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Abstract

The stability of linear neutral delay–differential systems with multiple delays is in-

vestigated. The delay-dependent stability criteria are presented through the evaluation

of the corresponding harmonic functions on the boundary of a certain half circular

region, and such criteria are extensions of some results in literature. An example is given

to illustrate the stability criteria.
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1. Introduction

Consider the asymptotic stability of linear neutral delay–differential systems
with multiple delays described by
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where xðtÞ is assumed to be a function Rþ ! Rn, A, Bj and Cj 2 Rn�n are

constant matrices and sj (j ¼ 1; . . . ;m) stand for positive constant delays.
It is well known that stability criteria for system (1) can be divided into two

categories according to their dependence upon the size of delays. The criteria

which do not contain information on delays are called delay-independent,

whereas those carrying information on delays are viewed as delay-dependent

criteria. Delay-independent stability of system (1) has been extensively studied

in [3–5,10]. Delay-dependent stability is also discussed in [10]. As a special case

of system (1), linear neutral delay–differential system with a single delay, is

exploited in [2,6,9,11]. We have recently dealt with stability of linear discrete-
delay systems of the type
xðtÞ ¼
Xm
j¼1

Cjxðt � sjÞ ð2Þ
and obtain two boundary delay-dependent stability criteria for system (2)

in [7].
In the present paper, delay-dependent criteria for stability of system (1) are

established. The stability criteria are expressed by evaluating a harmonic

function on the boundary of some torus region in the complex plane. A nec-

essary and sufficient condition for stability of system (1) is also given by means

of Principle of the Argument. The criteria for delay-dependent stability of

system (1) may be viewed as the complements of the existing stability criteria

in [3–5,10].

An outline of the paper is as follows. In Section 2, some lemmas are cited. In
Section 3, the main results, i.e. the boundary criteria for stability of system (1)

are derived and an example is given to illustrate the criteria.
2. Preliminaries

Let T denote a bounded region of the complex plane. oT and T stand for the
boundary and the closure of T , respectively. We have T ¼ oT [ T . Let
f ðsÞ ¼ f ðx; yÞ ¼ uðx; yÞ þ ivðx; yÞ ð3Þ

be an arbitrary analytical function for s 2 T . Here, we adopt the notations
i2 ¼ �1, s ¼ xþ iy, uðx; yÞ ¼ Rf ðsÞ, vðx; yÞ ¼ If ðsÞ.
The following two lemmas give sufficient conditions for non-existence of

zeros of f ðsÞ 2 T , which only require the evaluation of harmonic functions on
the boundary oT .

Lemma 2.1 [7]. If for any ðx; yÞ 2 oT the real part uðx; yÞ in (3) does not vanish,
then
f ðx; yÞ 6¼ 0 for any ðx; yÞ 2 T :
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Lemma 2.2 [7]. If there exists a real constant k satisfying
uðx; yÞ þ kvðx; yÞ 6¼ 0
for any ðx; yÞ 2 oT , then
f ðsÞ ¼ uðx; yÞ þ ivðx; yÞ 6¼ 0 for any ðx; yÞ 2 T :
The characteristic equation of system (1) reads
PðsÞ ¼ det½sI � A� ðBðsÞ þ sCðsÞÞ� ¼ 0; ð4Þ
where
BðsÞ ¼
Xm
j¼1

Bj expð�ssjÞ
and
CðsÞ ¼
Xm
j¼1

Cj expð�ssjÞ:
The following Lemma is a well-known result.

Lemma 2.3 [4]. If aD ¼ supfRs : P ðsÞ ¼ 0g and aD < 0, then the system (1) is
asymptotically stable.

For a square matrix Q, jQj stands for the matrix whose entries are replaced
by the modulus of the corresponding entries of Q, kjðQÞ and qðQÞ denote the
jth eigenvalue and the spectral radius of Q, respectively. If Q ¼ fqjkg and

V ¼ fvjkg are real matrices, we shall write QP V if qjk P vjk holds for all pairs
fj; kg.

