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Abstract Recent field experiments on vertebrates showed that the mere presence of
a predator would cause a dramatic change of prey demography. Fear of predators
increases the survival probability of prey, but leads to a cost of prey reproduction.
Based on the experimental findings, we propose a predator–prey model with the cost
of fear and adaptive avoidance of predators. Mathematical analyses show that the
fear effect can interplay with maturation delay between juvenile prey and adult prey
in determining the long-term population dynamics. A positive equilibrium may lose
stability with an intermediate value of delay and regain stability if the delay is large.
Numerical simulations show that both strong adaptation of adult prey and the large cost
of fear have destabilizing effect while large population of predators has a stabilizing
effect on the predator–prey interactions. Numerical simulations also imply that adult
prey demonstrates stronger anti-predator behaviors if the population of predators is
larger and shows weaker anti-predator behaviors if the cost of fear is larger.
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1 Introduction

Studying the mechanism of predator–prey interaction is a central topic in both ecology
and evolutionary biology. Direct killing of prey by predators is obviously easy to
observe in the field and hence is the focus of mathematical modeling by far. However,
it has been argued by theoretical biologists (Lima 1998, 2009; Creel and Christianson
2008) that indirect effects caused by anti-predator behaviors of prey may play an even
more important role in determining prey demography.

Almost all vertebrates demonstrate plastic behaviors in response to stimuli in the
surrounding environment. For prey, the fear of predators drives prey to avoid direct
predation, which may increase short-term survival probability of prey, but may cause
a long-term loss in prey population as a consequence (Cresswell 2011). Such indirect
effects exist commonly in species with different life stages in life span, for example,
birds. Breeding birds may fly away from nests and leave juvenile birds unprotected
and less looked after when adults perceive predation risk (Cresswell 2011). Even the
temporary absence of adult birds may lower survival probability of juveniles because
juveniles may experience less suitable living conditions provided by adults and face
higher risk of predation. In such a scenario, the overall fitness of the bird species may
decrease because the fear may lead to a reduction in its reproduction success although
its temporal survival probability may increase.

Some recent field experiments supported the aforementioned theoretical arguments
about significant effect that such anti-predator behaviors may have. For example,
Zanette et al. (2011) conducted a field experiment on song sparrows during a whole
breeding season by using electrical fence to eliminate direct predation of both juvenile
and adult song sparrows. No direct killing can happen in the experiment; however,
broadcast of vocal cues of known predators in the field was employed to mimic preda-
tion risk. Two groups of female song sparrows were tested, among which one group
was exposed to predator sounds while the other group was not. The authors (Zanette
et al. 2011) found that the group of song sparrows exposed to predator vocal cues
produced 40% less offspring than the other group because fewer eggs were laid, fewer
eggs were successfully hatched, and fewer nestlings survived eventually. Behavioral
changes of adult song sparrows when predation risk existed were also observed and
documented in Zanette et al. (2011), including less time of adult song sparrows on
brood and less feeding to nestlings during breeding period, and these were all believed
to be responsible for the total cost of 40% reduction in offspring population. Some
correlative experiments on other birds or other vertebrate species (Creel et al. 2007;
Sheriff et al. 2009; Wirsing and Ripple 2011) also reported that even though there was
no direct killing between predators and prey, the presence of predators did cause a
large reduction in prey population due to anti-predator behaviors of prey.

Based on the experiment in Zanette et al. (2011), Wang et al. (2016) studied a
predator–prey model with the cost of fear incorporated. The authors found that strong
anti-predator behaviors or equivalently the large cost of fear may exclude the existence
of periodic solutions and thus eliminate the phenomenon ‘paradox of enrichment.’ In
addition, under relatively low cost of fear, periodic solutions still exist arising from
either supercritical or subcritical Hopf bifurcation (Wang et al. 2016). In Wang et al.
(2016), the age structure of prey is ignored. However, the experiment in Zanette et al.
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(2011) distinguished the life stages of song sparrows with regard to their behaviors.
In addition, the cost of anti-predator defense of adult prey does not only exist in the
birth rate of juvenile prey, but also been observed in the survival rates including both
natural death rate and predation rate of juveniles. All these evidences suggest the
incorporation of age structures into a mathematical model. In fact, the anti-predator
behavior of adult prey can be viewed as a plastic trait or strategywhich is adaptive to the
environment (Yamamichi et al. 2011; Svennungsen et al. 2011). Under selection, adult
prey tends to choose a defense level that would increase their survival probability and
reduce the reproduction loss, butmaximize the individual fitness (Abrams2000). There
have been a few mathematical models that describe such adaptive behaviors of prey.
Křivan (2007) studied the trade-off between foraging and predation based on classic
Lotka–Volterramodel where either prey or predator or bothwere adaptive tomaximize
their individual fitness. Peacor et al. (2013) employed a graphical model to study the
strength of anti-predator behaviors and conditions when the indirect effects dominate
predator–prey interactions by regarding the defense level of prey as an adaptive trait.
Takeuchi et al. (2009) studied the conflict between investing time on taking care of
juveniles and searching for resources of adult prey in the absence of direct predation,
where they assumed that adults adapt their parental care time through learning.

Motivated by the above existing works and the experimental evidence of Zanette
et al. (2011) for song sparrows, and as an extension of Wang et al. (2016), in this
paper, we formulate, in Sect. 2, a predator–prey model with age structure and allowing
adaptive avoidance of predators. The model divides the prey population into a juvenile
stage and an adult stage and is naturally represented by a system of delay differential
equations (DDEs) with the delay accounting for the maturation time. Adult prey in
the model is assumed to adapt defense level in terms of the total growth rate of both
juveniles and adults. In Sect. 3, we address the well-posedness of the model with the
properly posed initial conditions. In Sect. 4, we analyze the dynamics of the model
with either a constant defense level or an adaptive defense level, respectively, with
focus on a simplified version of the model. The reason is that for the full model in
the general form, analysis becomes much hard and more difficult, as such, we mainly
present some numerical simulation results and discuss some biological implications,
with focus on the impact of some key model parameters. We conclude the paper by
Sect. 5 in which we briefly summarize this work and in the mean time discuss some
possible future topics related to this paper.

