ui ≤ vi, i = 1, 2; u < v if u ≤ v but
u �= v; and u� v if u ≤ v but ui �= vi, i = 1, 2. If u ≤ v, we also denote (u, v] = {w ∈ R2 : u <
w ≤ v}, [u, v) = {w ∈ R2 : u ≤ w < v}, and [u, v] = {w ∈ R2 : u ≤ w ≤ v}. We use | · | to
denote the Euclidean norm in R2 and || · || to denote the supremum norm in C([−τ, 0], R2) .

A travelling wave solution of (1.3) is a solution (u(x, t), v(x, t)) with the special form
u(x, t) = φ(x + ct), v(x, t) = ψ(x + ct) where φ,ψ ∈ C2(R,R), and c > 0 is a positive
constant accounting for the wave speed. Substituting u(x, t) = φ(x + ct), v(x, t) = ψ(x + ct)
and denoting the travelling wave coordinate x+ ct still by t, we obtain the corresponding wave
equations {

d1φ
′′(t) − cφ′(t) + f1c(φt, ψt) = 0,

d2ψ
′′(t) − cψ′(t) + f2c(φt, ψt) = 0

(2.1)

where fic(φs, ψs) : Xcτ = C([−cτ, 0], R2) → R is defined by

fic(φ, ψ) = fi(φc, ψc), φc(s) = φ(cs), ψc(s) = ψ(cs), s ∈ [−τ, 0], i = 1, 2. (2.2)

Here (φ, ψ) is called a profile of the travelling wave solution, and (2.2) is called the corresponding
wave equation for (2.1). In this work, we are only interested in travelling wave fronts which
are travelling wave solutions with the profile satisfying the following asymptotic boundary
conditions:

lim
t→−∞φ(t) = φ− lim

t→−∞ψ(t) = ψ−,

lim
t→+∞φ(t) = φ+ lim

t→+∞ψ(t) = ψ+. (2.3)

Without loss of generality, we assume that φ− = 0, ψ− = 0 and φ+ = k1, ψ+ = k2, under
which (2.3) reads

lim
t→−∞φ(t) = 0, lim

t→−∞ψ(t) = 0,

lim
t→+∞φ(t) = k1, lim

t→+∞ψ(t) = k2. (2.4)
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Corresponding to (2.4), we make the following hypotheses:

(A1) f(0̃) = f(K̃) = 0 with 0 < K = (k1, k2), where by ũ we mean a constant function from
[−τ, 0] to R2 taking the value u for all t ∈ [−τ, 0].

(A2) f2(φ, ψ) = ψ(0)[h(ψ) + aφ(0)] where the functional h(φ) is continuous and a > 0.

(A3) There exist two positive constants L1 > 0, L2 > 0 such that

|f1(φ1, ψ1) − f1(φ2, ψ2)| ≤ L1||Φ − Ψ||,
|f2(φ1, ψ1) − f2(φ2, ψ2)| ≤ L2||Φ − Ψ||

for Φ = (φ1, ψ1),Ψ = (φ2, ψ2) ∈ C([−τ, 0], R) with 0 ≤ Φ(s),Ψ(s) ≤ K, s ∈ [−τ, 0], i =
1, 2.

We point out that while (A1) and (A3) are standard requirements for travelling wave fronts,
(A2) is motivated by System (1.2) and various other models with Gause competitive type
specices interactions.

In the next section, we will apply the Schauder fixed point theorem, which requires conti-
nuity of the operator under consideration. For this purpose, we need to introduce a topology
in C(R,R2). Let µ > 0 and equipped C(R,R2) with the exponential decay norm defined by

|Φ|µ = sup
t∈R

e−µ|t||Φ(t)|R2 .

Denote also
Bµ(R,R2) = {Φ ∈ C(R,R2) : |Φ|µ <∞}.

Then it is easy to show that (Bµ(R,R2), | · |µ) is a Banach space.
In order to obtain a subset of C(R,R2) in which the Schauder’s fixed point theorem can be

applied, we introduce the concept of disirable pair of upper-lower solutions for (2.1).

Definition 2.1. A pair of continuous function ρ(t) = (φ(t), ψ(t)) and ρ(t) = (φ(t), ψ(t)) for
t ∈ R is called a desirable pair of upper-lower solutions of (2.1) if ρ′, ρ′′, ρ′ and ρ′′ exist almost
everywhere (a.e.) in R and they are essentially bounded on R, and there hold

d1φ
′′
(t) − cφ

′
(t) + f1c(φt, ψt

) ≤ 0, a.e. in R. (2.5)

d2ψ
′′
(t) − cψ

′
(t) + f2c(φt, ψt) ≤ 0, a.e. in R. (2.6)

and

d1φ
′′(t) − cφ′(t) + f1c(φt

, ψt) ≥ 0, a.e. in R. (2.7)

d2ψ
′′(t) − cψ′(t) + f2c(φt

, ψ
t
) ≥ 0, a.e. in R. (2.8)

Note that, unlike the standard upper solutions and lower solutions defined in [19], f1c is
evaluated in a cross iteration scheme given in (2.5) and (2.7), which possess some suitable
monotonicity (see [18]).