Lemma 2.4 [8]. Let Q 2 Cn�n and V 2 Rn�n. If the inequality jQj6 V holds, then
the inequality qðQÞ6 qðV Þ holds.

Lemma 2.5 [8]. Let Q 2 Cn�n. If qðQÞ < 1, then ðI � QÞ�1 exists and
ðI � QÞ�1 ¼ I þ Qþ Q2 þ � � �
3. Delay-dependent stability criteria

Let
W ¼
Xm
j¼1

jCjj:
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If qðW Þ < 1, by Lemma 2.5, we can define two matrices X and G by
X ¼ ðI � W Þ�1
Xm
j¼1

jCjAj
 

þ
Xm
j¼1

Xm
k¼1

jCjBkj
 !!
and
G ¼ jAj þ
Xm
j¼1

jBjj þ X :
The following theorem is one of the main results in the present paper.
Theorem 3.1. Assume qðW Þ < 1. If s is a characteristic root of Eq. (4) and
RsP 0, then
jsj6 qðGÞ:
Proof. By the assumption that s is a characteristic root of Eq. (4) and RsP 0,

we have
det½sI � A� ðBðsÞ þ sCðsÞÞ� ¼ 0
and
jCðsÞj6
Xm
j¼1

jCj expð�ssjÞj6
Xm
j¼1

jCjj ¼ W :
According to Lemma 2.4, the inequality qðCðsÞÞ < qðW Þ < 1 holds, and thus

ðI � CðsÞÞ�1 exists. Since det½I � CðsÞ� 6¼ 0, we get
det½sI � ðI � CðsÞÞ�1ðAþ BðsÞÞ� ¼ 0:
This means that s is an eigenvalue of the matrix ðI � CðsÞÞ�1ðAþ BðsÞÞ, and
therefore,
jsj6 q½ðI � CðsÞÞ�1ðAþ BðsÞÞ�:
Next, we prove the inequality
j½ðI � CðsÞÞ�1ðAþ BðsÞ�j6G: ð5Þ
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In fact, according to Lemma 2.5, we obtain
jðI � CðsÞÞ�1ðAþ BðsÞÞj

¼ j½ðI þ CðsÞ þ CðsÞ2 þ � � �ÞðAþ BðsÞÞ�j

¼ j½ðAþ BðsÞÞ þ ðCðsÞ þ CðsÞ2 þ � � �ÞðAþ BðsÞÞ�j

6 jAj þ jBðsÞj þ jðCðsÞ þ CðsÞ2 þ � � �ÞðAþ BðsÞÞj

¼ jAj þ jBðsÞj þ jðI þ CðsÞ þ CðsÞ2 þ � � �ÞðCðsÞAþ CðsÞBðsÞÞj

6 jAj þ
Xm
j¼1

jBjj þ ðjI j þ jCðsÞj þ jCðsÞj2 þ � � �ÞðjCðsÞAj þ jCðsÞBðsÞjÞ

6 jAj þ
Xm
j¼1

jBjj þ jI j

0
@ þ

Xm
j¼1

jCjj

þ
Xm
j¼1

jCjj
 !2

þ � � �

1
A Xm

j¼1
jCjAj

 
þ
Xm
j¼1

Xm
k¼1

jCjBkj
 !!

¼ jAj þ
Xm
j¼1

jBjj þ I

 
�
Xm
j¼1

jCjj
!�1 Xm

j¼1
jCjAj

 
þ
Xm
j¼1

Xm
k¼1

jCjBkj
 !!

¼ jAj þ
Xm
j¼1

jBjj þ X ¼ G:
In view of (5) and Lemma 2.4, the proof is completed. �

Theorem 3.2. Assume qðW Þ < 1. Then characteristic roots of Eq. (4) do not
accumulate at �i1.