2 Model Formulation

Based on the experiment in Zanette et al. (2011), there exist different stages of song
sparrows, in which song sparrows behave very differently. This naturally suggests use
of age-structured model for study of population dynamics of birds. For simplicity, we
only consider two stages—a juvenile stage and an adult stage, and follow the standard
and frequently used approach (see references Cooke et al. 1999, 2006; Gourley and
Kuang 2004; Liu and Beretta 2006; Baer et al. 2006; Wang et al. 2008) to incorporate
the two stages of prey into the model. Apparently, there is a maturation delay between
juvenile prey and adult prey, which is denoted as τ in our model. Noting that Zanette
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1328 X. Wang, X. Zou

et al. (2011) reported that juvenile song sparrows cannot live independently and must
live under the protection of adult song sparrows to survive, we assume that juvenile
birds do not show anti-predator behaviors. In other words, only adult prey is conscious
enough to perceive predation risk and is able to void potential attacking by flying away
from nests. Such an anti-predator defense of adult prey positively impacts the species
survival, but in the mean time results in a cost as well (Creel and Christianson 2008).
This is because anti-predator behaviors of adult prey increase the possibility for them to
escape from direct killing by predator, but more frequent and defensive flying of adults
will consume extra energy and time, which are essential for reproduction. Moreover,
too frequent flying of parent birds will leave the juveniles less looked after and less
protected, leading to a higher risk of predation. In addition, as documented in Zanette
et al. (2011), adult song sparrows feed less to juveniles if they are scared, and this leads
to a higher death rate of juvenile song sparrows even in the absence of direct killing.

Taking into consideration the aforementioned facts/observations due to fear effect
of adult prey, we can formulate amathematical model as follows. Let α ∈ [0, 1] denote
the level of anti-predator defense of adult prey, with larger value of α accounting for
stronger anti-predation defense and smaller value corresponding to weaker response.
Denote the populations of juvenile prey and adult prey by x1 and x2, respectively, and
the population of predator by y. Adopting the simple mass action predation mecha-
nism and incorporating the effect of the anti-predation response represented by α, the
dynamics of x1 and x2 can be described by the following differential equations:

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

dx1
dt

= b(α, x2) x2 − (d0 + d1 α) x1 − (s0 + s1 α) x1 y

− b(α, x2(t − τ)) x2(t − τ)e− (d0 + s0 y + (d1 + s1 y) α) τ ,

dx2
dt

= b(α, x2(t − τ)) x2(t − τ)e−(d0 + s0 y + (d1 + s1 y) α) τ

− d2 x2 − s(α) x2 y.

(1)

Here, d0 is the natural death rate of juveniles, s0 is the death rate of juveniles due to
direct predation, d1 and s1 are death rates of juveniles induced by the cost of anti-
predator behaviors of adult prey, d2 is the natural death rate of adult prey. Here in this
work, to avoid making things too complicated, we assume that the predator population
y is a constant. This corresponds to a scenario that the predator is a generalist which
lives on many other species of prey, and this also reflects the environment of the field
experiment by Zanette et al. (2011) in which the presence of predators is represented
by the strength of vocal cues which can be controlled as a constant level.

In model (1), b(α, x2) is the birth rate function and s(α) is the predation rate
function for adult prey. Both of them depend on the anti-predation behaviors of adult
prey and should be decreasing in α, followed by the aforementioned discussions on
the fear effect. Typically b(α, x2) is also decreasing in x2. To be specific, we choose
the following form for b(α, x2):

b(α, x2) =
{

(b0 − b1 α)θ1e(−a x2), if 0 ≤ α < b0
b1

,

0, if b0
b1

≤ α ≤ 1,
(2)
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where 0 < b0 < b1 and θ1 ≥ 1. This assumes a threshold b0/b1 below which the
birth function is of the Ricker type with the maximal birth rate adjusted by α ∈
[0, b0/b1) and above which (extremely fearful case) there is no birth at all. For s(α),
for convenience we also choose the following similar form:

s(α) =
{

(s2 − s3 α)θ2 , if 0 ≤ α < s2
s3

,

0, if s2
s3

≤ α ≤ 1,
(3)

where 0 < s2 < s3 and θ2 ≥ 1. Again a threshold s2/s3 is assumed above which the
adults can fully escape from predation. We point out that depending on the particular
species of predator and prey, the two threshold values b0/b1 and s2/s3 may vary.
For convenience of subsequent discussions, we assume, in the rest of the paper, that
s2/s3 < b0/b1, accounting for a situation of relatively mild predation.

Because adult prey can perceive predation risk to some extent and adapt their behav-
iors to the change of the surrounding environment (Cresswell 2011), we may consider
the anti-predator defense level of the adult prey (i.e., α) to be adaptive. According to
Svennungsen et al. (2011), it is reasonable to regard α as a trait, which should evolve
towardmaximizing the fitness of the prey species (Abrams 2000). For a preywith stage
structure, following the idea in Takeuchi et al. (2009), we consider the scenario that
adult prey acts adaptively so that the instant total growth rate of the total specieswill be
benefitted. With this consideration and following Takeuchi et al. (2009), we adopt the
following quantity for the fitness of prey with respect to anti-predator defense level α

Φ = dx1
dt

+ dx2
dt

= b(α, x2) x2 − (d0 + d1 α) x1 − (s0 + s1 α) y x1 − d2 x2 − s(α) x2 y. (4)

Then, according to Takeuchi et al. (2009), the evolution of α is governed by

dα

dt
= γ (α)

∂Φ

∂α

= γ (α)

(
∂b(α, x2)

∂α
x2 − d1 x1 − s1 y x1 − ds(α)

dα
x2 y

)

