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Abstract—1In this paper, we consider a discrete logistic equation

z(n+1) = a(n) exp [TW (- ;((7:»)) )] !

where {r(n)} and {K(n)} are positive w-periodic sequences. Sufficient conditions are obtained for
the existence of a positive and globally asymptotically stable w-periodic solution. Counterexamples
are given to illustrate that the conclusions in [1] are incorrect. (© 2003 Elsevier Science Ltd. All
rights reserved.

Keywords—Periodic solution, Logistic equation, Stability.

1. INTRODUCTION

One of the the basic differential equation models for population growth of a single species is the
logistic equation
dz(t) z(t)
= -2 >0, 1.1
- =T(t)a(t) [ %0 > (1.1)

where r(-) and K/(-) are positive functions in [0, o), representing the intrinsic growth rate and
the carrying capacity, respectively. When K () is constant, the dynamics of (1.1) are completely
known: every positive solution converges to the positive equilibrium. In many situations, r(¢)
and K{(t) can be assumed to be nonconstant periodic functions with a common period T to
reflect the seasonal fluctuations. In such a periodic case, it has been shown that (1.1) has a
positive T-periodic solution Z(¢) which attracts every positive solution z(t) of (1.1) as t — oo.
See, e.g., [2-4].
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In this paper, we consider a discrete analogue of (1.1),

2(n+1) = z(n) exp [r(n) (1 - ?(?3))] ,  neN, (1.2)

under the assumptions that z(0) > 0, {r(n)} and {K(n)} are strictly positive sequences of real
numbers defined for n € N = {0,1,2,...}. In addition, there exist positive constants r., r*, K,,
and K™ such that

O0<r.<r(n)<r*, 0<K.<K(n)<K", n€ N. (1.3)

For a justification of (1.2), we refer to [1].

For (1.2), one may naturally conjecture a parallel conclusion: if {r(n}} and {K(n)} are both
periodic with a common period w, then (1.2) has a positive w-periodic solution {Z#(n}}, and every
positive solution {z(n)} of (1.2) tends to {#(n)} as n — oo. However, the following example
shows that this cannot be true.

ExaMPLE 1.1. Consider equation (1.2) with

r(3n) =1, r(3n+1) = 1.5, r(3n+2) =1,
CK@n)=1, K@Bn+1)=5, K(3n+2) =8,

for n € N. Then (1.2) has a 3-periodic solution {#(n)}, where
#(3n) = 3.2184, Z(3n+1)=0.3501, #(3n+2)=14126, forne N,

and a 6-periodic solution {z*(n)} where

z*(6n) = 5.6940, z*(6n + 1) = 0.0521, z*(6n + 2) = 0.2299,

z"(6n + 3) = 0.6072, z*(6n + 4) = 0.8993, z*(6n + 5) = 3.0774, forn e N.
Let
T
@) =zewp (v (1- 55 )) . new.
Then

2 5
II 7 @) = —16348,  [] fn (z"(n)) = —0.7921.
n=0 n=0
This implies {Z#(n)} is unstable and {z*(n)} is asymptotically stable.
This example shows that even for very simple models, a stability result for a continuous model
does not automatically carry over for the corresponding discrete model.
Recently, Mohamad and Gopalsamy [1] also considered equation (1.2), and obtained the fol-
lowing two main theorems.

THEOREM A. (See [1, Theorem 3.2].) Assume that {r(n)} and {K(n)} satisfy (1.3). Then (1.2)
is extremely stable in the sense that

Jim |z(n) —y(n)| =0,

for any two solutions {z(n)} and {y{n)} of (1.2).

THEOREM B. (See [I, Theorem 4.1].) Assume that {r(n)} and {K(n)} are almost periodic
sequences satisfying (1.3) withr* < 2. Then (1.2) has a unique positive and globally asymptoticly
stable almost periodic solution.
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Looking back at the above example, since minpen |Z(n) — z*(n)| > 0, it is easy to see that
these two theorems are incorrect. Digging into the source of the incorrectness of Theorems A
and B in [1], we find that the proofs of these two theorems are based on Lemmas 2.1 and 3.1
in [1], which are stated below.

LEMMA A. (See [1, Lemma 2.1].) Assume that {r(n)} and {K(n)} satisfy (1.3). Then for any
positive solution of (1.2), there exists N > 0 such that

Tmin S x(n) < Tmax; n2 N7 (14)

where

*

Tmax =

T*
€xp (7'* - 1)7 Tmin = Tmax €XP (’I'* - F{"‘Imax> .

* *

LEMMA B. (See [1, Lemma 3.1].) Let {r(n)} and {K(n)} be strictly positive bounded with
O0<ry <7(n) <7* <2, ne Z. (1.5)

Then for any positive solution {z(n)} of (1.2}, there exists a positive integer N such that

'1—r(n);—((’;% <1, =a>N, (1.6)
([1 —r(n) ;((Z))} exp [r(n) (1 - ;((7;)))} <1, n>N. (1.7)

Unfortunately, the above two lemmas are incorrect as well. To see that Lemma A is invalid,
let us consider the following example.