3 Partially Quasimonotone Case

Although many model systems do not satisfy (QM) or QM∗, they may be quasi-monotone with
respect to some particular component(s). System (1.2) provide a prototype of such systems, by
which we are motivated to propose the following partial quasi-monotonicity condition.
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(PQM) There exist two positive constants β1 > 0, β2 > 0 such that

f1c(φ1, ψ1) − f1c(φ2, ψ1) + β1[φ1(0) − φ2(0)] ≥ 0,
f1c(φ1, ψ1) − f1c(φ1, ψ2) ≤ 0,
f2c(φ1, ψ1) − f2c(φ2, ψ2) + β2[ψ1(0) − ψ2(0)] ≥ 0.

where φ1, φ2, ψ1, ψ2 ∈ C([−τ, 0], R) with 0 ≤ φ2(s) ≤ φ1(s) ≤ k1, 0 ≤ ψ2(s) ≤ ψ1(s) ≤ k2, s ∈
[−τ, 0].

Note that for convenience, (PQM) (also (PQM∗) in Section 4 is expressed in terms of fc =
(f1c, f2c) in C([−τ, 0], R), but this may be stated equivalently as f = (f1, f2) in C([−τ, 0], R),
as that in (QM) and (QM∗) in Section 1.

In this section, we explore the existence of solutions of (2.1)–(2.4) with f1c(φt, ψt) and
f1c(φt, ψt)) satisfying (PQM). In what follows, we assume that a desired pair of upper-lower
solutions (φ(t), ψ(t)) and (φ(t), ψ(t)) of (2.1) are given so that

(P1) (0, 0) ≤ (φ(t), ψ(t)) ≤ (φ(t), ψ(t)) ≤ (k1, k2), t ∈ R.
(P2) lim

t→−∞(φ(t), ψ(t)) = (0, 0), lim
t→∞(φ(t), ψ(t)) = (k1, k2),

(P3) sup
s≤t

(φ(s), ψ(s)) ≤ (φ(t), ψ(t)) for all t ∈ R.

We point out that if either (φ(t), ψ(t)) or (φ(s), ψ(s)) is non-decreasing, then (P3) is implied
by (P1).

For the constants β1 > 0 and β2 > 0 in (PQM), define H : C(R,R2) → C(R,R2) by

H1(φ, ψ)(t) = f1c(φt, ψt) + β1φ(t), φ, ψ ∈ C(R,R), (3.1)
H2(φ, ψ)(t) = f2c(φt, ψt) + β2ψ(t), φ, ψ ∈ C(R,R). (3.2)

The operator H1 and H2 enjoy the following nice properties:

Lemma 3.1. Assume that (A1) and (PQM) hold. Then

H1(φ2, ψ1)(t) ≤ H1(φ1, ψ1)(t), H1(φ1, ψ1)(t) ≤ H1(φ1, ψ2)(t)

for t ∈ R and φi, ψi ∈ C(R,R), i = 1, 2, with 0 ≤ φ2(t) ≤ φ1(t) ≤ k1, 0 ≤ ψ2(t) ≤ ψ1(t) ≤
k2.

Proof. By (PQM), direct calculation shows that

H1(φ1, ψ1)(t) −H1(φ2, ψ1)(t) = f1c(φ1t, ψ1t) − f1c(φ2t, ψ1t) + β1[φ1(t) − φ2(t)] ≥ 0,
H1(φ1, ψ1)(t) −H1(φ1, ψ2)(t) = f1c(φ1t, ψ1t) − f1c(φ1t, ψ2t) ≤ 0.

This completes the proof.

Lemma 3.2[19]. Assume that (A1) and (PQM) hold. Then for any (0, 0) ≤ (φ,ψ) ≤ (k1, k2)
which φ(t) and ψ(t) are nondecreasing in t, we have

(i) H2(φ,ψ)(t) ≥ 0, t ∈ R,
(ii) H2(φ,ψ)(t) is nondecreasing for t ∈ R,
(iii) H2(φ2, ψ2)(t) ≤ H2(φ1, ψ1)(t) for t ∈ R and ψi, ψi ∈ C(R,R), i = 1, 2, with 0 ≤

φ2(t) ≤ φ1(t) ≤ k1, 0 ≤ ψ2(t) ≤ ψ1(t) ≤ k2.
In terms of H1 and H2, (2.1) can be rewritten as

{
d1φ

′′(t) − cφ′(t) − β1φ(t) +H1(φ,ψ)(t) = 0,
d2ψ

′′(t) − cψ′(t) − β2ψ(t) +H2(φ,ψ)(t) = 0,
t ∈ R. (3.3)



248 J.H. Huang, X.F. Zou

Define

λ1 =
c−

√
c2 + 4β1d1

2d1
, λ2 =

c+
√
c2 + 4β1d1

2d1
,

λ3 =
c−

√
c2 + 4β2d2

2d2
, λ4 =

c+
√
c2 + 4β2d2

2d2
.