, (5)

where γ (α) = k α (1 − α) ensures that the defense level α remains between 0 and
1, provided that α(0) ∈ [0, 1]. Summarizing, as far as the adaptive anti-predator
response is concerned, we will consider the following stage-structured predator–prey
model with adaptive avoidance of predation and fear effect:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dx1
dt

= b(α, x2) x2 − (d0 + d1 α) x1 − (s0 + s1 α) x1 y

− b(α(t − τ), x2(t − τ)) x2(t − τ) exp

(

−
∫ t

t−τ

(d0 + s0 y + (d1 + s1 y) α(s))ds

)

,

dx2
dt

= b(α(t − τ), x2(t − τ)) x2(t − τ) exp

(

−
∫ t

t−τ

(d0 + s0 y + (d1 + s1 y) α(s))ds

)

− d2 x2 − s(α) x2 y,

dα

dt
= k α (1 − α)

(
∂b(α, x2)

∂α
x2 − d1 x1 − s1 y x1 − ds(α)

dα
x2 y

)

.

(6)
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1330 X. Wang, X. Zou

3 Well-Posedness of the Model

The model (6) should be associated with the nonnegative initial values:

x2(θ) ≥ 0, α(θ) ∈ [0, 1] for θ ∈ [−τ, 0] with x2(0) > 0. (7)

As for the variable x1, there is also a compatibility issue. To see this, we can integrate
the equation for x1 in (6) to obtain

x1(t) =
∫ t

t−τ

b(α(η), x2(η)) x2(η) exp

(

−
∫ t

η

(d0 + s0 y + d1 α(u)

+ s1 y α(u)) du) dη. (8)

At t = 0, the above equation gives a constraint on the initial values:

x1(0) =
∫ 0

−τ

b(α(η), x2(η)) x2(η) exp

(

−
∫ 0

η

(d0 + s0 y + d1 α(u)

+ s1 y α(u)) du) dη. (9)

This condition is also biologically reasonable because it simply says that the total
juvenile population at t = 0 is a result of the newborns during the interval [−τ, 0]
mediated by the death during this period (Kuang and So 1995).

The existence and uniqueness of solutions of (6) can be easily established by the
standard method of steps. Now when the initial values are nonnegative and the com-
patibility condition (9) holds, we can confirm the well-posedness in the sense stated
in the following lemma.

Lemma 3.1 Let x2(θ), α(θ) ≥ 0 on −τ ≤ θ < 0 and x2(0) > 0, b0/b1 > α(0) > 0,
and assume that x1(0) satisfies (9). Then, the solution of (6) stays positive and is
ultimately bounded.

Proof Let

h(t) = ∂Φ

∂α
(t) = ∂b(α(t), x2(t))

∂α
x2(t) − d1 x1(t) − s1 y x1(t) − ds(α(t))

dα(t)
y x2(t).

(10)
Then, α(t) can be expressed as

α(t) =
α(0) exp

(∫ t
0 k h(η)dη

)

1 − α(0) + α(0) exp
(∫ t

0 k h(η)dη
) . (11)

Thus, it is clear that α(t) = 0 for all t ≥ 0 if α(0) = 0, α(t) = 1 for all t ≥ 0 if
α(0) = 1, and 0 < α(t) < 1 for t ≥ 0 if 0 < α(0) < 1.

123

Author's personal copy



Modeling the Fear Effect in Predator–Prey Interactions. . . 1331

Since we assume x2(θ), α(θ) ≥ 0 on −τ ≤ θ < 0, from equation of x2 in (6), we
obtain

dx2(t)

dt
≥ −d2 x2 − s(α) x2 y ≥ −

(
d2 + s22 y

)
x2, t ∈ [0, τ ]. (12)

By a comparison argument and from (12), we obtain

x2(t) ≥ x2(0)e
−(

d2+s22 y
)
t , t ∈ [0, τ ] (13)

which shows that x2(t) > 0 if x2(0) > 0 for t ∈ [0, τ ]. Repeating the argument,
we obtain the positivity in [τ, 2τ ], [2τ, 3τ ], . . ., and hence for all t ≥ 0 indeed. The
positivity of x1(t) is just a consequence of combining (8) and the positivity of x2(t)
and α(t).

Next, we show boundedness of solutions of (6). As discussed, we have shown that
α(t) is bounded between 0 and 1. Thus, it only remains to show the boundedness of
x1 and x2. From (6), we have

dx1
dt

≤ b(α, x2) x2 − (d0 + d1 α) x1 − (s0 + s1 α) x1 y

≤ bθ1
0 e−a x2 x2 − (d0 + s0 y) x1

≤ bθ1
0

e a
− (d0 + s0 y) x1.

Therefore, we obtain

lim
t→∞ sup(x1(t)) ≤ bθ1

0

e a (d0 + s0 y)
.

Furthermore, adding the first two equations of (6) gives

d(x1 + x2)

dt
≤ b(α, x2) x2 − d0 x1 − d2 x2

≤ b(α, x2) x2 − γ (x1 + x2)

≤ bθ1
0

e a
− γ (x1 + x2),

where γ = min{d0, d2}. Thus,

lim
t→∞ sup(x1(t) + x2(t)) ≤ bθ1

0

e a γ
. (14)

By (14) and the positivity of x1 and x2, we conclude that x1 and x2 are ultimately
bounded, completing the proof of the lemma. ��
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1332 X. Wang, X. Zou

4 Long-Term Dynamics of the Model

In this section, we investigate the dynamics of the model. We start by looking at two
special cases first, in Sects. 4.1 and 4.2, respectively, before considering the full model
in Sect. 4.3.

4.1 Model with Constant Defense Level

Before we consider the adaptive defense described by (6), it would be helpful and
useful to look at the case when the defense level α is a constant. In this case, the
equation of x2 is decoupled from x1, and the dynamics of system (1) is completely
determined by

dx2
dt

= b(α, x2(t − τ)) x2(t − τ)e−(d0 + s0 y + (d1 + s1 y) α) τ − d2 x2 − s(α) x2 y,

(15)
where b(α, x2), s(α) are defined in (2) and (3), respectively. In order to simplify
analysis, let p = d0 + s0 y, q = d1 + s1 y, δ0(α) = p + q α, and δ(α) = d2 + s(α) y.

