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Abstract

We consider traveling wave front solutions for the diffusive Nicholson’s blowflies
equation on the real line. The existence of such solutions is proved using the technique
developed by J. Wu and X. Zou (J. Dyn. Differ. Equations 13 (3) (2001)). Some nu-
merical simulation using the iteration formula of Wu and Zou [7] is also provided.
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1. Introduction

Consider the reaction—diffusion equation with a discrete time delay

ON(t,x) 9’N(t,x)
o

where x € R and ¢ > 0. Such an equation had been studied in [4,5,8]. For the
case when there is no spatial dependence, the corresponding delay equation
was referred to as Nicholsons’s blowflies equation, cf. [1] after the experiments
of Nicholson [2,3] had been extensively studied. Eq. (1) can be derived based on

— ON(t,x) + pN(t — t,x)e” V=), (1)
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first principles by making use of the spatial (this leads to the diffusion term) and

age structures (this leads to the discrete delay t) of the population. The general

theory of reaction—diffusion equations with delays can be found in [6].
Assume p/o > 1. Then there are two equilibria: Ny =0 and N, =

1/aln(p/d). A traveling wave front is a solution of (1) of the form
u(t,x) = ¢(x + ct), where ¢ > 0, ¢(¢) is monotone increasing and it satisfies
(1) = ¢"(1) = 0 (t) + pp(r — cr)e <),
¢(—OO)=N07 ¢(+00) = N.. 2)

The main result of this paper is:

Theorem. If 1 < (p/d) <e, then there exists ¢* > 0 such that for every ¢ > c¢*
there exists a traveling wave front for (1) with speed c.

In Section 2, we will prove this theorem by applying [7, Theorem 3.6], which
is for delayed reaction—diffusion systems. Since we are considering a scalar
equation here, for the convenience of reference and for simplicity, we only need
a scalar version of this theorem, which is stated below.

Consider the delayed reaction—diffusion equation

Ou(t,x)  Q*u(t,x)
o = D+ S (), (3)

where 1 >0, x € R, u € R with D >0, and f : C(|—7,0],R) — R is continu-
ous and u,(x) is an element in C([—t,0], R) parameterized by x € R and given
by

u(x)(s) = u(t+s,x), se[-1,0, t=0, xeR.

Looking for traveling wave solutions of the form u(¢,x) = ¢(x + ct) leads to a
second-order functional differential equation

D" (t) — cd'(t) + fo(¢) =0, 1€R, )
where f.: X. = C([—c1,0],R) — R is defined by
JeW) =7 (W), ¥(s) =W(es), se€[-7,0]

We assume R .
(Al) There exists K >0 such that f.(0)=f.(K)=0 and f.(i1) #0 for
€ (0,K), where @ denotes the constant function taking the value u on
[—c7,0].
(A2) (Quasi-monotonicity). There exists § > 0 such that

F8) — o) + BLH(0) — (0)] = 0
for ¢,y € X, with 0 <y (s) < P(s) <K, s € [—ct,0].
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If for some ¢ > 0, (4) has a monotone solution ¢ satisfying lim, , _, ¢(¢) =0
and lim, _, ., ¢(¢) = K, then u(z,x) = ¢(x + ct) is called a traveling wave front of
(3) with speed c.

Next we define the profile set for traveling wave fronts of (3) by

r=¢eCR;R",

(1) ¢ is nondecreasing in R,

(i) lim, ,_ o ¢(¢#) =0, lim,_ . ¢(¢t) =K.
A function ¢ € C(R, R) is called an upper (resp., lower) solution of (4) if it is
differentiable almost everywhere (a.e.) and satisfies

c¢' = D¢"(t) + f.(¢,), ae. inR,
resp.,

cd' <DP"(t) + f.(¢,), ae. in R.

Now we are in the position to state a scalar version of [7, Theorem 3.6].