One easily sees that λ1 < 0, λ2 > 0, λ3 < 0 and λ4 > 0. Let

CK(R,R2) = {(φ,ψ) ∈ C(R,R2) : (0, 0) ≤ (φ,ψ) ≤ (k1, k2)},

and define F = (F1, F2) : CK(R,R2) → C(R,R2) by

F1(φ, ψ)(t) =
1

d1(λ2 − λ1)

[ ∫ t

−∞
eλ1(t−s)H1(φ,ψ)(s)ds+

∫ ∞

t

eλ2(t−s)H1(φ,ψ)(s)ds
]
,

F2(φ, ψ)(t) =
1

d2(λ4 − λ3)

[ ∫ t

−∞
eλ3(t−s)H2(φ,ψ)(s)ds+

∫ ∞

t

eλ4(t−s)H2(φ,ψ)(s)ds
]
,

for (φ, ψ) ∈ CK(R,R2). It is easy to show that F : CK(R,R2) → C(R,R2) is well defined, and
for any φ, ψ ∈ CK(R,R), F1(φ,ψ) F2(φ,ψ) satisfy

d1F
′′
1 (φ,ψ) − cF ′

1(φ,ψ) − β1F1(φ,ψ) +H1(φ,ψ) = 0, (3.4)
d2F

′′
2 (φ,ψ) − cF ′

2(φ,ψ) − β2F2(φ,ψ) +H2(φ,ψ) = 0. (3.5)

Thus, if F (φ,ψ) = (F1(φ,ψ), F2(φ,ψ)) = (φ,ψ), i.e., (φ,ψ) is a fixed point of F , then (3.4),
(3.5) reduce to (3.3), meaning that (3.3) has a solution (φ,ψ). If this solution further satisfies
the boundary condition (2.4), then it gives a travelling wavefront.

Corresponding to Lemmas 3.1, 3.2, we have the following lemma for F , which is a direct
consequence of Lemmas 3.1, 3.2.

Lemma 3.3. Assume that (A1) and (PQM) hold. Then for any (0, 0) ≤ (φ,ψ) ≤ (k1, k2),
we have

(i) F2(φ,ψ)(t) is nondecreasing for t ∈ R;
(ii) F1(φ2, ψ1) ≤ F1(φ1, ψ1), F1(φ1, ψ1) ≤ F1(φ1, ψ2), F2(φ2, ψ2)(t) ≤ F2(φ1, ψ1)(t) for

t ∈ R and φi, ψi ∈ C(R,R), i = 1, 2, with 0 ≤ φ2(t) ≤ φ1(t) ≤ k1 0 ≤ ψ2(t) ≤ ψ1(t) ≤ k2.

Proof. We just prove (i). To prove (i), let t ∈ R and s > 0 be given, we have

F2(φ,ψ)(t+ s) − F2(φ,ψ)(t)

=
1

d2(λ4 − λ3)

[ ∫ t+s

−∞
eλ3(t+s−θ)H2(φ,ψ)(θ)dθ +

∫ ∞

t+s

eλ4(t+s−θ)H2(φ,ψ)(θ)dθ
]

− 1
d2(λ4 − λ3)

[ ∫ t

−∞
eλ3(t−θ)H2(φ,ψ)(θ)dθ +

∫ ∞

t

eλ4(t−θ)H2(φ,ψ)(θ)dθ
]

=
1

d2(λ4 − λ3)

[ ∫ t

−∞
eλ3(t−θ)

(
H2(φ,ψ)(s+ θ) −H2(φ,ψ)(θ)

)
dθ

+
∫ ∞

t

eλ4(t−θ)
(
H2(φ,ψ)(s+ θ) −H2(φ,ψ)(θ)

)
dθ

]
.

It follows from Lemma 3.2 (ii) that H2(φ,ψ)(s + θ) − H2(φ,ψ)(θ) > 0, which implies that
F2(φ, ψ)(t) is nondecreasing in t ∈ R.
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Now, we define the set

Γ
(
(φ, ψ), (φ,ψ)

)
:=

{

(φ,ψ) ∈ C(R,R2)
(i) ψ(t) is nondecreasing in R,
(ii) φ(t) ≤ φ(t) ≤ φ(t), and ψ(t) ≤ ψ(t) ≤ ψ(t)

}

It is easy to see that Γ((φ,ψ), (φ,ψ)) is non-empty. In fact, let φ0(t) = sup
s≤t

φ(s), ψ0(t) =

sup
s≤t

ψ(s), then (P3) implies (φ0(t), ψ0(t)) ∈ Γ((φ, ψ), (φ,ψ)). Moreover, it is obvious that

Γ((φ, ψ), (φ,ψ)) is convex, closed and bounded.
From now on, we choose the parameter µ > 0 for the exponential decay norm to be such

that µ < min{−λ1, λ2, −λ3, λ4}. We next verify the continuity of F .

Lemma 3.4. Assume (A3) holds, then F = (F1, F2) is continuous with respective to the
norm | · |µ in Bµ(R,R2).

Proof. We prove Lemma 3.4 by two steps. The first step is to prove that H = (H1,H2) :
Bµ(R,R2) → Bµ(R,R2) is continuous with respect to the norm | · |µ in Bµ(R,R2).