When the defense level is too strong in the sense that α ∈ [b0/b1, 1], by (2),
b(α, x2) = 0, meaning the species is fully devoted to defend predation so that there is
no birth at all. Then, (15) becomes

dx2
dt

= −d2 x2 − s(α) x2 y, (16)

implying that x2(t) dies out exponentially. Accordingly, by the first equation in (6),
x1(t) also approaches zero.

Next, consider the case of mild defense, that is, α ∈ [0, b0/b1). Then, plugging in
the birth function given in (2) into (15) leads to

dx2
dt

= (b0 − b1α)θ1e−δ0(α)τ e−ax2(t−τ)x2(t − τ) − δ(α)x2. (17)

This is in the form of the well-known Nicholson blowfliy equation which has been
extensively studied in the literature, see, e.g., Cooke et al. (1999), Faria (2006), Győri
and Trofimchuk (2002), Shu et al. (2013), Wei and Li (2005), and the references
therein. In terms of the so-called basic reproduction number

R0 = (b0 − b1α)θ1 e−δ0(α)τ

δ(α)
, (18)

themain results about (17) related to the topics of this paper are summarized as follows:

(C1) IfR0 ≤ 1, then the trivial equilibrium x2 = 0 is globally asymptotically stable.
(C2) If R0 > 1, then the trivial equilibrium becomes unstable and there exists a

unique positive equilibrium given by x+
2 = 1

a lnR0. In this case, for any fixed
τ > 0,
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(C2-i) either x+
2 is locally asymptotically stable

(C2-ii) or x+
2 is unstable, but there is a locally asymptotically stable periodic solution

x2p(t) that is a sustained oscillation about x+
2 .

Since in both (C2-i) and (C2-ii), x+
2 = 1

a lnR0 represents the average persistence
level of the population, it is interesting and significant to explore at what value of α ∈
[0, b0/b1),R0 = R0(α)will bemaximized.Note that s(α) = 0 forα ∈ [s2/s3, 1], and
hence,R0(α) is deceasing in [s2/s3, 1]. Thus,R0 should be maximized in the interval
[0, s2/s3]. The following theorem gives an answer to the problem when θ1 = 1 = θ2.

Theorem 4.1 Let θ1 = 1 = θ2. Then, R0 is maximized at α = 0 if

exp

(
q τ s2
s3

)

>
(d2 + s2 y) (b0 s3 − b1 s2)

b0 d2 s3
, (19)

and it is maximized at α = s2/s3 if (19) is reversed.

Proof For 0 ≤ α ≤ s2/s3, we have

dR0

dα
= −e−pτ e−qτα

(d2 + ys2 − ys3α)2

[
a1 α2 + a2 α + a3

]
(20)

where

a1 = q τ b1 y s3, a2 = −q τ (b1 d2 + b1 y s2 + s3 y b0) ,

a3 = q τ b0 (d2 + s2 y) + b1 d2 − y (b0 s3 − b1 s2) . (21)

Let

Δ = a22 − 4a1a3 = qτ (s3yb0 − b1d2 − b1ys2) (qτb0ys3 + 4b1s3y

−qτb1ys2 − qτb1d2) . (22)

If a3 > 0 and Δ < 0, (20) has no real root and R0 is maximized either at α = 0 or
α = s2/s3. If a3 > 0 and Δ > 0, then (20) has two distinct positive roots

ᾱ1 = −a2 − √
Δ

2 a1
, ᾱ2 = −a2 + √

Δ

2 a1
,

where ᾱ2 > s2/s3 and hence should be excluded. Direct calculations show that α = ᾱ1
is the local minimum point of R0, and hence, R0 is maximized either at α = 0 or
α = s2/s3. If a3 < 0, then (20) has a single positive root ᾱ2 which is in [s2/s3, 1].
Summarizing in the interval 0 ≤ α ≤ s2/s3, R0 can only be maximized either at
α = 0 or at α = s2/s3. Evaluation ofR0(0) andR0(s2/s3) leads to the conclusion of
the theorem, and the proof is completed. ��

For other values of θ1 and θ2, onemay also do similar things, but it typically becomes
more difficult for analytic results.However, one can always explore numerically to gain
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Fig. 1 If θ1 = θ2 = 2, optimal defense level α exists in interval [0, s2/s3]. Other parameters are
b0 = 9.4609, b1 = 13.2741, p = 0.0856, q = 3.0554, d2 = 0.0467, s2 = 0.2009, s3 = 1.5685, y =
2.6194, τ = 2.2335

useful information on this topic. For example, for θ1 = θ2 = 2 and with parameters
given, numerical results show that an optimal defense level α may exist in the interval
0 < α < s2/s3, as demonstrated in Fig. 1.

4.2 Model with Adaptive Defense Level—A Special Case: d1 = 0, s1 = 0

In this subsection, we first consider a special case where the anti-predation response
of adult prey has no impact on the death and predation of juveniles. This is reflected
by assuming d1 = 0, s1 = 0 in (6), leading to the following simplified version of the
model:

dx1
dt

= b(α, x2) x2 − (s0 y + d0) x1

− b(α(t − τ), x2(t − τ)) x2(t − τ)e−(d0 + s0 y)τ ,

dx2
dt

= b(α(t − τ), x2(t − τ)) x2(t − τ)e−(d0 + s0 y) τ − d2 x2 − s(α) x2 y,

dα

dt
= k α (1 − α)

(
∂b(α, x2)

∂α
x2 − ds(α)

dα
x2 y

)

, (23)

where b(α, x2) and s(α) are the same functions defined in (2) and (3), respectively.
To be more concrete, we will choose θ1 = θ2 = 2 in this subsection.
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Notice that the equations for x ′
2(t) and α′(t) in (23) are decoupled from the equation

for x ′
1(t). Therefore, we only need, in the rest of this subsection, to study subsystem

dx2
dt

= b(α(t − τ), x2(t − τ)) x2(t − τ)e−p τ − d2 x2 − s(α) x2 y,

dα

dt
= k α (1 − α)

(
∂b(α, x2)

∂α
x2 − ds(α)

dα
x2 y

)

, (24)

where p = d0 + s0 y.

