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Abstract In this paper, the repulsion effect of superinfecting virion by infected cells
is studied by a reaction diffusion equation model for virus infection dynamics. In this
model, the diffusion of virus depends not only on its concentration gradient but also on
the concentration of infected cells. The basic reproduction number, linear stability of
steady states, spreading speed and existence of traveling wave solutions for the model
are discussed. It is shown that viruses spread more rapidly with the repulsion effect
of infected cells on superinfecting virions, than with random diffusion only. For our
model, the spreading speed of free virus is not consistent with the minimal traveling
wave speed. With our general model, numerical computations of the spreading speed
show that the repulsion of superinfecting virion promotes the spread of virus, which
confirms, not only qualitatively but also quantitatively, the experimental result of
Doceul et al. (Science 327:873–876, 2010).

Keywords Reaction diffusion equations · Repulsion of superinfecting virions ·
Basic reproduction number · Spreading speed · Traveling wave solution · Minimal
wave speed

1 Introduction

Viruses are usually thought to spread across susceptible cells through an iterative
process, consisting of attachment to a target cell, entry, replication and release of
new virions, which then move on to infect other uninfected target cells. According to
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Repulsion Effect on Superinfecting Virions 2807

such an understanding, the spreading speed of virus would be limited by how quickly
virus can reproduce in infected cells. However, a recent study published in Science
(Doceul et al. 2010) reveals that vaccinia virus spreads much faster than previously
thought. Using live video microscopy, Doceul et al. (2010) found that the vaccinia
virus was spreading across one cell fourfold faster than its replication cycle should
allow. Indeed, vaccinia virus spreads across one cell every 1.2 h on average, but in
vaccinia viral replication kinetics, new virions are formed only 5–6 h after infection,
or in virus-induced cell motility, a cell starts to move 5–6 h after infection.

In seeking an explanation for this phenomenon, a new mechanism was discovered,
that is, the repulsion of superinfecting virions by infected cells (Doceul et al. 2010).
Indeed, a peculiar feature of vaccinia infection is the formation of actin tails, which
propel virus particles toward other cells late during infection, promoting spread of
virus from cell to cell. Doceul et al. (2010) observed that an infected cell can produce
two important proteins, called A33 and A36, and express them on the cell’s outer
membrane shortly after infection, which mark the cell as infected. The two proteins
are necessary and sufficient to induce formation of actin tails after binding extracellular
enveloped vaccinia (EEV) virus. When other cell-free vaccinia viral particles reach the
infected cell and contact with these proteins, they induce the host cell to form a new
actin tails projection, which propels viral particles away and toward other cells that
they can infect. This way, the superinfection is blocked, and the free particles bounce
from one cell surface to another until they reach an uninfected cell. This mechanism
accelerates virus spread, since virus spreads by surfing from cell to cell, bouncing past
the already infected cells and quickly reaching distant uninfected cells without the
need to replicate in each cell on the way.

It is believed that some other viruses may also employ such mechanisms to speed up
the spread. For instance, herpes simplex virus (HSV-1), which has replication kinetics
similar to vaccinia virus, also spreads faster than predicted by their replication kinetics.
Considering this repulsion effect of infected cells on superinfecting virions, we see
that the spread rate of viruses should depend on the density of infected cells, and high
density of infected cells should promote the spread of viruses. We wish to explore this
effect quantitatively by mathematical models.

Mathematical modeling has been shown to be an effective and valuable approach to
understand the within-host dynamics of virus infection and spread. The dynamics of
HIV-1, hepatitis B virus (HBV) and human T-cell leukemia type-1 (HTLV-1) infections
have been analyzed in detail with the help of mathematical models. Most of these works
are based on the assumption that cells and viruses are well mixed, and hence, ignore
the mobility of cells and viruses. However, spatial structure is very important for
virus dynamics. In the study of evolutionary competitiveness of lytic virus, Komarova
(2007) considered the spatial dynamics of viral spread by a diffusion model and found
that lytic viruses can be evolutionary competitive due to the mechanism that they
exit an infected cell in a large burst such that the antibodies are flooded and a large
proportion of virions can escape the immune system and spread to new cells. The
efficacy of the flooding depends on the diffusion rate of the antibodies. Wang and Wang
(2007) developed a reaction diffusion model to simulate the infection and spread of
HBV. They assumed that susceptible host cells and infected cells cannot move, while
viruses move according to Fickian diffusion. For this model, they discussed existence

123
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of traveling wave solutions and minimal wave speed. In a subsequent paper, Gan et al.
(2010) considered the effect of the time delay accounting for the lag from the time of
infection to the time when the infected cell becomes productively infectious. Xu and
Ma (2009) considered the saturation response of the infection rate.

In this paper, we consider the repulsion effect of infected cells on the spread of
virus in the within-host environment. Denoting by T (t, x), I (t, x) and V (t, x), the
concentrations of target cells, infected cells and free virus particles at time t at location
x , respectively, we consider the following general virus infection dynamic model,

∂T

∂t
= DT �T + h(x) − dT T − β(x)T V,

∂ I

∂t
= DT �I + β(x)T V − dI I,

∂V

∂t
= ∇ · (DV (I )∇V ) + γ (x)I − dV V . (1)

This model system is based on some assumptions. Firstly, the within-host environment
is spatially heterogenous, that is, the target cell production rate h(x), infection rate
β(x) and free virus production rate γ (x) may depend on the spatial location x . These
three functions are assumed to be positive, continuous and bounded. The death rates
of target cells, infected cells and viruses are constants, denoted by dT , dI and dV ,
respectively. Secondly, target cells and infected cells can move, following the Fickian
diffusion, meaning that the fluxes of these cells are proportional to their concentration
gradient and go from regions of high concentration to regions of low concentration,
with the same diffusion rate DT , that is,

�JT = −DT ∇T, �JI = −DT ∇ I.

Notice that the diffusion rate of the cells may be much slower in contrast to the
spreading rate of viruses and is thus often neglected in literature. Thirdly, the flux
of free viral particles depends not only on its concentration gradient but also on the
concentration of infected cell in the following form

�JV = DV (I )(−∇V ).

The repulsion of the superinfecting virions observed in (Doceul et al. 2010) suggests
that high concentration of infected cells promotes spread of viruses toward uninfected
target cells. Therefore, DV (I ) should be an increasing function of the local concen-
tration of infected cells I (t, x). We assume

DV (I ) = D0 + g(I ),

where D0 represents random diffusion rate of free virions and g ∈ C2(R+, R+) is an
increasing function of I , representing the motility of free virions due to repulsion of
superinfecting virions by infected cells. If there is no infected cell, then there is no
repulsion effect, meaning that g(I ) should satisfy g(0) = 0.
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The rest of the paper is organized as follows. In Sect. 2, we discuss the well posed-
ness of the model (1), derive the basic reproduction number R0 of the system (1) and
calculate R0 numerically. For the model (1), mathematical proof of stability of steady
states is difficult to approach. However, when all the parameters h(x), β(x) and γ (x)

do not depend on space location x , we can establish the linear stability of steady states
of system (1). In Sect. 3, we numerically estimate the spreading rate of virus and dis-
cuss the effect of repulsion of superinfecting virions. Section 4 discusses existence of
traveling wavefront solutions to the model and their numerical simulations when the
diffusion of target cells and infected cells is ignored. Finally, we present conclusions
and discussion in Sect. 5.