For any fixed ε > 0, let δ < ε
L1eµcτ+β1

. Then for Φ = (φ1, ψ1), Ψ = (φ2, ψ2) ∈ Bµ(R,R2)
with

|Φ − Ψ|µ = |
t∈R

Φ(t) − Ψ(t)|e−µ|t| < δ, sup

we have

|H1(ψ1, ψ1)(t) −H1(φ,ψ)(t)|e−µ|t|

≤ |f1(φ1t, ψ1t) − f1(φ2t, ψ2t)|e−µ|t| + β1|φ1 − φ2|µ
≤ L1||Φt − Ψt||Xcτ e

−µ|t| + β1|φ1 − φ2|µ
= L1 sup

s∈[−cτ,0]

|Φ(s+ t) − Ψ(s+ t)|e−µ|t| + β1|Φ − Ψ|µ

≤ L1 sup
s∈[−cτ,0]

|Φ(s+ t) − Ψ(s+ t)|e−µ|t+s| sup
s∈[−cτ,0]

eµ|t+s|e−µ|t| + β1|Φ − Ψ|µ

≤ L1|Φ − Ψ|µ|e−µ|t|eµ|t|eµcτ + β1|Φ − Ψ|µ
≤ L1e

µcτ |Φ − Ψ|µ + β1|Φ − Ψ|µ
≤ (L1e

µcτ + β1)|Φ − Ψ|µ ≤ ε.

which implies that H1 : Bµ(R,R2) → Bµ(R,R2) is continuous.
Similarly, it can be shown that H2 : Bµ(R,R2) → Bµ(R,R2) is continuous. Thus, we obtain

that H = (H1,H2) is continuous with respect to the norm | · |µ in Bµ(R,R2).
Next, we prove the continuity of F = (F1, F2). If t ≥ 0,

|F1(φ1, ψ1)(t) − F1(φ2, ψ2)(t)|e−µ|t|

≤ 1
d1(λ2 − λ1)

[ λ2 − λ1

(µ− λ1)(λ2 − µ)
+

2µ
λ2

1 − µ2
e(λ1−µ)t

]
|H1(φ1, ψ1) −H1(φ2, ψ2)|µ

≤ 1
d1(λ2 − λ1)

[ λ2 − λ1

(µ− λ1)(λ2 − µ)
+

2µ
λ2

1 − µ2

]
|H1(Φ)(t) −H1(Ψ)(t)|µ.

If t < 0, we have

|F1(φ1, ψ1)(t) − F1(φ2, ψ2)(t)|e−µ|t|

≤ 1
d1(λ2 − λ1)

[ λ2 − λ1

−(µ+ λ1)(λ2 + µ)
+

2µ
λ2

1 − µ2
e(λ2+µ)t

]
|H1(φ1, ψ1) −H1(φ2, ψ2)|µ

≤ 1
d1(λ2 − λ1)

[ λ2 − λ1

−(µ+ λ1)(λ2 + µ)
+

2µ
λ2

1 − µ2

]
|H1(Φ) −H1(Ψ)|µ.
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Therefore, the continuity of F1 follows from that of H1.
The proof of continuity of F2 with respect to the norm | · |µ in Bµ(R,R2) is similar to that

of F1. The proof is completed.

Lemma 3.5. Assume (A1) and (PQM) hold. Then F (Γ((φ, ψ), (φ,ψ)) ⊂ Γ((φ, ψ), (φ,ψ)).

Proof. For any (φ,ψ) with (φ,ψ) ≤ (φ,ψ) ≤ (φ,ψ), we first claim that

F1(φ,ψ) ≤ F1(φ,ψ) ≤ F1(φ,ψ), F2(φ, ψ) ≤ F2(φ,ψ) ≤ F2(φ,ψ). (3.6)

In fact, since φ ≤ φ ≤ φ, ψ ≤ ψ ≤ ψ, by (PQM), it follows

H1(φ,ψ)(t) −H1(φ,ψ)(t) = f1(φt, ψt
) − f1(φt, ψt) + β1(φ(t) − φ(t))

= f1(φt, ψt
) − f1(φt, ψt

) + β1(φ(t) − φ(t)) + f1(φt, ψt
) − f1(φt, ψt)

≥ f1(φt, ψt
) − f1(φt, ψt) ≥ 0,

which implies that H1(φ,ψ)(t) ≥ H1(φ,ψ)(t). Similarly, H1(φ,ψ) ≤ H1(φ,ψ). Hence, we
obtain

H1(φ,ψ) ≤ H1(φ,ψ) ≤ H1(φ,ψ). (3.7)

By a similar argument, we can also get

H2(φ,ψ) ≤ H2(φ,ψ) ≤ H2(φ,ψ). (3.8)

From (3.7), it follows that

F1(φ,ψ)(t) − F1(φ,ψ)(t) =
1

d1(λ2 − λ1)

[ ∫ t

−∞
eλ1(t−s)

[
H1(φ,ψ) −H1(φ,ψ)

]
ds

+
∫ ∞

t

eλ2(t−s)
[
H1(φ,ψ) −H1(φ,ψ)

]
ds

]
≥ 0

and

F1(φ,ψ)(t) − F1(φ,ψ)(t) =
1

d1(λ2 − λ1)

[ ∫ t

−∞
eλ1(t−s)

[
F1(φ,ψ) − F1(φ,ψ)

]
ds

+
∫ ∞

t

eλ2(t−s)
[
F1(φ,ψ) − F1(φ,ψ)

]
ds

]
≥ 0

This establishes the first part of (3.6). Repeating the above argument but using (3.8) instead,
we arrive at the second part of (3.6).