4.2.1 Model Without Delay

We first analyze the special case of (24) when the delay is absent, i.e., τ = 0. In this
special case, system (24) is reduced to the following ODE system

dx2
dt

= b(α, x2) x2 − d2 x2 − s(α) x2 y,

dα

dt
= k α (1 − α)

(
∂b(α, x2)

∂α
x2 − ds(α)

dα
x2 y

)

. (25)

First, we note that there is a continuum of extinction equilibria (0, α), α ∈ [0, 1].
Obviously none of these can be stable due to the continuum property, but it is possible
that some of them may attract some solutions. By (2) and (3), we need to investigate
(25) in a piecewise fashion, as proceeded.

For α ∈ [b0/b,1], (25) reduces to
dx2
dt

= −d2 x2,

dα

dt
= 0. (26)

Thus, if α(0) = α0 ∈ [b0/b,1] and x2(0) > 0, then α(t) remain constant α0 and x2(t)
decay to 0 exponentially.

For α ∈ [s2/s3, b0/b1), (25) becomes

dx2
dt

= (b0 − b1 α)2 e−a x2 x2 − d2 x2 =: d2
[R1(α)e−ax2 − 1

]
x2

dα

dt
= −2 k α (1 − α) b1 (b0 − b1 α) e−a x2 x2 =: h1(α)e−ax2x2, (27)

where R1(α) = (b0 − b1 α)2/d2 is the adaptive (w.r.t α) reproduction number and
h1(α) = −2 k α (1− α) b1 (b0 − b1 α). Obviously h1(α) < 0 for α ∈ [s2/s3, b0/b1),
meaning that α′(t) < 0. Thus, if α(0) = α0 ∈ [s2/s3, b0/b1), then α(t) remains
decreasing for all t > 0 as long as α(t) remains in [s2/s3, b0/b1). Note that R1(α)

is decreasing. Thus, if R1(s2/s3) < 1, then R1(α)e−ax2 − 1 < R1(s2/s3) − 1 < 0,
meaning that x2(t) remains decreasing for all t > 0. But if R1(s2/s3) > 1, then
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2

       Γ

(b)

Fig. 2 Dynamics within α ∈ [s2/s3, 1]. a R1(s2/s3) < 1 and b R1(s2/s3) > 1

the curve �1 : x2 = 1
a lnR1(α) has a portion in the region �1 = {(α, x2) : α ∈

[s2/s3, b0/b1), x2 > 0}, above which x ′
2(t) < 0 and below which x ′

2(t) > 0.
The phase portraits of the model on the stripe α ∈ (s2/s3, 1] are demonstrated in

Fig. 2. Note that there is no equilibrium that has positive x2 component in this region.
For α ∈ [0, s2/s3), (25) is represented by

dx2
dt

=
[
d2 + (s2 − s3α)2y

] [R2(α)e−ax2 − 1
]
x2,

dα

dt
= 2 k α (1 − α)s3 (s2 − s3 α)ye−a x2

[
eax2 − W (α)

]
x2, (28)

where the adaptive (w.r.t. α) reproduction numberR2(α) and the other auxiliary func-
tion W (α) are given by

R2(α) = (b0 − b1α)2

d2 + (s2 − s3α)2 y
, W (α) = b1(b0 − b1α)

s3(s2 − s3α)y
. (29)

The dynamics of (25) in �2 = {(α, x2) : α ∈ [0, s2/s3), x2 > 0} is determined by
the positions of the two nullclines �2 : x2 = 1

a lnR2(α) and �3 : x2 = 1
a lnW (α).

Firstly, under the assumption of s2/s3 < b0/b1, one can easily verify that W (α)

is increasing on [0, s2/s3) with W (α) → ∞ as α → (s2/s3)+. For R2(α), one can
calculate R′

2(α) to obtain

R′
2(α) = 2(b0 − b1α)

[d2 + (s2 − s3α)2y]2 [−b1d2 + ys2(b0s3 − b1s2) − ys3(b0s3 − b1s2)α] .

Thus, R2(α) is decreasing in [0, s2/s3) if ys2(b0s3 − b1s2) < b1d2 which is equiva-
lent to W (0) > R2(0), and it has a unique maximum at α∗ = [ys2(b0s3 − b1s2) −
b1d2]/[ys2(b0s3 − b1s2)] if W (0) < R2(0). These properties of R2(α) pass to
lnR2(α). Based on this observation, we can distinguish two cases: (A)W (0) > R2(0)
and (B)W (0) < R2(0). In case (A), �2 and �3 do not intersect at all in (0, s2/s3), and
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therefore, (B) is a necessary condition for the model to have an interior equilibrium.
In case (B), �2 and �3 have precisely one intersect Q, but it can be above or below
the α-axis, distinguishing existence and nonexistence of a positive equilibrium. We
explore sufficient conditions for the existence in the sequel.