Proof. By Theorem 3.1, we only need to consider those characteristic roots s
with Rs < 0. Assume that fsng is a sequence of characteristic roots with

Rsn < 0 and Rsn ! 0� as ! 1. Let an ¼ Rsn, bn ¼ maxjfexpð�ansjÞg, for
j ¼ 1; . . . ;m. Since an ! 0�, and bn ! 1 as n ! 1. By
jCðsnÞj6
Xm
j¼1

jCj expð�snsjÞj6 bn
Xm
j¼1

jCjj ¼ bnW ;
we know that for sufficiently large n, qðbnW Þ < 1 and thus qðCðsnÞÞ < 1 by

Lemma 2.4. Hence ðI � CðsnÞÞ�1 exists when n is sufficiently large. Noting that
0 ¼ det½snI � A� ðBðsnÞ þ snCðsnÞÞ�

¼ det½I � CðsnÞ� det½snI � ðI � CðsnÞÞ�1ðAþ BðsnÞÞ�;
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it follows that
det½snI � ðI � CðsnÞÞ�1ðAþ BðsnÞÞ� ¼ 0:
This implies that sn is an eigenvalue of the matrix ðI � CðsnÞÞ�1ðAþ BðsnÞÞ, and
thus
jIsnj6 jsnj6 qððI � CðsnÞÞ�1ðAþ BðsnÞÞÞ6 qðjðI � CðsnÞÞ�1ðAþ BðsnÞÞjÞ:
ð6Þ
Fix d > 0 such that qðð1þ dÞW Þ < 1. Then there exists an N ¼ NðdÞ > 0, such

that bn 6 1þ d for nPN . Therefore for all nPN ,
jðI � CðsnÞÞ�1ðAþ BðsnÞÞj ¼ jðI þ CðsnÞ þ CðsnÞ2 þ � � �ÞðAþ BðsnÞÞj
6 ðI þ jCðsnÞj þ ðjCðsnÞjÞ2 þ � � �ÞðjAj þ jBðsnÞjÞ
6 ðI þ bnW þ ðbnW Þ2 þ � � �ÞjðjAj þ jBðsnÞjÞ
6 ðI þ ð1þ dÞW þ ðð1þ dÞW Þ2 þ � � �ÞjðjAj

þ ð1þ dÞjBðsnÞjÞ

¼ ðI � ð1þ dÞW Þ�1 jAj
 

þ ð1þ dÞ
Xm
j¼1

jBjj
!

¼: F : ð7Þ
Combining (6) and (7) with Lemma 2.4 gives
jIsnj6 jsnj6 qðF Þ ð8Þ
for nPN . This shows fsng is bounded away from �1. The proof is com-

pleted. �

In what follows, we establish some delay-dependent stability criteria for
system (1). By Theorem 3.1, we only need to restrict our attention to the

bounded and closed region D defined by
D ¼ fðr; hÞ : 06 r6R;�p=26 h6 p=2g;
where R ¼ qðGÞ. The boundary of D is denoted by oD. By means of Lemma
2.3, Theorems 3.1 and 3.2, we have
Theorem 3.3. Assume qðW Þ < 1. Then, system (1) is asymptotically stable if and
only if there are no characteristic roots of (4) in the bounded region D ¼ D.

Since P ðsÞ is an entire function, there can be only a finite number of zeros
P ðsÞ in any bounded region. According to the above theorem and Principle of
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the Argument, we have the following necessary and sufficient condition for

stability of system (1).

Theorem 3.4. Assume qðW Þ < 1. Then, system (1) is asymptotically stable for
qðW Þ < 1 if and only if
PðsÞ 6¼ 0
for s 2 oD, and
I
oD

_PPðsÞ
PðsÞ ds ¼ 0:
When qðW Þ < 1, by Lemma 2.3 and Theorem 3.3, in order to test the sta-

bility of system (1), it suffices to prove all of roots of P ðsÞ ¼ 0 are located in the

left half s plane. Using Lemmas 2.1 and 2.2, the following two theorems, which
give the delay-dependent stability criteria of system (1), can be derived in a

straightforward manner.