Next, we prove F1(φ,ψ) ≤ φ and F1(φ,ψ) ≥ φ. By the definition of the desirable pair of
upper-lower solutions, we know

d1φ
′′
(t) − cφ

′
(t) − β1φ(t) +H1(φ,ψ)(t) ≤ 0. (3.9)

Choosing (φ,ψ) = (φ,ψ) in (3.4) and denoting φ1(t) = F1(φ,ψ)(t), we have

d1φ
′′
1(t) − cφ

′
1(t) − β1φ1(t) +H1(φ,ψ)(t) = 0. (3.10)

Setting w(t) = φ1(t) − φ(t) and combining (3.9) and (3.10) gives

d1w(t)′′ − cw′(t) − β1w(t) ≥ 0 (3.11)
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Repeating the proof of Lemma 3.3 in Wu and Zou[19] shows that w(t) ≤ 0, which implies that
F1(φ, ψ) ≤ φ.

By a similar argument, we can prove that F1(φ,ψ) ≥ φ, F2(φ,ψ) ≤ ψ and F2(φ,ψ) ≥ ψ.
This completes the proof.

Lemma 3.6. Assume (PQM) holds, then F : Γ((φ, ψ), (φ,ψ)) → Γ((φ, ψ), (φ,ψ)) is
compact.

Proof. We first establish an estimate for F ′. For any (φ,ψ) ∈ Γ((φ, ψ), (φ,ψ)),

F ′
1(φ, ψ)(t) =

λ1e
λ1t

d1(λ2 − λ1)

∫ t

−∞
e−λ1sH1(φ,ψ)(s)ds+

λ2e
λ2t

d1(λ2 − λ1)

∫ ∞

t

e−λ2sH1(φ,ψ)(s)ds

Thus,

||F ′
1(φ,ψ)(t)||µ = sup

t∈R

[
e−µ|t| λ1e

λ1t

d1(λ2 − λ1)

∫ t

−∞
e−λ1sH1(φ,ψ)(s)ds

+ e−µ|t| λ2e
λ2t

d1(λ2 − λ1)

∫ ∞

t

e−λ2sH1(φ,ψ)(s)ds
]

≤ |λ1|
d1(λ2 − λ1)

sup
t∈R

eλ1t−µ|t|
∫ t

−∞
e−λ1seµ|s|e−µ|s|H1(φ,ψ)(s)ds

+
λ2

d1(λ2 − λ1)
sup
t∈R

eλ2t−µ|t|
∫ ∞

t

e−λ2seµ|s|e−µ|s|H1(φ,ψ)(s)ds

≤ |λ1|
d1(λ2 − λ1)

||H1(φ,ψ)||µsup
t∈R

eλ1t−µ|t|
∫ t

−∞
e−λ1seµ|s|ds

+
λ2

d1(λ2 − λ1)
||H1(φ,ψ)||µsup

t∈R
eλ2t−µ|t|

∫ ∞

t

e−λ2seµ|s|ds.

If t > 0, then

||F ′
1(φ,ψ)(t)||µ

≤ λ1

d1(µ+ λ1)(λ2 − λ1)
||H1(φ,ψ)||µ +

λ2

d1(λ2 − µ)(λ2 − λ1)
||H1(φ,ψ)||µ

≤ 1
d1(λ2 − λ1)

[ λ1

µ+ λ1
+

λ2

λ2 − µ

]
||H1(φ,ψ)||µ.

If t < 0, then

||F ′
1(φ,ψ)(t)||µ ≤ −λ1

d1(λ2 − λ1)
1

|µ+ λ1| ||H1(φ,ψ)||µ

+
λ2

d1(λ2 − λ1)

[∣
∣
∣

1
λ− 2 − µ

− 1
λ2 + µ

∣
∣
∣ +

1
µ+ λ2

]
||H1(φ,ψ)||µ

≤ 1
d1(λ2 − λ1)

[ λ1

µ+ λ1
+

λ2

λ2 − µ

]
||H1(φ,ψ)||µ.

By the opposite monotonicity of H1(φ,ψ) w.r.t. φ and ψ respectively (see Lemma 3.1) and the
fact that (0, 0) ≤ (φ,ψ) ≤ (k1, k2), we know that ||H1(φ,ψ)||µ is bounded by a positive number.
Therefore, there exists a constant M so that ||F ′

1(φ,ψ)(t)||µ ≤M .
For F2(φ,ψ), direct calculation shows that

F ′
2(φ, ψ)(t) =

λ3e
λ3t

d2(λ4 − λ3)

∫ t

−∞
e−λ3θH2(φ,ψ)(θ)dθ +

λ4e
λ4t

d2(λ4 − λ3)

∫ +∞

t

e−λ4θH2(φ,ψ)(θ)dθ.
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It follows from Lemma 3.3 (ii)that F ′(φ,ψ)(t) ≥ 0. By Lemma 3.2 (i) and the fact that
λ3 < 0, λ4 > 0, we then have

0 ≤ F ′
2(φ,ψ)(t) ≤ λ4e

λ4t

d2(λ4 − λ3)

∫ +∞

t

e−λ4θH2(φ,ψ)(θ)dθ

≤ λ4e
λ4t

d2(λ4 − λ3)
H2(φ,ψ)(t))

∫ +∞

t

e−λ4θdθ

≤ 1
d2(λ4 − λ3)

H2(φ,ψ)(t).