2 Dynamics in a Bounded Domain

In this section, we consider an open-bounded domain � ⊂ R3 with smooth boundary
∂�. Under such a scenario, we examine the dynamics of the model. More precisely,
we will investigate the dynamics of the system

∂T

∂t
= DT �T + h(x) − dT T − β(x)T V,

∂ I

∂t
= DT �I + β(x)T V − dI I, x ∈ �, t > 0, (2)

∂V

∂t
= ∇ · (DV (I )∇V ) + γ (x)I − dV V,

with zero-flux boundary conditions

∂T

∂ν
= ∂ I

∂ν
= ∂V

∂ν
= 0, ∀x ∈ ∂�, t > 0, (3)

and initial conditions

T (0, x) = T0(x) > 0, I (0, x) = I0(x) ≥ 0, V (0, x) = V0(x) ≥ 0, ∀x ∈ �. (4)

2.1 Well Posedness of the Model

First, we address the well posedness of the problem (2)–(4). As usual, we denote by
R

3+ the positive cone in R
3, i.e.,

R
3+ =

{
w = (T, I, V )T ∈ R

3 | T ≥ 0, I ≥ 0, V ≥ 0
}

,

Let p > 3 so that the space W1,p(�, R
3) is continuously embedded in the continuous

function space C(�, R
3) (see, e.g., Adams 1975). Since the unknowns T, I and V

are populations, we only need to consider the following phase space:
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X+ :=
{
w ∈ W1,p(�, R

3) | w(�̄) ⊂ R
3+ and

∂w

∂ν
= 0 on ∂�

}
.

We see that the system (2)–(3) can be rewritten as the following abstract quasi-linear
parabolic system

{
wt + A(w)w = F(x, w), x ∈ �, t > 0,

Bw = 0, x ∈ ∂�, t > 0,
(5)

where

A(z)w = −
∑
j,k

∂ j (a jk(z)∂kw), Bw = ∂w

∂ν
,

and

a jk = a(z)δ jk, 1 ≤ j, k ≤ 3, a(z) =
⎛
⎝

DT 0 0
0 DT 0
0 0 DV (z3)

⎞
⎠ ,

for z = (z1, z2, z3) ∈ R
3+ (here δ jk is the Kronecker delta function), and

F(x, w) = (h(x) − dT T − β(x)T V, β(x)T V − dI I, γ (x)I − dV V )T,

for w = (T, I, V ). It is obvious that a(z) ∈ C2(R3+,L(R3+)), where we identified
L(R3+) with the space of 3×3 real matrices. Since DV (I ) ≥ D0 > 0, the eigenvalues
of a(z) are positive for each z ∈ R

3+. Moreover, the boundary value problem (A,B)

is normally elliptic (see, e.g., Amann 1993).
For the global existence and nonnegativity of solutions, we have the following

theorem.

Theorem 2.1 For every initial data (T0, I0, V0), (2)–(3)–(4) has a unique solution
defined on [0,∞) × �, such that

(T, I, V ) ∈ C([0,∞), X+) ∩ C2,1((0,∞) × �̄, R
3).

Moreover, the solution satisfies T (t, x) ≥ 0, I (t, x) ≥ 0, V (t, x) ≥ 0, for all (t, x) ∈
[0,∞) × �.

Proof See “Appendix 1”. ��

2.2 Basic Reproduction Number

Let X := C(�̄, R
3) be the Banach space of continuous functions with supremum norm

‖·‖X. Denote by X+ the positive cone of X, i.e., X+ = C(�̄, R
3+). Then, X+ induces

a partial order, making (X, X+) strongly ordered space. Similarly, let Y := C(�̄, R)

and Y+ := C(�̄, R+). Suppose that for each t � 0, S1(t) and S2(t) : Y → Y are the
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strongly continuous semigroups associated with DT � − dI and D0� − dV subject to
homogeneous Neumann boundary conditions, respectively, that is,

[S1(t)φ] (x) = e−dI t
∫

�


(x, y, t, DT )φ(y)dy,

[S2(t)φ] (x) = e−dV t
∫

�


(x, y, t, D0)φ(y)dy,

for any φ1, φ2 ∈ Y, t � 0, where 
(x, y, t, DT ) and 
(x, y, t, D0) are the Green
functions associated with DT � and D0� subject to homogenous Neumann boundary
conditions, respectively. It then follows that for each t > 0, Si (t) : Y → Y, i =
1, 2 is compact and strongly positive (Smith 1995, Corollary 7.2.3). Therefore, S(t)
= (S1(t), S2(t)) is a positive C0-semigroup.

Setting I (t, x) = 0 and V (t, x) = 0 in the T equation in (2) leads to

∂T (t, x)

∂t
= DT �T (t, x) + h(x) − dT T (t, x), x ∈ �, t > 0,

∂T (t, x)

∂ν
= 0, x ∈ ∂�, t > 0. (6)

From Lemma 1 in Lou and Zhao (2011), we know (6) admits a unique positive steady
state T̂ (x), which is globally attractive in C(�̄, R). This means that the model system
(2) has a unique infection-free steady state E0 = (T̂ (x), 0, 0).

Linearizing (2) at the infection-free steady state E0, we obtain the linearized system

∂u1

∂t
= DT �u1 − dT u1 − β(x)T̂ (x)u3,

∂u2

∂t
= DT �u2 + β(x)T̄ (x)u3 − dI u2,

∂u3

∂t
= D0�u3 + γ (x)u2 − dV u3, (7)

subject to the boundary conditions

∂u1

∂ν
= ∂u2

∂ν
= ∂u3

∂ν
= 0, ∀x ∈ ∂�, t > 0.

We see that the equations for u2 and u3, which correspond to the infectious com-
partments, are decoupled from u1, and these two equations constitute a cooperative
system. Substituting u2(x, t) = eλtφ1(x) and u3(x, t) = eλtφ2(x) into equations of
u2 and u3, we obtain the following eigenvalue problem

λφ1(x) = DT �φ1(x) + β(x)T̂ (x)φ2(x) − dI φ1(x),

λφ2(x) = D0�φ2(x) + γ (x)φ1(x) − dV φ2(x), (8)
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∂φ1(x)

∂ν
= ∂φ2(x)

∂ν
= 0, ∀x ∈ ∂�, t > 0,

where φ = (φ1, φ2) ∈ Y × Y.
From Theorem 7.6.1 in Smith (1995), we have the following result.

Lemma 2.1 The eigenvalue problem (8) has a principal eigenvalue λ0(D0, DT , T̂
(x)) associated with a strictly positive eigenvector.

This means that λ0 is a real eigenvalue with algebraic multiplicity one, and Re(λ) < λ0
for any other eigenvalue λ of (8). Furthermore, λ0 has a corresponding eigenvector
φ0(x) = (φ01, φ02) satisfying φ0(x) � 0, and any other nonnegative eigenvector of
(8) is a positive multiple of φ0(x).