Theorem 3.5. If qðW Þ < 1 and for any s 2 oD the real part UðsÞ of P ðsÞ does not
vanish, then the system (1) is asymptotically stable.

Theorem 3.6. Assume that qðW Þ < 1 and for any s 2 oD there exists a real
constant k satisfying
UðsÞ þ kV ðsÞ 6¼ 0;
where UðsÞ and V ðsÞ are real and imaginary parts of P ðsÞ, respectively, then
system (1) is asymptotically stable.

Remark 3.1. If qðW Þ < 1, the discrete-delay system (2) is asymptotically stable.

(see [7]).

Remark 3.2.When Cj ¼ 0 for j ¼ 1; . . . ;m, the system (1) reduces to the linear

delay systems with multiple delays
_xxðtÞ ¼ AxðtÞ þ
Xm
j¼1

Bjxðt � sjÞ; ð9Þ
whose delay-dependent stability has been studied in [1]. The stability criteria

obtained in this paper are also valid to system (9). Note that for (9) W ¼ 0 and
qðW Þ ¼ 0 < 1.

Remark 3.3. In the case of system (1) with a single delay, the delay-dependent

criteria are given in [6].
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Remark 3.4. Theorem 3.4 gives a necessary and sufficient condition for sta-

bility of system (1) when qðW Þ < 1. Testing Theorem 3.5 or Theorem 3.6,
which only requires an evaluation of corresponding harmonic function on the

half circular region, is much easier than testing Theorem 3.4. The criteria

obtained in this paper are extensions of the results in [1,6,7].

Remark 3.5. In the case of real coefficient matrices the complex function PðsÞ is
symmetric respect with to the real axis. Thus it is sufficient to consider Theo-

rems 3.5 and 3.6 for s only on the upper half part of oD.

Remark 3.6. All the criteria in this paper are established under the assumption
qðW Þ < 1. It still remains an open problem to derive stability criteria for system

(1) in the case qðW ÞP 1.
4. An illustrative example

Consider stability of the scalar neutral differential equation
_xxðtÞ ¼ axðtÞ þ bxðt � 1Þ þ c _xxðt � sÞ; ð10Þ
where a ¼ �1, b ¼ �1:1, c ¼ 0:1 and s ¼ 1. The characteristic function is
PðsÞ ¼ sþ 1þ 1:1 expð�sÞ � 0:1s expð�sÞ:
Set s ¼ xþ iy ¼ r cos h þ ir sin h, The real part UðsÞ of P ðsÞ can be written as
follows:
UðsÞ ¼ r cos h þ 1þ 1:1 expð�r cos hÞ cosðr sin hÞ � 0:1r expð�r cos hÞ
� ½cosðr sin hÞ cos h þ sinðr sin hÞ sin h�:
We have R ¼ qðGÞ ¼ 2:3334, where
G ¼ jaj þ jbj þ jcaj þ jcbj
1� jcj :
Then
D ¼ fðr; hÞ : r6 2:3334;�p=26 h6 p=2g:
The boundary oD of D consists of the two parts: the straight segment
fðr; hÞ : 06 r6 2:3334; h ¼ �p=2g
and the half circumference
fðr; hÞ : r ¼ 2:3334;�p=26 h6 p=2g:
By using Matlab, we can easily test that UðsÞ > 0 on the boundary oD. Ac-
cording to Theorem 3.5, the Eq. (10) is asymptotically stable because UðsÞ > 0
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on the boundary oD and jcj ¼ 0:1 < 1. Because jcj þ sjbj ¼ 1:2 > 1, Theorem 1

in [10] cannot be applied in Eq. (10). On the other hand, the delay-independent
criteria in [3,5,9,10] are not satisfied since aþ jbj > 0. Hence the criteria of the

present paper can implement those in [3,5,9,10].
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