Hence, (P1) implies that ||F ′
1(φ,ψ)(t)||µ is also bounded by some positive constant. The above

estimate for F ′ shows that F (Γ((φ,ψ), (φ,ψ)) is equicontinuous. It is also easily seen that
F (Γ((φ, ψ), (φ,ψ) is uniformly bounded.

Next, we define

Fn(φ,ψ)(t) =

⎧
⎪⎨

⎪⎩

F (φ,ψ)(t), t ∈ [−n, n];
F (φ,ψ)(n), t ∈ (n,+∞);
F (φ,ψ)(−n), t ∈ (−∞,−n).

Then for each n ≥ 1, Fn(Γ((φ,ψ), (φ,ψ))) is also equicontinuous and uniformly bounded on
Γ((φ, ψ), (φ,ψ)). Now, in the interval [−n, n], Ascoli-Arzela Theorem can be applied to Fn,
implying that Fn is compact. On the other hand, Fn → F in Bµ(R,R2) as n→ ∞, since

sup
t∈R

|Fn(φ,ψ)(t) − F (φ,ψ)(t)|e−µ|t|

= sup
t∈(−∞,−n)

⋃
(n,∞)

|Fn(φ,ψ)(t) − F (φ,ψ)(t)|e−µ|t|

≤ 2Ke−µn → 0, n→ ∞.

Now, by Proposition 2.12 in [20], we know that F : Γ((φ, ψ), (φ,ψ)) → Γ((φ, ψ), (φ,ψ)) is also
compact. The proof is completed.

Now, we are in the position to state and prove the following main theorem.

Theorem 3.1. Assume that (A1)–(A3) and (PQM) hold. Suppose there is a desirable pair
of upper-lower solutions (φ,ψ) and(φ, ψ) for (2.1) satisfying (P1)–(P3) and

(P4) supt∈R ψ(t) > 0, φ(t) is non-decreasing with sup
t∈R

φ(t) > 0, and

f(ũ, ṽ) = (f1(ũ, ṽ), f2(ũ, ṽ)) �= (0, 0) for any (u, v) ∈ [sup
t∈R

φ(t), k1) × [sup
t∈R

ψ(t), k2).

Then, (2.1)–(2.4) has a solution, with the second component ψ(t) nondecreasing in t ∈ R.
That is, System (1.3) has a travelling wave front.

Proof. Combining Lemmas 3.1–3.6 with the Schauder’s fixed point theorem, we know that
there exits a fixed point (φ∗(t), ψ∗(t)) of F in Γ((φ, ψ), (φ,ψ)), which gives a solution of (2.1).
It remains to show that this fixed point satisfies the asymptotic boundary condition (2.4).

First of all, by (P2) and the fact that 0 ≤ (φ, ψ)(t) ≤ (φ∗(t), ψ∗(t)) ≤ (φ,ψ)(t) ≤ (k1, k2),
we know that

lim
t→−∞(φ∗, ψ∗)(t) = (0, 0).
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Secondly, (φ∗(t), ψ∗(t)) ∈ Γ((φ,ψ), (φ,ψ)) implies that ψ∗(t) is monotone nondecreasing in
t ∈ R, and hence, lim

t→∞ψ∗(t) exists and satisfies k∗2 := lim
t→∞ψ∗(t) = sup

t∈R
ψ∗(t) ≥ sup

t∈R
ψ(t) > 0.

Now, employing the Hopital’s rule to ψ∗(t) = F2(φ∗(t), ψ∗(t)), we have

lim
t→∞ψ∗(t) = lim

t→∞F2(φ∗(t), ψ∗(t))

= lim
t→∞

1
d2(λ4 − λ3)

[ ∫ t

−∞
eλ3(t−s)H2(φ∗, ψ∗)(s)ds+

∫ ∞

t

eλ4(t−s)H2(φ∗, ψ∗)(s)ds
]

= lim
t→∞

1
d2(λ4 − λ3)

[H2(φ∗, ψ∗)(t)
−λ3

+
H2(φ∗, ψ∗)(t)

λ4

]

= lim
t→∞

[f2c(φ∗t , ψ
∗
t )

β2
+ ψ∗(t)

]
= lim

t→∞
f2c(φ∗t , ψ

∗
t )

β2
+ lim

t→∞ψ∗(t),

which implies that
lim

t→∞ f2c(φ∗t , ψ
∗
t ) = 0.

By f2c(φ∗t , ψ
∗
t ) = ψ∗(t)[hc(ψ∗

t ) + aφ∗(t)), we know that

φ∗(t) =
1
a

[f2c(φ∗t , ψ∗
t )

ψ∗(t)
− hc(ψ∗

t )
]
.

This shows that k∗1 := lim
t→∞φ∗(t) also exists. By Proposition 2.1 in [19], we must have

(f1c(k̃∗1 , k̃
∗
2), f2c(k̃∗1 , k̃

∗
2) = (0, 0)). Note (P4) implies that

0 < sup
t∈R

ψ(t) ≤ k∗2 ≤ k2,

0 < sup
t∈R

φ(t) = lim
t→∞φ(t) ≤ lim

t→∞φ∗(t) = k∗1 ≤ k1.