Let ψ = e−ax2 . By W (α) − 1/ψ = 0, we see that a positive equilibrium E(x̄2, ᾱ)

must satisfy

x̄2 = −1

a
ln(ψ), ᾱ = b0 b1 ψ − s2 s3 y

b21 ψ − s23 y
=: H(ψ) (30)

where, by plugging the formula for ᾱ in (30) into R2(α) − 1/ψ = 0 and solving the
resulting quadratic equation, ψ is given by

ψ = d2 s23 y

y (b0 s3 − b1 s2)2 + b21 d2
. (31)

Noting that with the assumption of s2/s3 < b0/b1, H(ψ) is decreasing in ψ ∈ (0, 1)
with H(0) = s2/ss , which automatically ensures that ᾱ < s2/s3. Now the other
requirement of ᾱ > 0 leads to another constraint for ψ : ψ < s2s3y/b0b1, which is
obtained by solving H(ψ) = 0 for ψ . Thus, we need to impose constrain for (31) to
be in the interval (0, ψ0) where

ψ0 = min

{
s2 s3 y

b0 b1
, 1

}

. (32)

It is easy to verify that ψ < s2s3y/b0b1 is equivalent to W (0) < R2(0) which is
explicitly expressed as

y >
d2 b1

s2 (b0 s3 − b1 s2)
. (33)

Thus, we have obtained the following theorem about the existence of an interior
equilibrium.

Theorem 4.2 Assume that (33) is satisfied (necessary condition). Then, a unique
interior equilibrium E(x̄2, ᾱ) of (25) exists if either (i) W (0) ≥ 1, or (ii) W (0) < 1
and ψ < 1.

In addition to the interior equilibrium under the condition of Theorem 4.2, there
is also a no-fear equilibrium Es = (x̄20, 0) provided that R2(0) > 1, where x̄20 =
1
a lnR2(0). The stability of Es is determined by the two eigenvalues of the linearization
at Es which are explicitly obtained as

λ1 = −a x̄20
(
d2 + s22 y

)
< 0, λ2 = −2 k x̄20

((
d2 + s22 y

)
b1 − s2 s3 y b0
b0

)

.

(34)
Thus, Es(x̄20, 0) is locally asymptotically stable if and only if

λ2 < 0 ⇔ y <
d2 b1

s2 (b0 s3 − b1 s2)
, (35)
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Fig. 3 Dynamics within α ∈ [0, s2/s3) for the case R2(0) > 1 in the absence of interior equilibrium. a
1 < R2(0) < W (0) and b R2(0) > 1 > W (0) with intercept below α-axis

α

x

s2 3 s

2

Γ3

Γ2

(a)

α

x

s2 3 s

2

Γ

Γ2

3

(b)

Fig. 4 Dynamics within α ∈ [0, s2/s3) for the case R2(0) < 1. a W (0) < 1 and b W (0) > 1

which is equivalent to W (0) > R2(0). This leads to the following theorem.

Theorem 4.3 Assume that R2(0) > 1. Then, Es is asymptotically stable if and only
if (35) holds.

See Fig. 3a for an illustration of the dynamics for this case.
WhenR2(0) < 1, Es disappears and there is no equilibrium with positive x2 value.

In this case, solutions approach to different points on the α-axis, depending on the
initial values. See Fig. 4a, b for an illustration of the solution behaviors.

As for the stability of the unique interior equilibrium E(x̄2, ᾱ) under the condition
of Theorem 4.2, we can also calculate the two eigenvalues of the linearization at
E(x̄2, ᾱ) to obtain the two eigenvalues as follows:

λ1 = −ax̄2d2
[
y (b0 s3 − b1 s2)2 + b21 d2

]

y (b0 s3 − b1 s2)2
,
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α
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Fig. 5 Dynamics within α ∈ [0, s2/s3) in the presence of a positive equilibrium. a R2(0) > W (0) > 1,
b W (0) < 1 < R2(0) with intersect above α-axis, c W (0) < R2(0) < 1 with intercept is above α-axis

λ2 = 2ax̄2k [(b0 s3 − b1 s2)(s2 − s3) y − b1 d2] [s2 y (b0 s3 − b1 s2) − b1 d2]

a
[
y (b0 s3 − b1 s2)2 + b21 d2

] .

(36)

Obviously λ1 < 0, and λ2 < 0 if and only if (33) holds. Therefore, we have shown
that the positive equilibrium E(x̄2, ᾱ) is asymptotically stable, as long as it exists, as
stated in the following theorem.

Theorem 4.4 Under the conditions of Theorem 4.2, a unique interior equilibrium
E(x̄2, ᾱ) not only exists, but also is asymptotically stable (Fig. 5).

4.2.2 Equilibria of System (24) When τ > 0

When τ > 0, similar to (25), (24) also has concrete forms for α ∈ [b0/b1, 1], α ∈
[s2/s3, b0/b1) and α ∈ [0, s2/s3), respectively. For α ∈ [b0/b1, 1], (24) still reduces
to (26); for α ∈ [s2/s3, b0/b1), (24) becomes

dx2
dt

= (b0 − b1 α(t − τ))2 e−a x2(t−τ) x2(t − τ) − d2 x2

=: d2
[
R̂1(α(t − τ), τ )e−ax2(t−τ)x2(t − τ) − x2(t)

]

dα

dt
= −2 k α (1−α) b1 (b0−b1 α) e−a x2(t) x2(t)=:h1(α)e−ax2(t)x2(t), (37)

where R̂1(α, τ ) = R1(α)e−pτ withR1(α) and h1(α) being the same as in (27), while
for α ∈ [0, s2/s3), the model reduces to

dx2
dt

=
[
d2+(s2−s3α(t))2y

] [
R̂3(α(t), α(t−τ), τ )e−ax2(t−τ)x2(t−τ)− x2(t)

]
,
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dα

dt
= 2 k α (1 − α)s3 (s2 − s3 α)ye−a x2(t)

[
eax2(t) − W (α)

]
x2(t), (38)

where W (α) is as in (29) and

R̂3(α, β, τ ) = (b0 − b1β)2e−pτ

d2 + (s2 − s3α)2 y
.

Let R̂2(α, τ ) := R̂3(α, α, τ ) = R2(α)e−pτ where R2(α) given in (29). Then, the
positive equilibria of (38) are determined by R̂2(α, τ )e−axx − 1 = 0 and eax2 −
W (α) = 0. Observe that like R1(α), R̂1(α, τ ) remain decreasing on [s2/s2, b0/b1),
and R̂2(α, τ ) andR2(α) share the samemonotonicity/nonmonotonicity and [0, s2/s3).
Also note that the equations for α′(t) in each of the three intervals for α remain the
same as for the case of τ = 0.