EXAMPLE 1.2. Consider equation (1.2) with

1 10
r(n) = o K(2n) = 1—? =0.9090909, K(2n+1)= 3e'l/20 = 1.0569216, neN.

Clearly, (1.3) holds with
K* = 19951/20 =1.0569216, K, = %(13 =0.9090909, 7, =7r* =0.5.
Let z(0) = 1, then
z(2n) =1, z(2n+1) =e /2 =09512294, forne N.
We can calculate Tmax and Ty, as follows:

K exp(r* —1) = %Qe‘“/” = 1.2821107,

Tmax =
x

*
r
Tmin = Tmax €XP (T* - K‘-'L'max)
x*

20 111 1w
= QGXP( 20 9°

= 1.0443000.

Thus, z(2n + 1) < Tmin for n € N, which implies that (1.4) in Lemma A is incorrect.
To show Lemma B is incorrect, we consider the following two examples.
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ExaMPLE 1.3. Consider equation (1.2) with

4 ' 1 2
r(n) =1, K(3n) TTha K(3n+1) T s K(3n +2) w2 neN
Clearly, (1.3) and (1.5) hold with
* _ 4 * 2
==L K=o KT iTme

Let x(0) = 4, then

z(3n) =4, z(Bn+1)=1, z(3n+2)=2, neN.
Thus,
z(3n)
_ =1 _
1 T(3n)K(3n) n4d < -1,

a contradiction to (1.6) in Lemma B.

ExXAMPLE 1.4. Consider equation (1.2) with
4
r(n)=1, K(@2n)=4, K@n+1)= ?e3/4 =1.20971430, ne N.
Clearly, (1.3) and (1.5) hold with

4
re=r"=1  K.,= 7e3/4, K*=4.
Let z(0) = 1; then .
(2n) =1, z(2n+1) =4, forn € N.

(1 — r(2n) ;((222))) exp [r(n) {1 - I"”(((’;)) }] = %e3/4 = 1.58775 > 1,

for n € N. This contradicts (1.7) in Lemma B.

In the rest of this paper, we will derive, in Section 3, sufficient conditions under which (1.2)
has a unique, positive, and globally asymptotically stable periodic solution. For this purpose, in
Section 2, we need to establish a persistence result.

Thus,

2. PERSISTENCE

In this section, we establish the following persistence result for (1.2}, which is a correction of
Lemma A.

THEOREM 2.1. Assume that {r(n)} and {K(n)} satisfy (1.3). Then any positive solution {z(n)}
of (1.2) satisfies

Ux < liminf z(n) < limsupz(n) < u*, (2.1)
n—00 n—o0

where

K . u*
* = -1), « = K, 11— .
u o eXp (r ) U exp (r ( X, ))
PrOOF. We first present two cases to show that .

limsupz(n) < u*. (2.2)

n—o0
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CasE 1. There exists a positive integer ng such that z(ng) < z(no +1).
From (1.2), we see that 1 — (z(ng)/K(ng) > 0), this implies
z(no) < K(no) < K*.
Therefore, by the fact that max,er z exp[r(1 — )] = (1/r) exp(r — 1) where r > 0, we have

2(no + 1) = z(no) exp [r(no) (1 2(n0) >]

~ K(no)
z(no) [* ( x("c))]
< K(n exp |r*[1-
> ( O)K(no) P K(no)
< I:* exp(r* — 1) =u".
We claim that
z(n) < u*, for n > ny.

In fact, if there exists an integer m > ng + 2 such that z{m) > u*, and letting m* be the
least integer between ng and m such that z{m*) = max,,<n<m z(n), then m* > ng + 2 and
z(m*) > z(m* — 1) which implies z(m*) < u* < z(m). This is impossible.
CaSE 2. z(n) 2 z(n+1) forn e N.

By (1.2), we see that
z(n)
K(n)
This implies that z(n) > K(n) > K, for n € N. Since {z(n)} is nonincreasing and has a lower
bound K., we know lim, . z(n) = T > K.. Letting n — oo in (1.2), we get

Z= lim K(n) < K* <u".
n—oo

1- <0, neN. (2.3)

Therefore, (2.2) holds.
Now, we show that
liminf z(n) > u.. (2.4)

n—o0

In view of (2.2), for each ¢, there exists a large integer n* such that

z(n) <u* +e, for n > n*. (2.5)

We consider two cases.
CASE (i). There exists a positive integer fip > n* such that z(fig + 1) < z(fip).

Similar to Case 1 in the proof of (2.2), we see that

z(n) > K. exp (r* (1 - uK-l- 6)) , n>n". (2.6)

CASE (ii). z(n+1) > z(n) for n > n*.
According to (2.5), we know lim,_,o z(n) = [. Letting n — oo in (1.2) leads to lim,_
K(n) =1. So,

[= lim z(n) = lim K(n) > K, > K.exp (r* (1 _L +€)> .
n—s00 n—oo K.
Combining Cases (i) and (ii}, we see that
liminf z(n) > K. exp (r* (1 vt 6)) .
n—o0 K*

Since ¢ is arbitrary, we know (2.4) holds.
The proof is completed by combining (2.2) with (2.4).