Again by (P4), we conclude that k∗1 = k1 and k∗2 = k2. Therefore, the fixed point does satisfy
the boundary condition (2.4), giving a travelling wavefront of (1.3). The proof is completed.

Remark 3.1. From the proof of Theorem 3.1, we see that the second component ψ∗(t)
is nondecreasing, while the first component φ∗(t) may not possess the monotonicity. Such a
difference between the components of the travelling wavefront is due to the fact that we only
assumed partial quasi-monotonicity (PQM) for the nonlinear reaction term. The same remark
also applies to Theorem 4.1 in the next section.

4 Partially Exponential Non-quasimonotone Case

It is well known that a negative delayed term usually destroy the standard monotonicity. A
simple example is the delayed logistic reaction term. Even for the partial quasi-monotonicity
(PQM), one faces the same situation. On the other hand, for systems with such negative delayed
terms, alternative ordering may help an otherwise non-monotone system gain some other type
monotonicity related to the new ordering. Smith, and Thieme[12,13] provide succesful examples
in this direction, where an exponotential ordering are adopted. Employing this exponential
ordering idea, Wu and Zou[19], and Huang and Zou[6] are able to establish the existence of
travelling wavefronts for delayed reaction diffusion systems with a weakened quasi-monotonicity
(may be called exponential quasi-monotonicity). In this section, we will use the the same idea to
weaken the partially quasi-monotonicity used in Section 3 and replace (PQM) by the following
weaker one:
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(PQM*) There exist two positive constants β1 > 0, β2 > 0 such that

f1c(φ1, ψ1) − f1c(φ2, ψ1) + β1[φ1(0) − φ2(0)] ≥ 0,
f1c(φ1, ψ1) − f1c(φ1, ψ2) ≤ 0,
f2c(φ1, ψ1) − f2c(φ2, ψ2) + β2[ψ(0) − ψ1(0)] ≥ 0,

where φ1, φ2, ψ1, ψ2 ∈ C([−τ, 0], R) with (i) 0 ≤ φ2(s) ≤ φ1(s) ≤ k1, 0 ≤ ψ2(s) ≤ ψ1(s) ≤
k2, s ∈ [−τ, 0]. (ii) eβ1s[φ1(s) − φ2(s)] and eβ2s[ψ1(s) − ψ2(s)] are nondecreasing in s ∈ [−τ, 0].

There will be a cost for this weakening of requirements on the non-linear reaction terms in
that more restrictions are imposed on the desired pair of upper-lower solutions. More precisely,
we will replace (P3) (used to guarantee that Γ∗((φ, ψ), (φ,ψ)) is non-empty) with the following
assumption.

(P3*) The set

Γ∗((φ, ψ), (φ,ψ)) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(φ,ψ) ∈ C(R,R2)

(i) ψ is nondecreasing in R,
(ii) (φ, ψ)(t) ≤ (φ,ψ)(t) ≤ (φ,ψ)(t);
(iii) eβ1t[φ(t) − φ(t)], eβ2t[ψ(t) − ψ(t)],

eβ1t[φ(t) − φ(t)] and eβ2t[ψ(t) − ψ(t)]
are nondecreasing in t ∈ R;

(iv) eβ2t[ψ(t+ s) − ψ(t)] is nondecreasing
in t ∈ R for every s > 0.

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

is non-empty.
We will adopt the same setting as that for H and F in Section 3. Thus, parallel to Lemmas

3.1–3.3, we can obtain the following Lemmas 4.1–4.3 by similar argument.

Lemma 4.1. Assume that (A1) and (PQM∗) hold. Then

H1(φ2, ψ1)(t) ≤ H1(φ1, ψ1)(t), H1(φ1, ψ1)(t) ≤ H1(φ1, ψ2)(t)

for t ∈ R, φi, ψi ∈ C(R,R), i = 1, 2, with (i) 0 ≤ φ2(t) ≤ φ1(t) ≤ k1, 0 ≤ ψ2(t) ≤ ψ1(t) ≤ k2;
(ii) eβ1t[φ1(t) − φ2(t)] and eβ2t[ψ1(t) − ψ2(t)] are nondecreasing in t.

Lemma 4.2. Assume that (A1) and (PQM∗) hold. Then for any (φ,ψ) ∈ Γ∗((φ, ψ), (φ,ψ)),
we have

(i) H2(φ,ψ)(t) ≥ 0, t ∈ R.
(ii) H2(φ,ψ)(t) is nondecreasing for t ∈ R
(iii) H2(φ1, ψ1)(t) ≤ H2(φ,ψ)(t) for t ∈ R, φi, ψi ∈ C(R,R), i = 1, 2, with (i) 0 ≤

φ2(t) ≤ φ1(t) ≤ k1, 0 ≤ ψ2(t) ≤ ψ1(t) ≤ k2; (ii) eβ1t[φ1(t)−φ2(t)] and eβ2t[ψ1(t)−ψ2(t)] are
nondecreasing in t.