Based on the above observations, we can similarly discuss the structure of equi-
libria. Firstly, there is the no-fear positive equilibrium Es(x̄20, 0) if R̂2(0, τ ) > 1.
However, when it comes to interior equilibria, a new phenomenon occurs: There
may be two interior equilibria. To see this, we first note that R̂2(α, τ ) has the same
monotonicity/nonmonotonicity in α as R2(α) does, which is determined by whether
W (0) > R2(0) or W (0) < R2(0). If W (0) > R2(0), both R2(α) and R̂2(α, τ ) are
decreasing on [0, s2/s3), and thus, R̂2(α, τ ) ≤ R̂2(0, τ ) ≤ R2(0) < W (0) < W (α),
implying that there cannot be an interior equilibrium. Thus, W (0) < R2(0) is still a
necessary condition for existence of an interior equilibrium of the model. Assuming
W (0) < R2(0), then both R2(α) and R̂2(α, τ ) are one hump functions on [0, s2/s3)
(both attaining their maxima at α∗) and in the mean time R̂2(0, τ ) < W (0) for prop-
erly chosen τ > 0, giving rise to two interior equilibria. See Fig. 6 for an illustration,
showing the impact of the delay τ > 0 on existence/nonexistence of interior equi-
libria: Under W (0) < R2(0), there can be one, two, or no interior equilibrium, as τ

increases.
As in the previous subsection, we now analytically explore the existence of interior

equilibrium E(x̄2, ᾱ). Again letting ψ = e−ax2 and solving W (α) = eax2 = 1/ψ ,
we still have (30). By plugging the formula for ᾱ in (30) into R̂2(ᾱ, τ ) = 1/ψ and
solving for ψ , we find that ψ is determined by

F(ψ) := ρ1 ψ2 + ρ2 ψ + ρ3 = 0. (39)

Here in (39) we have

ρ1 = −b21

(
b21 d2 + y (b1 s2 − b0 s3)

2
)

,

ρ2 = y s23

(
e−p τ y (b0 s3 − b1 s2)

2 + 2 b21 d2
)

, ρ3 = −d2 y
2 s43 . (40)

Similar arguments to that in Sect. 4.2.1 still hold here, and thus, we need to look for
real roots of (39) in the interval (0, ψ0) where ψ0 is given in (32). Let

Δ = ρ2
2 − 4 ρ1 ρ3. (41)
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Fig. 6 Impact of τ > 0 on the number of interior equilibria, assuming W (0) < R2(0): There can be one,
two, and no interior equilibrium, when τ = 0, τ1, and τ2, respectively, where 0 < τ1 < τ2

From (40), it is obvious that ρ1 < 0, ρ2 > 0, ρ3 < 0; thus, F(0) = ρ3 < 0 and
F ′(0) = ρ2 > 0. Therefore, (39) has no positive root if Δ < 0, (39) has one positive
equilibrium if Δ = 0, and (39) has two distinct positive roots if Δ > 0. For the
last case, denote the two positive roots of (39) by ψ1, ψ2, respectively, and assume
ψ1 < ψ2 without loss of generality. Thus, system (24) admits a unique positive
equilibrium ψ1 if Δ = 0, ψ1 = ψ2 < ψ0, or Δ > 0 but ψ1 < ψ0 < ψ2, and it has
two distinct equilibria if Δ > 0 and ψ2 < ψ0.

The above results can be restated in terms of a particularly chosen parameters for
its range(s). For example, if we choose τ , then Fig. 6 clearly demonstrates how the
values of τ > 0 are related to the above-mentioned conditions. If we choose d2, then
the condition Δ = 0 is equivalent to

d2 = y
(
e−p τ

)2
(b0 s3 − b1 s2)2

4 b21
(
1 − e−p τ

) := d02 . (42)

Moreover, if we denote d12 by

d12 := ψ0 y (b0 s3 − b1 s2)2
(
e−p τ s23 y − ψ0 b21

)

(
b21 ψ0 − s23 y

)2 (43)

for convenience, then the above analytical results about the existence of interior equi-
librium/equilibria can be restated in the following two theorems.
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Theorem 4.5 Assume that (33) (necessary condition) holds. Then, (24) has a unique
interior equilibrium Ep1 = (x̄21, ᾱ1) if either

⎧
⎪⎨

⎪⎩

e−p τ <
2ψ0 b21

y s23 + ψ0 b21
,

d2 = d02 ;
(44)

or ⎧
⎪⎨

⎪⎩

e−p τ >
ψ0 b21
s23 y

,

d2 < d12

(45)

where

x̄21 = −1

a
ln

(
−ρ2 + √

Δ

2 ρ1

)

, ᾱ1 =
b0 b1

((
−ρ2 + √

Δ
)

/(2 ρ1)
)

− s2 s3 y

b21

((
−ρ2 + √

Δ
)

/(2 ρ1)
)

− s23 y
.

(46)

Theorem 4.6 Two distinct positive equilibria Ep1 = (x̄21, ᾱ1), Ep2 = (x̄22, ᾱ2) of
(24) exist if ⎧

⎪⎨

⎪⎩

e−p τ ≤ ψ0 b21
s23 y

,

d2 < d02 ;
(47)

or ⎧
⎪⎨

⎪⎩

ψ0 b21
s23 y

< e−p τ <
2ψ0 b21

b21 ψ0 + s23 y
,

d12 < d2 < d02 ,

(48)

where x̄21, ᾱ1 are the same as (46), and

x̄22 = −1

a
ln

(
−ρ2 − √

Δ

2 ρ1

)

, ᾱ2 =
b0 b1

((
−ρ2 − √

Δ
)

/(2 ρ1)
)

− s2 s3 y

b21

((
−ρ2 − √

Δ
)

/(2 ρ1)
)

− s23 y
.