Theorem A.  Assume that (Al1)~+(A2) hold. Suppose that (4) has an up-
per solution ¢ in I' and a lower solution ¢ (which is not necessarily in I')

with 0< ¢(1) < Pp(t) <K and $(t)#£0 in R, then (3) has a traveling wave
front.

2. Proof of existence of traveling waves
Define the functional f, by f.(¢) = —6¢(0) + pp(—ct)e **=<) . Then

Claim 2.1. If (p/6) > 1, then f.(No) = fo(N.) =0, and f.(K)#0 for any
K € (M, N.), where K denotes the constant function taking the value K on
[—ct,0].

Claim 2.2. If 1 < (p/d) <e, then f, satisfies the following quasi-monotonicity
condition:
For all p = 0, we have

Se(d1) = fe(da) + Bld1(0) — ¢,(0)] = 0
Sor all ¢y, ¢, € C([—ct,0],R) with Ny < ¢,(s) < ¢, (s) <N, for all s € [—c1,0].

Proof.

fe(91) = fe( @) = =0[¢,(0) — $,(0)] + p[h, ( — cx)e
— o( — crjeh ]
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Consider the function A(y) = ye . Then

H) =@l —ay] = { >0 fory<l1/a,

>0 fory>1/a.
So, A(y) is increasing on [0, 1/a]. Now, since p/d <e,
0<ha(s) <hi()<Ne=—nl <
Thus,
¢y (—ct)e ) — ¢y (—ct)e T > 0
and therefore

Je(®) = fe(d2) +61(0) = $,(0)] = 0. O

Define the profile set
r'=¢ e C(R,R),
(1) ¢ is non-decreasing in R,
(ii) lim, . . ¢(t) =N, and lim, ., = N,.

Definition. ¢ is called an upper (resp., lower) solution of (2) if ¢ € C(R,R) is
differentiable a.e. and it satisfies

cd'(t) = ¢"(t) — 6(t) + pd(t — ct)e =) ae. in R,
resp.,

cd'(t) < @"(t) — 6(t) + pp(t — ct)e =) ae. in R.
Define

A () =22 —ch—0+pe ™ =pe ™ —[cA+d— 7).

Claim 2.3. There exists ¢* > 0 such that for ¢ > c¢*, 4.(A) = 0 has two positive
real roots, 0 < 1 < A, and

>0 for A> 1,
Ac()\,) = <0 fOl" A€ (/11,/12),
>0 for 2 <.

Proof. The curve A— pe~*“" is an exponentially decaying curve which is concave
up, whereas the curve A—ci+ 8 — ? is a parabolic curve which is concave
down. The result follows from graphing these two curves and making use of the
facts 4.(0) >0, A.(o0) = o0, (8°4.(1)/02*) >0 and (84.(4)/dc) <0, for
A>0. O
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Remark. Clearly, ¢* < 21/p — 6. Also ¢* depends on 7. Indeed, ¢* is obtained by
solving for ¢ and A the following equations:

) 2 ) ,
pe T =ci+0— 17, pete T =2 —c.

Claim 2.4. Assume ¢ > c¢*. Then ¢(t) = min{N,,e""} is an upper solution of (2)
and ¢ € T.

Proof. ¢ € I' is obvious. Let 1, be such that ehlo = N,.
(i) For ¢ > 1y, ¢(t) = N., db()—O— @ () ¢(t — ct) <N,. Thus,

() =@ (1) = 30(0) + p(t — ex)e ¥
= —ON, + pp(t — cr)ef"g(“”) < — 0N, + pNe e
= Ne[=0 +pe "] =0,
since ye @ is increasing for y < 1/a and ¢(t — ct) <N, = 1/aln(p/d) <

(1/a).  _
(ii) For ¢ < ty, ¢(¢t) = e”* and ¢(t — ct) = /=<7, Thus,
@' (1) = ¢ (1) = 06 (t) + plt — cr)e )
<G (1) — ' (1) — 5(¢) + pb(t — cv)
="} —ciy — 0+ pe ] =" A (4) = 0.