Lemma 4.3. Assume that (A1) and (PQM∗) hold. Then for any (φ,ψ) ∈ Γ∗((φ, ψ), (φ,ψ)),
we have

(i) F2(φ,ψ)(t) is nondecreasing for t ∈ R;
(ii) F2(φ1, ψ1)(t) ≤ F2(φ,ψ)(t) for t ∈ R, φi, ψi ∈ C(R,R), i = 1, 2, with (i) 0 ≤

φ2(t) ≤ φ1(t) ≤ k1, 0 ≤ ψ2(t) ≤ ψ1(t) ≤ k2; (ii) eβ1t[φ1(t)−φ2(t)] and eβ2t[ψ1(t)−ψ2(t)] are
nondecreasing in t.

It is obvious that if (P3∗) holds, then the set Γ∗((φ, ψ), (φ,ψ)) is also a closed, bounded
and covex subset of Bµ(R,R2). Also, the continuity of F does not depend on (PQM), and thus
remains true. In order to apply the Schauder’s fixed point theorem, we rerquire that F map Γ∗

into Γ∗ and be compact.
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Lemma 4.4. Assume that (PQM∗) holds. Then F (Γ∗((φ, ψ), (φ,ψ))) ⊂ Γ∗((φ, ψ), (φ,ψ)).

Proof. Let (φ,ψ) ∈ Γ∗((φ,ψ), (φ,ψ)). By a similar argument to that of Lemma 3.5, we can ver-
ify that F (φ,ψ) = (F1(φ,ψ), F2(φ,ψ)) satisfies the first and second conditions of Γ∗((φ, ψ), (φ,ψ)).
It is easily seen that if (PQM∗) holds, we can always choose β1 and β2 sufficiently large such
that c ≥ 1−min{β1d1, β2d2}, and hence β1+λ1 > 0, β1+λ2 > 0, β2+λ3 > 0 and β2+λ4 > 0.
Now, by Lemma 4.2 and some simple calculations, we obtain

d

dt
eβ2t

[
(F2(φ,ψ)(t+ s) − F2(φ,ψ)(t))

]

= (β2 + λ3)e(β2+λ3)t

∫ t

−∞

e−λ3θ

d2(λ4 − λ3)
[
H2(φ,ψ)(θ + s) −H2(φ,ψ)(θ)

]
dθ

+ (β2 + λ4)e(β2+λ4)t

∫ ∞

t

e−λ4θ

d2(λ4 − λ3)
[
H2(φ,ψ)(θ + s) −H2(φ,ψ)(θ)

]
dθ

≥ 0,

which verifies Condition (iv) of Γ∗ for F (φ,ψ). For Condition (iii) of Γ∗, we proceed as follows.
By the definition of (φ,ψ) and (ψ,ψ), we have

d1φ
′′
(t) − cφ

′
(t) − β1φ(t) +H1(φ,ψ)(t) ≤ 0, (4.1)

d2ψ
′′
(t) − cψ

′
(t) − βaψ(t) +H2(φ,ψ)(t) ≤ 0, (4.2)

d1φ
′′(t) − cφ′(t) − β1φ(t) +H1(φ,ψ)(t) ≥ 0, (4.3)

d2ψ
′′(t) − cψ′(t) − βaψ(t) +H2(φ, ψ)(t) ≥ 0. (4.4)

Substracting (3.4) from (4.1), (3.5) from (4.2) and tetting w1 = φ − F1(φ,ψ) and w2 = ψ −
F2(φ, ψ), by Lemmas 4.1-4.2, we see that

d1w
′′
1 (t) − cw′

1(t) − β1w1(t) ≤ 0,
d1w

′′
1 (t) − cw′

1(t) − β1w1(t) ≤ 0.

Now, using the same auguments as that in the proof of Lemma 4.3 in Wu and Zou[19], we can
obtain

d

dt

[
eβ1tw1(t)

] ≥ 0,
d

dt

[
eβ1tw1(t)

] ≥ 0. (4.5)

Similarly, using (3.4), (3.5), (4.3) and (4.4), we can obtain

d

dt

[
eβ2tu1(t)

] ≥ 0,
d

dt

[
eβ2tu2(t)

] ≥ 0, (4.6)

where u1 = F1(φ,ψ)−φ and u2 = F2(φ,ψ)−ψ. This shows that F (φ,ψ) also satisfies Condition
(iii) of Γ∗. Therefore F (φ,ψ) ∈ Γ∗, and the proof is completed.

Lemma 4.5. If (PQM∗) holds, then F : Γ∗((φ, ψ), (φ,ψ)) → Γ∗((φ, ψ), (φ,ψ)) is compact.

Proof. The proof is similar to that of Lemma 3.6, and is omitted here.
Finally, combining lemmas 4.3–4.5 with the Schauder’s fixed pointed theorem and following

that in the proof of Theorem 3.1, with the Schauder’s fixed point theorem and following the
same arguments as in the proof of Theorem 3.1, we can establish the following result akin to
Theorem 3.1.

Theorem 4.1. Assume that (A1)–(A3) and (PQM∗) hold. Suppose there is a desirable
pair of upper-lower solutions (φ,ψ) and (φ, ψ) satisfying (P1), (P2), (P3∗) and (P4). Then,
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(2.1)–(2.4) has a solution, with the second component ψ(t) nondecreasing in t ∈ R. That is,
System (1.3) has a travelling wave front.

Acknowledgment. The authors would like to thank the referees for their valuable comments
which have led to an improvement of the presentation of the paper.
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