Next, as in Wang and Zhao (2011), Guo et al. (2012) and Vaidya et al. (2012), we
follow the framework of Thieme (2009) to obtain the basic reproduction number of
the model (2). To this end, we define a positive linear operator by

C(φ)(x) = (C1(φ)(x), C2(φ)(x)), ∀φ = (φ1, φ2) ∈ Y × Y, x ∈ �̄,

where

C1(φ)(x) = β(x)T̂ (x)φ2(x), C2(φ)(x) = γ (x)φ1(x).

Assume that there are no infected cells and free virus initially, that is, the system is near
the infection-free steady state; and viruses are introduced at time t = 0 and infection
occurs immediately. The distribution of initial infected cells and free viruses is assumed
to be (φ1(x), φ2(x)) (at time t = 0). Then, as time evolves, those distributions reach
([S1(t)φ1](x), [S2(t)φ2](x)) at time t . Thus, the total distribution of new infected cells
is

∫ ∞

0
β(x)T̂ (x)[S2(t)φ2](x)dt =

[∫ ∞

0
C1(S(t)φ)dt

]
(x),

and the total distribution of new free viruses is

∫ ∞

0
γ (x)[S1(t)φ1](x)dt =

[∫ ∞

0
C2(S(t)φ)dt

]
(x).

Therefore, the next generation operator L is given by

L(φ) :=
∫ ∞

0
C(S(t)φ)dt = C

(∫ ∞

0
S(t)φdt

)
.

The basic reproduction number of the model (2) is defined to be the spectral radius of
L , that is,

R0 := r(L).
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We point out that the above procedure of defining the basic reproduction number for
reaction–diffusion systems has recently been standardized in Wang and Zhao (2012).
By Theorem 3.1 (i) in Wang and Zhao (2012), we then obtain the following Lemma.

Lemma 2.2 R0 − 1 has the same sign as λ0.

When all parameters are location independent (spatially homogeneous), we can
actually find an explicit formula for the basic reproduction number R0. Indeed, apply-
ing Theorem 3.4 in Wang and Zhao (2012) and similar arguments to the proof of
Theorem 2.3 in Wang and Zhao (2011), we obtain the following theorem.

Theorem 2.2 Assume that β(x), γ (x) and h(x) are positive constants, so that T̂ (x)

= h
dT

. Then

R0 =
√

βhγ

dT dV dI
.

Remark 2.1 Note that, here, we define the basic reproduction number as the spectral
radius of the next generation operator/matrix (Thieme 2009; Wang and Zhao 2011,
2012), which gives the mean number of new infections per infective in any class of
infected cell population and virus population, per generation. However, in another way,
the basic reproduction number is defined as the total number of newly infected cells (or
viral particles) produced by one infected cell (or virus) during its lifetime, assuming
all other target cells are susceptible (Heffernan et al. 2005). By this definition, we have
the basic reproduction number

R0 = βhγ

dT dV dI
,

for the case when all parameters are constants. The dynamics of the model are always
determined by whether or not R0 exceeds 1. Thus, these two definitions of the basic
reproduction number will not affect the dynamics of the model. In general, the former
definition is widely used in the biomathematics literature, while the latter definition
is extensively used in epidemiology and immunology (see Heffernan et al. 2005 and
references therein).

For spatial heterogeneous case, that is, if at least one of the model parameters
h(x), β(x) and γ (x) depends on the space location x , we cannot derive an explicit
formula for R0 = r(L). However, we can compute the spectral radius of the linear
operator L numerically by using the orthogonal projection method in computation of
eigenvalues for compact linear operators (Chatelin 1981). For the sake of convenience,
we consider � = (0, 1) to demonstrate this numerical method. We use nth-order
Fourier projection (Ikebe 1972), where the orthonormal basis is assumed to be ek(x)

= e2kπxi , k ∈ N, and then use the Galerkin method. For � = (0, 1), the Green
function associated with D�, subject to homogenous Neumann Boundary condition,
assumes the following explicit form (Haberman 1998)
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(x, y, t, D) = 1 + 2
∞∑

n=1

e−Dn2π2t cos(nπx) cos(nπy).

For the operator L , the Galerkin matrix is

Bn =
(

0 A(1)
n

A(2)
n 0

)
,

where

A(1)
n =

(
a(1)

jk

)
n×n

, A(2)
n =

(
a(2)

jk

)
n×n

.

Here,

a(1)
jk =

∫ 1

0
e j (x)

∫ 1

0
K1(x, y)ek(y)dydx, a(2)

jk =
∫ 1

0
e j (x)

∫ 1

0
K2(x, y)ek(y)dydx .

Then, we have

K1(x, y) = β(x)T̂ (x)

[
1

dV
+ 2

∞∑
n=1

1

D0n2π2 + dV
cos(nπx) cos(nπy)

]
,

K2(x, y) = γ

[
1

dI
+ 2

∞∑
n=1

1

DT n2π2 + dI
cos(nπx) cos(nπy)

]
.

Wang and Zhao (2012) offered an alternative method of numerically computing
basic reproduction number R0 by numerically computing the unique positive eigen-
value of an elliptic eigenvalue problem (Wang and Zhao 2012). Indeed, by Theorem
3.2 in Wang and Zhao (2012), R0 is given by the reciprocal of the unique positive
eigenvalue of the following eigenvalue problem

− D�φ + V (x)φ = μF(x)φ, x ∈ �,

∂φ

∂ν
= 0, x ∈ ∂�. (9)

Using the method developed in Wang and Zhao (2012), we can also numerically
calculate the basic reproduction number.

Figures 1 and 2 are the plots of the numeric computations of the spectral radius of
L with the following baseline parameters

h = 105, dT = 0.1, dI = 0.1, dV = 5, γ = 500, β(x) = 5 × 10−10x2,

showing how the basic reproduction number R0 depends on the diffusion rate of
infected cells DT , the basic diffusion rate of free virus D0, and virus production rate
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Fig. 1 Basic reproduction number R0 is a decreasing function of D0 and DT , where a DT = 0.00001,
and b D0 = 0.0001
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Fig. 2 Basic reproduction number R0 is an increasing function of γ . Here D0 = 0.0001, DT = 0.00001

γ , respectively. Note that in the spatially homogeneous case, the diffusion coefficients
have no impact on R0.

2.3 Steady States and Their Linear Stability

For the model (2)–(3)–(4), by the biological meaning of the basic reproduction number
R0, it is expected that the infection-free steady state E0 = (T̄ (x), 0, 0) is asymptoti-
cally stable if R0 < 1, and there should exist a positive steady state if R0 > 1.

By the proof of Theorem 3.1 (ii) in Wang and Zhao (2012), we have the following
stability/instability results for E0:

Lemma 2.3 If R0 < 1, then E0 is linearly stable; if R0 > 1, then E0 is linearly
unstable, regardless of whether or not the model parameters are spatially dependent.
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Since the equations of u2(t) and u3(t) in (7) are decoupled from the u1(t) equation,
it follows that if R0 > 1, then E0 is linearly unstable. However, when the model
parameters are spatially dependent, it is mathematically difficult to prove the existence
of positive steady state. In the rest of the paper, we only focus on the case when h(x),
β(x) and γ (x) are all positive constants. For the following spatial homogeneous model,

∂T

∂t
= DT �T + h − dT T − βT V,

∂ I

∂t
= DT �I + βT V − dI I, x ∈ �, t > 0, (10)

∂V

∂t
= ∇ · (DV (I )∇V ) + γ I − dV V,

in addition to the infection-free steady state E0 = (h/dT , 0, 0), it also has a positive
steady state Ē = (T̄ , Ī , V̄ ) whenever R0 > 1, where

T̄ = h

dT R2
0

, Ī = dT dV

βγ

(
R2

0 − 1
)

, V̄ = dT

β

(
R2

0 − 1
)

.