REMARK 2.1. Since ©* < Tmax, Where Tmax is as in Lemma A, (2.1) gives a better upper bound
than (1.4). This also confirms that the right half of (1.4) is valid (the left half is invalid though).
REMARK 2.2. In view of the proof of Theorem 2.1, we see that, if either limy,_,o, K(n) does not
exist or 7* # 1, then u, < z(n) < u* eventually holds.
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3. EXISTENCE AND STABILITY OF PERIODIC SOLUTION

Now we consider {1.2) with {r(n)} and {K(n)} being periodic, and we are concerned with the
existence and stability of a periodic solution. First, we have the following existence result.

THEOREM 3.1. Assume that {r(n)} and {K (n)} are positive periodic sequences with a common
positive period w, that is,

r(n+w) =r(n), K@n+w)=Kn), ne€ N. (3.1)

Then there exists an w-periodic solution for equation (1.2).

Proor. If K(n) = K(constant), then z(n) = K is a solution of (1.2) which implies Theorem 3.1
holds.

Now assume that {K (n)} is not constant, so lim,_,. K{(n) does not exist. By the assumptions,
we see (1.3) holds with r, = minsen{r(n)}, r* = maxpen{r(n)}, K« = minen{K(n)}, and
K* = maxnen{K(n)}. According to the proof of Theorem 2.1, it is easy to see that

z(0) € [ux, "] implies z(n) € [u., u*}, for n € N. (3.2)

Now, we define a mapping F on [u.,u*] by F(z(0)) = z(w). From (1.2), we see that z(w)
depends continuously on z(0). Thus, F is continuous and maps the interval [u.,u*] into itself.
Therefore, F has a fixed-point p. Let z(0) = p, then the corresponding solution {Z(n)} of (1.2)
is an w-periodic solution to (1.2) in [u.,u*]. This completes the proof.

The next theorem confirms the globally asymptotic stability of the periodic solution obtained
in Theorem 3.1, under an additional condition.

THEOREM 3.2. Assume that (3.1) holds with

7 exp(r* —1) <2, (3.3)
where r* = max,en{r(n)}, K. = minyen{K(n)}, and K* = max,en{K(n)}. Let {Z(n)} be a
periodic solution of (1.2). Then for every positive solution {z(n)} of (1.2), we have

Jim (z{n) - E(n)) = 0. ' (3.4)

ProoF. If K(n) = K(constant), since (3.3) implies that 7* < 1+1n2 < 2. By [5], we know that
lim,, 00 z(n) = K, this implies that (3.4) holds with £(n) = K.
Now we assume that {K(n)} is not constant. Let z(n) = Z(n)exp(y(n)). Then (1.2) is

transformed to
-+ 1) = y(n) ~ L) exp(u(m) - 1)

Define V(n) = y?(n). Then
AV(n)=V(n+1) - V(n)
= (y(n+1) - y(n))(y(n + 1) + y(n))

= - 2 sm)eptom) - 1) (29(m) - 7o) ) (xplatr) 1) 6
= ‘;(72)53(") exp(6y(n)) (2 - IZ'(T:L)):E(”) exp(By(n))) v¥(n),

for some 6 € (0,1). Since Z(n)exp(fy(n)) lies between Z(n) and z(n), by Theorem 2.1 and
Remark 2.2, we know that there exists a positive integer ny such that

£ exp(oy(m) > 2~

L a-fen(t-D20,  nzm
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This implies that {V(n)} is nonincreasing for n > n;. So,

lim V(n) = v* € [0, 00). (3.6)
n—oc
We claim v* = 0. In fact, if v* > 0, then y(n) > v/v* for n > n;. Since {K(n)} is not constant,
there exists an integer p with 0 < p < w such that K (p) > K., from (3.5), we have

Tx r*
AV <——uy | 2— ——u" ) v" <0, >ng.
(p+mw) < U ( K(p)u>v < n>n;

This implies that 3_oo ; AV (n) diverges to —oc. But from (3.6), > ( AV (n) = v* — V(0); this
is a contradiction. Therefore, v* = 0. Thus, lim, ., y(n) = 0 and (3.4) holds. The proof is
complete.

REMARK 3.1. Theorem 3.2 shows that {Z(n)} is the global attractor of all positive solutions
of (1.2), and hence, {Z(n)} is the unique w-periodic positive solution of (1.2).

REMARK 3.2. When K{(n) = K(constant), [5] has proved that if r* < 3/2, then the solution
z(n) = K is a global attractor of (1.2). Since, in this case, (3.3) reduces to r* < 1 +1n2 =
1.69314718 > 3/2, Theorem 3.2 actually improves the corresponding result in (6], since, in this
case, (3.3) reduces to r* < 1+ In2 = 1.69314718, which is larger than 3/2.
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