Therefore, ¢ is an upper solution of (2). [

Now let ¢ > ¢* and 0 < 4; < A, be as in Claim 2.3 Choose ¢ > 0 such that
€ < A < Ay 4 €< A Define ¢(r) = max{0, (1 — Me”)e"'}, where the constant
M > 1 is to be determined.

Claim 2.5. For sufficiently large M, ¢(t) is a lower solution of (2).

Proof. Let 7, = (1/¢)In(1/M). Then #; < 0 for M > 1 and
0 for t > 1,
o) = { |

(1 — Me)eM' fort <t.
(i) For t > 11, ¢(t) = 0 and ¢(t — ct) = 0. So,

@" (1) — c¢'(t) — 3¢(t) + pe(t — ct)e L) = pep(t — ct)e L) = 0.
(ii)) For t < t1,

9() = [1 — el

(1) = [a = M(e + MiJe”)e™,
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P'(1) = (13— M(Jy +¢)’e?le""  and
@t —ct) = [1 — Me = V]ehl=n,

Note that ¢’ > 1 + y for all y € R. Therefore

Q”(I) - cQ’([) — 5?@) +pﬁ([ _ Cr)e—ag(t—m)

= Q”(I) — C¢l(t) —09(t) + pp(t — cT)[l — ag(t — c7)]
[/1 M2+ e) ele it _ el — MOy + €)e€t]e/‘,lt ~5 —Me”]e)”
+pll — Me™) ]e'll<t7a>[l —a(l — Meﬁ(tfcr))eil(tfcf)]

_ e/lf{[ﬂ —chy — 8] — Me[(Jy + €)* — c(l +€) — d)]
+pe‘}"”[1 — Me“e "] — pae‘z”‘” ;”[1 Mel—<t ]2}

= d [0} = car = 6+ pe ] = Me [y + ) — el +€) =0
+pe (J1+€) ] paefbllcre/llt[l . Mee(lfc‘r)]z}

= et f () = MeA(y + €) — pae i [1 — eI

= "’{ Me“ A () + €) — pae <M1 — Me= ”] }

> e)‘”{ — Me“A. (A + €) — pae 11 — Me* el }2}

= el { MA (A + €) — pae 21 — M“’_”)}z}

since t < f; <0 and e < 4;.
Now

1 — Me= =1 - Me“e™™ < 1 + Me“le™" =1+e“
and
1= Me=) > 1 = Mee™ = | — e > 0,
Therefore, [I — Me=9]* < (1 +e~)* and thus
@' (1) —cd(t) — 6¢ + pp(1 — ct)e 2=
> et f - MA(n + ) - pae (1 4 &)}

_paefyu]cr(l + effcr)z
74‘6()4 + 6)

> e(iwre)t[_AC()q + €)]{M
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Due to the choice of 1; and €, 4.(4; + €) < 0. Thus the right hand side of the
above inequality is non—negative if we choose

paef2/‘.1c1 ( 1 + efecz)z

—AC()»] + 6)

Thus ¢ is a lower solution of (2).

M >

Clearly, Np < ¢ < ¢ < N.. By Theorem A in Section 1, we complete the proof
of the main theorem.

3. Numerical simulations

By the results in Section 3 in [7], the wave profile ¢ can be obtained by the
convergence of the following iteration:

1 t
bult) =5t | [ )6 s

o0

+/*wmmeM”$, bo(1) = §(1),

where r € R, m=1,2,...,and H: C(R,R) — C(R,R) is defined by
H(¢)(t) = pp(t — ct)e =) ¢ C(R,R), t€R.

Now we take some particular values for the parameters values, p =2, 6 =1,
a=1, =1 and c¢=2. Then N,=0.6931471806, A; = 0.1954954948,
Jy = 2.408480501 and #, = —1.874789600. The graphs of ¢ and ¢, (i.e., after
one iteration) are shown in Figs. 1 and 2, respectively.

20 40

Fig. 1. Graph of ¢.
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Fig. 2. Graph of ¢,.
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