Here, R0 is the basic reproduction number of (2) with h, γ and β being constants,
which has been determined before, that is,

R2
0 = βhγ

dT dV dI
.

Note that E0 and Ē (if R0 < 1) are also the steady states in the absence of
spatial diffusions, and in such case, it has been shown in (Korobeinikov 2004) that
E0 is globally asymptotically stable if R0 ≤ 1; Ē is globally asymptotically stable if
R0 > 1. For the model (2) with diffusions and with no-flux boundary condition, we
have the following results on the linear stability of Ē .

Theorem 2.3 For (10), the positive steady state Ē is linearly stable if it exists.

Proof See “Appendix 1”. ��

3 Spreading Speed in the Case � = R

In the above section, we have seen that in a bounded domain setting, the repulsion
effect of infected cells does not change the threshold dynamics characterized by R0.
Note that it has been observed in the experiment (Doceul et al. 2010) that the repulsion
effect accelerates the spreading rate of viruses across cells. In this section, we use the
model (1) to quantitatively investigate the spreading rate of the virus and see how the
repulsion effect will affect the spreading speed. Unfortunately, due to the dependence
of DV (I ) on I , to the author’s knowledge, the existing theories for spreading speed do
not apply to (1). While a new theory needs to be developed, we will explore this topic
numerically here. As in most studies on this topic, we consider the domain � = R for
the spatial variable x , mainly for the convenience in discussing this topic.

123



Repulsion Effect on Superinfecting Virions 2817

0 1000 2000 3000 4000 5000
0

0.1

0.2

0.3

0.4

0.5

I

D
V

(I)

b=1

b=100

b=500

b=1000

Fig. 3 Diffusion function of virus DV (I ) = D0 + aI/(b + I ), where we take D0 = 0.01, a = 0.45

To proceed, we choose the following particular function for the diffusion of free
virus:

DV (I ) = D0 + aI

b + I
. (11)

Here, the repulsion effect is characterized by g(I ) = aI
b+I , which satisfies g(0) = 0,

and is an increasing function of I . The parameter a indicates the saturation level and
b describes how quickly g(I ) increases to its saturation level (see Fig. 3). Since our
focus is on the repulsion effect, for convenience, here, we neglect the mobility of target
cells (both infected and uninfected).

That is, we assume DT = 0 and consider the following model:

∂T

∂t
= h − dT T − βT V,

∂ I

∂t
= βT V − dI I, t > 0, (12)

∂V

∂t
= ∇ · (DV (I )∇V ) + γ I − dV V .

The baseline parameter values are taken from Bonhoeffer et al. (1997) as follows:
h = 107, β = 5 × 10−10, γ = 500, T = 0.1, dV = 5, dI = 0.1, D0 = 0.0001 and
b = 1. In this case, the basic reproduction number is R0 = √

50, and the positive
steady state is (T̄ , Ī , V̄ ) = (0.2 × 107, 9.8 × 107, 9.8 × 109).

We consider different initial distribution functions T0(x), I0(x) and V0(x), and
observe, by numerical simulations, the evolution of virus population. First, when the
initial distributions assume

T0(x) = 107, I0(x) = 0, V0(x) =
⎧⎨
⎩

0 x < 0
100 x = 0
0 x > 0

,
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Fig. 4 a Evolution of V (t, x) from the initial distribution V0(x), where dashed line red: a = 0, solid line
black: a = 0.45. b The contour of (a) (Color figure online)

meaning that 100 viruses are initially innoculated at the location x = 0. Numerical
results are plotted in Fig. 4a for a = 0 (no repulsion effect) and a = 0.45 (with
repulsion effect). From the numerical results, we can estimate the asymptotic spreading
speed using the method described by Neubert and Parker (2004). More precisely,
we assume there is some threshold for virus population density Ṽ below which we
cannot detect the presence of the virus population. Let x̃(t) be the location where the
population density equals Ṽ . The asymptotic spreading speed is defined as the rate
of increase of x̃(t) as t increases, that is, c = limt→∞ dx̃(t)

dt . This is an average speed
at which the population propagates finally. The slope of boundaries of inner (outer)
triangle region in Fig. 4b is the asymptotic spreading speed of free virus population
in the absence (presence) of repulsion effect.

Taking Ṽ = 0.1, we see from Fig. 4b that when there is no repulsion effect (a = 0),
the spreading speed of virus is approximately equal to c = 0.304, while in the presence
of repulsion effect (a > 0), virus spreads more quickly: for a = 0.45, the spreading
speed is approximately c = 1.547, which is more than five times quickly than the
spreading speed without repulsion effect. This is in close agreement with experimental
results observed in Doceul’s experiment (Doceul et al. 2010). Indeed, it was observed
(Doceul et al. 2010) that vaccinia virus spreads across one cell every 1.2 h, but in
vaccinia replication kinetics, new virions are formed only 5–6 h after infection (or, by
virus-induced cell motility, cell starts to move 5–6 h after infection). In other words,
the vaccinia virus spreads across one cell more faster than thought the rate at which
it replicates (1.2 vs 5–6 h). As pointed out in Condit (2010), Doceul et al. (2010) and
confirmed by our model simulations, such a faster spreading speed is attributed to
repulsion effect of superinfecting virions by infected cells.

For different initial distributions, the virus population also spreads at the same speed
as c = 0.304 for the case without repulsion effect and c = 1.547 for the case with
repulsion effect. Figure 5 gives the numeric simulation results on the evolution of virus
population described by the model (12) for the following initial distribution,

T0(x) = 107, I0(x) = 0, V0(x) =
⎧⎨
⎩

0 x ≤ −6π

50(1 + cos(x/π)) −6π < x ≤ 6π

0 x > 6π

.
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Fig. 5 a Initial distribution V0(x). b The evolution of V (t, x) from the initial distribution, where dashed
line (red): a = 0, solid line (black): a = 0.45. c The contour of (b) (Color figure online)

4 Existence of Traveling Wave Solutions in the Case � = R

Traveling wavefront solutions are a class of solutions which are in a particular form
incorporating the time variable and spatial variable through a moving coordinate. Such
a solution describes the spatial transition from one steady state to another. For traveling
wavefronts connecting an unstable steady state and a stable steady state, typically, there
is a minimal wave speed, which is closely related to the spreading speed discussed in
the preceding section. Indeed, there have been many works confirming that in many
model systems, the two speeds coincide (mainly monotone systems), while there are
also model systems in which the two speeds are different (see, e.g., Li et al. 2005;
Lewis et al. 2002).

In this section, we will explore the existence of traveling wavefront connecting
the infection-free steady state E0 and the infection steady state Ē , all under the same
assumptions/scenario as in the preceding section. That is, we still consider the case
� = R and assume that target cells and infected cells do not move, while viral particles
diffuse, and consider the following model
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∂T

∂t
= h − dT T − βT V,

∂ I

∂t
= βT V − dI I, (13)

∂V

∂t
= ∇ · (DV (I )∇V ) + γ I − dV V .

Rescaling the model (13) by

t̃ = dT t, x̃ = x,

u = (dT /h)T, w = (dT /h)I, v = (β/dT )V,

ρ1 = dI /dT , ρ2 = γβh/d3
T , ρ3 = dV /dT ,

D(w) = DV (h/dT w)/dT ,

we obtain (dropping the tildes on t and x)

∂u

∂t
= 1 − u − uv,

∂w

∂t
= uv − ρ1w, (14)

∂v

∂t
= ∇ · (D(w)∇v) + ρ2w − ρ3v.

This rescaled system has two steady states E0 = (1, 0, 0) and Ē = (ū, w̄, v̄) where

ū = ρ1ρ3

ρ2
, w̄ = ρ2 − ρ1ρ3

ρ1ρ2
, v̄ = ρ2 − ρ1ρ3

ρ1ρ3
.

Obviously, E0 and Ē are just result of rescaling E0 and Ē in preceding sections,
and Ē is biologically meaningful (positive) iff ρ2 > ρ1ρ3 which is equivalent to
R0 = √

γβh/dT dI dV = √
ρ2/ρ1ρ3 > 1.

Traveling wave solutions of (14) are solutions of the form ũ(x, t) = u(x + ct),
w̃(x, t) = w(x + ct), ṽ(x, t) = v(x + ct) where c > 0 represents the speed of
traveling wave solutions. Substituting this solution form into (14), we obtain

cu′ = 1 − u − uv,

cw′ = uv − ρ1w, (15)

cv′ = D′(w)w′v′ + D(w)v′′ + ρ2w − ρ3v,

where prime denotes differentiation with respect to the wave variable s = x + ct .
Letting z = v′, system (15) is rewritten as

u′ = 1

c
(1 − u − uv),

w′ = 1

c
(uv − ρ1w),
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v′ = z,

z′ = 1

D(w)

[
cz − 1

c
D′(w)(uv − ρ1w)z − ρ2w + ρ3v

]
, (16)

which has two steady states E ′
0 = (1, 0, 0, 0) and E ′

1 = (ū, w̄, v̄, 0) when R0 > 1.
We consider the existence of solutions of (15) satisfying the asymptotic boundary
conditions

lim
s→−∞(u(s), w(s), v(s), z(s)) = (1, 0, 0, 0),

lim
s→∞(u(s), w(s), v(s), z(s)) = (ū, w̄, v̄, 0), (17)

which accounts for transition from the infection-free steady state E0 to the infection
steady state Ē .

Behaviors of solutions of (16) near E ′
0 are typically determined by the linearization

of (16) at E ′
0. By analyzing this linearization and taking into consideration the feature

of traveling wave solutions (see “Appendix 2”), we obtain that system (14) does not
have any traveling wavefront solution for 0 < c < c∗. Here, c∗ is determined by the
following equation:

Q(c) := b0c6 + b1c4 + b2c2 + b3 = 0, (18)

where

b0 = 4ρ2 + ρ2
1 + ρ2

3 − 2ρ1ρ3,

b1 = D(0)
(

6ρ2ρ1 + 2ρ3
1 − 8ρ1ρ

2
3 + 4ρ3

3 + 18ρ2ρ3 + 2ρ2
1ρ3

)
,

b2 = D(0)2
(

8ρ3
1ρ3 − 8ρ2

1ρ2
3 + ρ4

1 + 36ρ2ρ1ρ3 − 6ρ2ρ
2
1 − 27ρ2

2

)
,

b3 = 4D(0)3
(
ρ4

1ρ3 − ρ2ρ
3
1

)
. (19)

Furthermore, c∗ satisfies

⎧⎨
⎩

c∗ >
√

D(0)ρ1 if 0 < ρ1 < ρ∗
1 ,

c∗ = √
D(0)ρ1 if ρ1 = ρ∗

1 ,

c∗ <
√

D(0)ρ1 if ρ1 > ρ∗
1 ,

(20)

where ρ∗
1 is determined by

2
√

3

9
√

ρ1(ρ1 + ρ3)
3/2 + ρ1ρ3 = ρ2. (21)

Although we cannot obtain an explicit formula for c∗, we can numerically calculate
it when the model parameters are given. To demonstrate this, we choose the same
baseline parameters of (13) as those in the preceding section. Then, for the rescaled
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Fig. 6 Impact of D(0) on c∗

model (14), we have ρ1 = 1.0, ρ2 = 2500, ρ3 = 50, ū = 0.02, w̄ = 0.98, v̄ = 49.
Under the rescaling, the function given in (11) is scaled to

D(w) = 1

dT

(
D0 + ahw

dT b + hw

)
.

When D0 = 0.0001 for the original system (13), that is, D(0) = 0.001 for the rescaled
system (14), numerically solving (18), we obtain c∗ = 0.2214 for (14). This means that
the c∗ for original system (13) is c∗ = 0.02214, since the rescaling is t̃ = dT t, x̃ = x
and dT = 0.1. Numerically plotting the solutions of (18) also shows that c∗ is an
increasing function of D(0), that is, an increasing function of D0 (see Fig. 6).

We have seen that for c ∈ (0, c∗), there is no traveling wavefront with speed c that
connects E0 and Ē . It is expected that c∗ is indeed the minimal wave speed in the
sense that for every c > c∗, (14) actually has traveling wavefront with speed c that
connects E0 and Ē . Unfortunately, we cannot theoretically prove this at the present.
In the following, we will explore this numerically. To this end, we use the method
developed by Beyn (1990). Firstly, the infinite interval is truncated to a finite interval
[τ−, τ+]. Then, we consider the boundary value problem (16) and (17) on this finite
interval with additional projection conditions (see Beyn 1990, section 3) and phase
conditions (Beyn 1990, section 4). We solve the boundary value problem by BVP
solver bvp4c in Matlab. The solutions y(s) = (u(s), w(s), v(s), z(s)) are split into
two segments, y1(s) = (u1, w1, v1, z1) on [0, τ+] and y2(s) = (u2, w2, v2, z2) on
[0, τ−], and the interval [τ−, τ+] is projected onto [−1, 1], such that y1(s) = y(sτ+)

and y2(s) = y(sτ−). Thus, we need to consider the following eight-dimensional ODE
system,

y′
1 = τ+ f (y1), y′

2 = τ− f (y2), s ∈ [0, 1]. (22)
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We see that y1(s) and y2(s) should satisfy the boundary condition

y1(0) = y2(0). (23)

Let ξd be an estimate of the derivative y′(0) and ξ0 be an estimate of y(0). Then, we
get the phase condition

ξ T
d (y1(0) − ξ0) = 0. (24)

Let A− and A+ be the Jacobian matrix of (16) at E ′
0 and E ′

1, respectively. Let the
eigenvectors which span stable subspace of A± be columns of B±s , the eigenvectors
which span unstable subspace of A± be columns of B±u , and construct

B± = (B±u B±s), B−1± =
(

L±u

L±s

)
,

where the rows of L±s and L±u form a basis for the stable and unstable subspaces of
AT±, respectively. The projection conditions are given by

L+u(y1(1) − E ′
0) = 0, L+u(y2(1) − E ′

1) = 0. (25)

We solve ODE problem (22) with boundary conditions (23), (24) and (25), by Mat-
lab, where ξd and ξ0 are chosen to be ξd = ((ū − 1)/2, w̄/2, v̄/2, 0) and ξ0 =
((ū + 1)/2, w̄/2, v̄/2, 0). The Jacobian of (16) at E ′

0 is A− = J0, and that at E ′
1 is

A+ =

⎛
⎜⎜⎝

−(1 + v̄)/c 0 −ū/c 0
v̄/c −ρ1/c ū/c 0
0 0 0 1
0 −ρ2/D(w̄) ρ3/D(w̄) c/D(w̄)

⎞
⎟⎟⎠ .

Setting the parameters as in previous discussions, we can now numerically solve for
the traveling wave solutions.

In the absence of repulsion effect, that is a = 0, the critical value c∗ is obtained by
solving the Eq. (18) which is c∗ = 0.02214. Numerical simulations of the model (14)
are given in Figs. 7 and 8. It is seen that for c < c∗, w(s) and v(s) go to negative for
some values of s, and hence, the system (14) cannot not have traveling wave solution;
while for c > c∗, traveling wave solution of (14) may exist. For example, c = 0.23,
the wave profiles of u(s) and w(s) are shown in Fig. 7; v(s) is shown in Fig. 3a. For
different values of wave speed c, the traveling wave solutions have different wave
profiles. Figure 3b shows the wave profiles of v(s) for c = 0.23, c = 5 and c = 10.
In this case, our numerical results show that c∗ = 0.2214 is indeed that minimal wave
speed for system (14), and hence, the minimal wave speed for the original system (13)
should be c∗ = 0.02214 which is much smaller than the spreading speed c = 0.304
established in the preceding section.

In the presence of repulsion effect, that is a > 0, solving (18) still gives c∗ = 0.2214
since (18) is independent of a. But our simulations show that this critical value is not
minimal wave speed in this case. Fixing a = 0.45, from the simulation results shown in
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Fig. 7 Wave profiles when a = 0 and c = 0.23: a profile of u(s); b profile of w(s)
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Fig. 8 Wave profiles of v(s) when a = 0: a c = 0.23; b c = 0.23, 5, 10

Fig. 9, we see that w(s) and v(s) go to negative for some values of s when c = 5 > c∗.
This means for c = 5, there is no traveling wavefront for (14). In fact, numerical
simulations show that this is also the case for c ≥ 13. However, for c = 14, the system
(14) has traveling wavefront (see Fig. 10). This implies that if the minimal wave speed
exists, it is between 13 and 14. Obviously, this minimal wave speed is also different
from the spreading speed c = 1.547 established in the preceding section. From these
numerical results, we see that in the presence of repulsion effect, the linearized system
will not determine the minimal wave speed for the original system, that it, the minimal
wave speed is not linearly deterministic.

5 Conclusions and Discussion

In this paper, we propose a general virus infection dynamic model to describe the
new mechanism reported in (Doceul et al. 2010) that can speed up the spread of virus
within host. This new mechanism is called the repulsion of superinfecting virions
by infected cells. Although this mechanism was discovered for vaccinia virus, it was
pointed out in (Doceul et al. 2010) that some other viruses may also have this kind of
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Fig. 9 For a = 0.45, when c = 5, there is no traveling wave solution, since w(s) and v(s) go to negative
for some s
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Fig. 10 For a = 0.45, when c = 14, there exists a traveling wave solution. a The wave profile of u(s) and
w(s), b the wave profile of v(s)

rapid spreading mechanisms. With our general model, we have numerically confirmed
the experimental results reported in Doceul et al. (2010), that is, the repulsion of
superinfecting virions (a > 0) accelerates the spread of free viral particles. This
model has the potential to be used for predicting the spreading speed for other viruses
with similar repulsion effect.

In Sects. 3 and 4, we chose a specific diffusion function (11) for virus population.
We can obtain similar results about spreading speed and traveling wave solutions for
the following diffusion function:

DV (I ) = D0 + k I, (26)

where k > 0. For example, choosing the same values for parameters and initial func-
tions as that in Fig. 4, we see that the repulsion effect of infected cells on superinfecting
virions also promotes the spread of viruses, as shown in Fig. 11. When there is no
repulsion effect, the spreading speed is approximately c = 0.2778; while c = 1.2222,
when the repulsion effect exists. On the other hand, note that the wave speed c∗ does
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Fig. 11 a The evolution of V (t, x) from the initial distribution V0(x), where dashed line (red): k = 0;
solid line (black): k = 0.38 × 10−7. b The contour of (a) (Color figure online)
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Fig. 12 For k = 0.38 × 10−7, a when c = 10, there is no traveling wave solution, since w(s) goes to
negative for some s; b, c when c = 26, there exists traveling wave solution

not depend on function g(I ). Hence, the existence of traveling wave solutions for
0 < c < c∗ is same as the case of the diffusion function (11). When the repulsion
effect exists and the diffusion function takes the form (26), we can also show numer-
ically that the speed c∗ is not the minimal wave speed (see Fig. 12) and the minimal
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wave speed is also not consistent with the asymptotic spreading speed. For example,
with the same parameters as that in Fig. 11, system (14) does not have traveling wave
solution with speed c = 10 (see Fig. 12a), and this is true for c ≤ 25. For c = 26, sys-
tem (14) has traveling wave solutions (see Fig. 12b, c). Therefore, the minimal wave
speed may be between 25 and 26 for rescaled system (14), and it may be between 2.5
and 2.6 for original system (13). This minimal wave speed is inconsistent with the
spreading speed c = 1.2222.

In many mathematical and epidemiological models, especially for scalar equation
or cooperative systems, the asymptotic spreading speed can be characterized as the
slowest speed of traveling wave front solutions connecting an unstable steady state
and a stable steady state (see, e.g., Li et al. 2005 and the references therein). Fisher’s
equation is such a model (classic). Such a result is very useful, since the slowest wave
speed is easier to be calculated than the spreading speed.

As far as spreading speed goes, under some conditions, the linear determinacy
holds for cooperative systems (Weinberger et al. 2002), that is, the spreading rate of
the full nonlinear model agrees with the spreading rate of the system linearized about
the leading edge of the invasion. For example, Lewis et al. (2002) obtained some
parameter ranges for the Lotka–Volterra competition model, for which the spreading
speed is linearly determined. They also derived a set of sufficient conditions for linear
determinacy in a spatially explicit two-species discrete-time competition model. How-
ever, linear determinacy is not always valid, especially for complicated models, such
as, competition models and prey–predator models. When linear determinacy does not
hold, spread rates may exceed linearly determined predictions. There are also cases
that different species in a model system may have different spreading speeds (Li et
al. 2005; Weinberger et al. 2007). In our model, the linear determinacy does not hold
and the spreading rate is much larger than linearly determined minimal wave speed
in the presence of repulsion effect. This may be due to the complexity of the virus
dynamic system, which is neither a cooperative system nor a competitive system. In
fact, the target cell population and free virus population have a relationship similar
to a prey–predator system, while infected cells and free viruses are cooperative. In
our model, the minimal wave speed, given by the linearized analysis at infection-free
steady state, is only true for the case when there is no repulsion effect (a = 0). If
repulsion of superinfecting virions is present, the minimal wave speed would be much
higher than the linearly determined wave speed.

Besides the classical route of cell-free virus spread, many viruses can spread through
cell-to-cell transmission (Sattentau 2008), that is, viruses move between cells without
diffusing through the extracellular environment. For instance, HIV-1 and HTLV-1 can
spread from cell to cell by virological synapses or cell membrane nanotubes (Sattentau
2011); murine leukemia virus (MLV) can establish filopodial bridges for efficient
cell-to-cell transmission (Mothes et al. 2010); Herpes simplex virus type-1 (HSV-
1) can move between fibroblasts by polarized assembly and budding at basolateral
intercellular junctions (Sattentau 2011); vaccinia virus can also spread through cell
to cell by projection on actin tails (Sattentau 2008). We do not consider this route of
spread in this paper and leave it for a separate research project.
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Appendix 1

Proofs of Theorems 2.1 and 2.3

Proof of Theorem 2.1 Note that the system (5) is normally elliptic and triangular (in
fact diagonal). According to Theorem 1 Amann (1989) or Theorems 14.4 and 14.6 in
Amann (1993), (5)–(4) has a unique classical solution (T, I, V ) defined on [0, τ0)×�

such that

(T, I, V ) ∈ C([0, τ0), X+) ∩ C2,1((0, τ0) × �̄, R
3),

where τ0 > 0 is the maximal value for interval of existence of the solution. The
nonnegativity of the solution follows from Theorem 15.1 by Amann (1993). In order
to show that τ0 = ∞, by Theorem 5.2 in Amann (1989) and the nonnegativeness of
the solution confirmed above, it suffices to prove that the solution (T, I, V ) is bounded
above by some positive values.

From the T and I equations in (2), we see that

∂

∂t
(T + I ) = DT �(T + I ) + h(x) − dT T − dI I

≤ DT �(T + I ) + h̄ − dm(T + I ),

where h̄ = maxx∈� h(x) and dm = min{dT , dI }. By Lemma 1 in Lou and Zhao
(2011), h̄/dm is the globally attractive steady state for the scalar parabolic equations

∂w(t, x)

∂t
= DT �w(t, x) + h̄ − dmw(t, x), x ∈ �, t > 0,

∂w(t, x)

∂ν
= 0, x ∈ ∂�, t > 0.

The parabolic comparison theorem (Smith 1995, Theorem 7.3.4) implies that T + I
is bounded. This together with the nonnegativity of T and I further implies that both
T (t, x) and I (t, x) are bounded. We assume 0 ≤ T (t, x) ≤ TM , 0 ≤ I (t, x) ≤ IM .

Let γ̄ = maxx∈�{γ (x)}, and VM = γ̄ IM/dV . For any given I , define the operator
P by

PV = Vt − ∇ · (DV (I )∇V ) − γ (x)I + dV V .

For any solution (T, I, V ) of the system (2)–(3)–(4), we have PV = 0. On the other
hand,

PVM = dV VM − γ (x)I ≥ dV VM − γ̄ IM = 0 = PV .
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On the boundary ∂�, we have ∂VM
∂ν

= 0. Thus, V = VM is an upper solution of
the V equation in the system (2)–(3). By the comparison principle, we obtain that
V (t, x) ≤ VM . Therefore, the solution (T, I, V ) is bounded, and hence, it exists
globally.

Proof of Theorem 2.3 Linearizing (2) at Ē = (T̄ , Ī , V̄ ) gives

∂

∂t
u(t, x) = (D̄� + Ā)u(t, x),

where

D̄ =
⎛
⎝

DT 0 0
0 DT 0
0 0 DV ( Ī )

⎞
⎠ , Ā =

⎛
⎝

−dT − β V̄ 0 −β T̄
β V̄ −dI β T̄
0 γ −dV

⎞
⎠ , u =

⎛
⎝

u1
u2
u3

⎞
⎠ .

The corresponding characteristic polynomial of this linearized system is

| λI + D̄k2 − Ā |= 0, (27)

where k is the wavenumber, λ is the eigenvalue which determines temporal growth
(Murray 2000). The positive steady state Ē is linearly stable if all eigenvalues have
negative real parts.

Substituting the two matrices Ā and D̄ into (27), we obtain

∣∣∣∣∣∣
λ + DT k2 + dT + β V̄ 0 β T̄

−β V̄ λ + DT k2 + dI −β T̄
0 −γ λ + DV ( Ī )k2 + dV

∣∣∣∣∣∣
= 0,

that is,
λ3 + b1(k

2)λ2 + b2(k
2)λ + b3(k

2) = 0, (28)

where

b1(k
2) = (2DT + DV ( Ī ))k2 + (dT + dI + dV ) > 0,

b2(k
2) = [D2

T + 2DT DV ( Ī )]k4

+[DT dI + DT (dT + β V̄ ) + DT dV + DV ( Ī )(dT + β V̄ ) + DT dV

+ DV ( Ī )dI ]k2 + (dT + β V̄ )dI + (dT + β V̄ )dV > 0,

b3(k
2) = D2

T DV ( Ī )k6 + [D2
T dV + DT DV ( Ī )dI + DT DV ( Ī )(dT + β V̄ )]k4

+[DT (dT + β V̄ )dV + DV ( Ī )(dT + β V̄ )dI ]k2

+β V̄ dI dV > 0.

b1(k
2)b2(k

2) − b3(k
2)

= (2DT + DV ( Ī ))[D2
T + 2DT DV ( Ī )]k6
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+{[(2DT + DV ( Ī ))][DT dI + (DT + DV ( Ī ))(dT + β V̄ )

+ 2DT dV + DV ( Ī )dI ]
+ [D2

T + 2DT DV ( Ī )](dT + dI + dV )}k4

+{(2DT + DV ( Ī ))[(dT + β V̄ )dI + (dT + β V̄ )dV ]
+[DT dI + (DT + DV ( Ī ))(dT + β V̄ ) + 2DT dV

+DV ( Ī )dI ](dT + dI + dV )}k2

+ (dT + dI + dV )[(dT + β V̄ )dI + (dT + β V̄ )dV ]
− D2

T DV ( Ī )k6 − [D2
T dV + DT DV ( Ī )dI + DT DV ( Ī )(dT + β V̄ )]k4

−[DT (dT + β V̄ )dV + DV ( Ī )(dT + β V̄ )dI ]k2

−β V̄ dI dV

≥ 4D2
T DV (T̄ )k6 + {2DT [DT dI

+ DV ( Ī )(dT + β V̄ ) + 2DT dV + DV ( Ī )dI ] + [D2
T + 2DT DV ( Ī )]dT }k4

+{DT [(dT + β V̄ )dI + (dT + β V̄ )dV ]
+ [DT dI + (DT + DV ( Ī ))(dT + β V̄ ) + 2DT dV + DV ( Ī )dI ](dT + dI + dV )}k2

+ (dT + dI )[(dT + β V̄ )dI + (dT + β V̄ )dV ]
> 0.

By the Routh–Hurwitz Criterion, we know that all eigenvalues of (28) have negative
real parts, and therefore, the positive steady state Ē is linearly stable if it exists.

Appendix 2

Proof of nonexistence of traveling wavefront solutions for c ∈ (0, c∗).
The Jacobian matrix of (16) at E ′

0 is

J0 =

⎛
⎜⎜⎝

−1/c 0 −1/c 0
0 −ρ1/c 1/c 0
0 0 0 1
0 −ρ2/D0 ρ3/D0 c/D0

⎞
⎟⎟⎠ .

It has an eigenvalue λ = −1/c which is negative for all c > 0. So, we only need to
consider other eigenvalues which are determined by

P(λ) := λ3 + a1λ
2 + a2λ + a3 = 0,

where

a1 = D0ρ1 − c2

cD0
, a2 = −ρ1 + ρ3

D0
< 0, a3 = ρ2 − ρ1ρ3

cD0
> 0.
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Since P(0) = a3 > 0 and P(−∞) = −∞, P(λ) = 0 has a negative root. By the
Descarte’s rule of signs and by the Routh–Hurwitz criterion, the other two roots of
P(λ) = 0 are either positive and real or a pair of conjugate complex numbers. In the
latter case, the complex eigenvalues imply the oscillations of solutions of (16) near
E ′

0, implying the w and v will take negative values (making solutions biologically
meaningless), and thus, (16)–(17) cannot have positive solutions, meaning that (14)
cannot have traveling wavefronts connecting E0 and Ē . Therefore, in order for (14)
to have traveling wavefronts connecting E0 and Ē , it is necessary P(λ) = 0 to have
a pair of positive real roots (counting multiplicity).

Note that P ′(λ) = 3
(
λ2 + 2a1

3 λ + a2
3

)
and P ′(λ) = 0 has a unique positive root

λ∗ = 1

3

(
−a1 +

√
a2

1 − 3a2

)
.

Since P(0) = a3 > 0 and P ′(0) = a2 < 0, we conclude that P(λ) = 0 has two
positive real roots if and only if P(λ∗) < 0. From P ′(λ∗) = 0, we obtain that

λ∗2 + 2a1

3
λ∗ + a2

3
= 0, λ∗3 + 2a1

3
λ∗2 + a2

3
λ∗ = 0.

Using these equations to simplify the form of P(λ∗), we obtain

P(λ∗) = a1

3
λ∗2 + 2a2

3
λ∗ + a3

= 2

3

(
a2 − a2

1

3

)
λ∗ + a3 − a1a2

9

= 1

27

[
−2
(

a2
1 − 3a2

)3/2 + 27a3 + 2a3
1 − 9a1a2

]
.

It then follows that

P(λ∗) < 0 ⇔ 27a3 + 2a3
1 − 9a1a2 ≤ 0, OR 27a3 + 2a3

1 − 9a1a2

> 0 AND 4
(

a2
1 − 3a2

)3
>
(

27a3 + 2a3
1 − 9a1a2

)2 ;

P(λ∗) > 0 ⇔ 27a3 + 2a3
1 − 9a1a2 > 0 AND 4

(
a2

1 − 3a2

)3

<
(

27a3 + 2a3
1 − 9a1a2

)2
.

Let Q1(c) := 27a3 + 2a3
1 − 9a1a2, then Q1(c) = 1

D3
0c3 (d0c6 + d1c4 + d2c2 + d3),

where d0 = −2, d1 = −3D0(ρ1 −3ρ3), d2 = 3D2
0(9ρ2 −6ρ1ρ3 +ρ2

1 ) > 0 and d3 =
2ρ3

1 D3
0 > 0. By the Descarte’s rule of signs, Q̄1(c) := d0c6 + d1c4 + d2c2 + d3 = 0

has a unique positive root c∗
0 > 0. Since Q̄1(0) = d3 > 0, we see that Q̄1(c) > 0
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if 0 < c < c∗
0, and Q̄1(c) < 0 if c > c∗

0. Furthermore, Q1(c∗
0) = 0, Q1(c) > 0 if

0 < c < c∗
0, and Q1(c) < 0 if c > c∗

0.

Let Q2(c) := 4
(
a2

1 − 3a2
)3 − (27a3 + 2a3

1 − 9a1a2
)2

, then Q2(c) = 27
D4

0c4 (b0c6

+ b1c4 + b2c2 + b3) where bi , i = 0, 1, 2, 3, are given by (18).
Note that b0 > 0, b1 > 0, b3 < 0. Again by the Descarte’s rule of signs, Q(c)

given by (18) has a unique positive root c∗ > 0. Since Q(0) = b3 < 0, we see that
Q(c) < 0 if 0 < c < c∗, and Q(c) > 0 if c > c∗. Therefore, Q2(c∗) = 0, Q2(c) < 0
if 0 < c < c∗, and Q2(c) > 0 if c > c∗.

Note that a2
1(c) − 3a2 > 0 for all c > 0. Thus, Q2(c∗

0) = a2
1(c∗

0) − 3a2 > 0,
implying c∗ < c∗

0. In summary, we have obtained:

P(λ∗) < 0 ⇔ Q2(c) ≤ 0, OR, Q2(c) > 0 AND Q1(c) > 0

⇔ c ≥ c∗
0 (hence c > c∗), OR, 0 < c < c∗

0 AND c > c∗

⇔ c > c∗;
P(λ∗) > 0 ⇔ Q2(c) > 0 AND Q1(c) < 0

⇔ 0 < c < c∗
0 AND c < c∗

⇔ 0 < c < c∗.

Thus, for any c ∈ (0, c∗), system (14) has no traveling wavefront solutions with speed
c that connects E0 and Ē .

From the definition of Q(c), we obtain

Q(
√

D0ρ1) = D3
0ρ1

[
4ρ1(ρ1 + ρ3)

3 − 27(ρ2 − ρ1ρ3)
2
]
.

It is easy to see that Q3(ρ1) := 4ρ1(ρ1 + ρ3)
3 is strictly increasing function of ρ1,

and Q3(0) = 0, Q3(+∞) = +∞; Q4(ρ1) := 27(ρ2 − ρ1ρ3)
2 is strictly decreasing

function of ρ1 when ρ2 > ρ1ρ3, and Q4(0) = 27ρ2
2 . Therefore, Q(

√
D0ρ1) has a

unique positive root ρ∗
1 , such that Q(

√
D0ρ1) < 0 for 0 < ρ1 < ρ∗

1 , and Q(
√

D0ρ1) >

0 for ρ1 > ρ∗
1 . By the property of Q(c), we have

√
D0ρ1 < c∗ for 0 < ρ1 < ρ∗

1 ;√
D0ρ1 > c∗ for ρ1 > ρ∗

1 and c∗ = √
D0ρ

∗
1 , where ρ1 is determined by (21).

Therefore, we obtain the information (20) about c∗.
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