(49)

4.2.3 Stability of Equilibria for System (24) with τ > 0

We begin with analyzing local stability of the semi-trivial equilibrium Es which exists
under the assumption R̂2(0, τ ) > 1. The linearization of (24) at Es is

dx2
dt

= f11 x2 + f12 α + f13 x2(t − τ) + f14 α(t − τ),

dα

dt
= f22 α, (50)
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where

f11 = −d2 − s22 y,

f12 = 2 s2 s3 x̄20 y,

f13 =
(
d2 + s22 y

)
(1 − ax̄20) ,

f14 = −2 b1 x̄20

(
d2 + s22 y

b0

)

,

f22 = k x̄20
(
−2 b0 b1 e

−a x̄20 + 2 s2 s3 y
)

. (51)

Plugging (x2, α) = e(λ t)(v1, v2) into (50), we obtain the characteristic equation at
Es

G(λ, τ ) := [
λ − (

f11 + f13 e
−λ τ

)]
(λ − f22) = 0. (52)

The following theorem gives conditions for the asymptotical stability of Es .

Theorem 4.7 Assume R̂2(0, τ ) > 1 so that Es exists. Then, Es is locally asymptoti-
cally stable if

R̂2(0, τ ) <
b0 b1
s2 s3 y

and R̂2(0, τ ) ≤ e2. (53)

Proof Noting that x̄20 = 1
a ln R̂2(0, τ ), one root of the characteristic equation (52) is

real and given by

λ = f22 = −2 k x̄20

(
b0 b1

R̂2(0, τ )
− s2 s3 y

)

which is negative if and only if

R̂2(0, τ ) <
b0 b1
s2 s3 y

. (54)

All other eigenvalues of (52) are determined by

D(λ, τ ) := P(λ, τ ) + Q(λ, τ ) e−λ τ = 0, (55)

where

P(λ, τ ) = λ − f11 = λ +
(
d2 + s22 y

)
,

Q(λ, τ ) = − f13 = −
(
d2 + s22 y

)
(1 − a x̄20) . (56)

Because D(0, τ ) = (
d2 + s22 y

)
ax̄20 > 0, λ = 0 is not a characteristic root

of (55) for any τ > 0. Observe that Es is asymptotically stable when τ = 0
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by Theorem 4.3. Therefore, stability of Es can change only through the occur-
rence of pure imaginary roots of (55). Assume λ = i ω with ω > 0. Because
|P(i ω, τ)| = |−Q(i ω, τ) exp(−i ω τ)| = |Q(i ω, τ)| (by (55)), ω > 0 must satisfy

0 = F(ω, τ) = |P(i ω, τ)|2 − |Q(i ω, τ)|2

= ω2 +
(
d2 + s22 y

)2 −
(
d2 + s22 y

)2
(1 − a x̄20)

2

= ω2 +
(
d2 + s22 y

)2 [
1 − (1 − ax̄20)

2
]
. (57)

Obviously, (57) has no positive solution if ax̄20 ≤ 2, implying that there is no pure
imaginary root for (55). Simple calculation shows that

a x̄20 ≤ 2 ⇐⇒ R̂2(0, τ ) ≤ e2. (58)

Indeed, if (58) holds, then (55) also has no root with positive real part. To see this,
we assume λ = r + i ω is a root of (55) with r > 0 and ω > 0. By substituting
λ = r + i ω into (55), we obtain

r +
(
d2 + s22 y

)
+ i ω =

(
d2 + s22 y

)
(1 − a x̄20)e

−r τ e−i ω τ ,

which gives

∣
∣
∣r +

(
d2 + s22 y

)
+ i ω

∣
∣
∣ =

∣
∣
∣

(
d2 + s22 y

)
(1 − a x̄20)e

−r τ e−i ω τ
∣
∣
∣ . (59)

Because r > 0 by assumption, (59) implies

(
d2 + s22 y

)2
<

(
r + d2 + s22 y

)2
<

(
r + d2 + s22 y

)2 + ω2

=
(
d2 + s22 y

)2
(1 − a x̄20)

2 e−2 r τ <
(
d2 + s22 y

)2
(1 − a x̄20)

2, (60)

implying that 2 < a x̄20 which contradicts to (58). Therefore, every eigenvalue λ =
r + i ω of (55) must have r < 0 if (58) holds. As a consequence, local stability of Es

remains valid for τ > 0 if (54) and (58) hold. ��
Remark 4.8 If one wants to explore the impact of the delay, the conditions in Theo-
rem 4.7 can be actually explicitly expressed in terms of τ as follows:

R̂2(0, τ ) > 1 ⇔ τ <
1

p
ln

(
b20

d2 + s22 y

)

, (61)

R̂2(0, τ )<min

{
b0 b1
s2 s3 y

, e2
}

⇔ 1

p
ln

(
b20

min
{
(b0 b1)/(s2 s3 y), e2

} (
d2 + s22 y

)

)

< τ.

(62)
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Noting that R̂2(0, τ ) is decreasing in τ , we immediately have the following corol-
lary.

Corollary 4.9 Assume that

b20
d2 + s22 y

< min

{
b0b1
s2s3y

, e2
}

.

Then, Es is asymptotically stable as long as it exists (i.e., provided that R̂2(0, τ ) > 1.)

From the proof of Theorem 4.7, we can see that violation of condition (54) leads
to the sign change of a real eigenvalue from negative to positive, and loss of stability
of Es results in the occurrence of a positive equilibrium (see the condition (45) in
Theorem 4.5), which will be discussed later. The violation of the other condition (58),
on the other hand, makes it possible for a pair of complex eigenvalues to cross the
imaginary axis from the left half plane to the right in the complex plane, and this is
expected to cause Hopf bifurcation. We explore a bit more along this line as follows.
The focus is on the impact of the delay τ > 0, and accordingly, we assume that the
conditions in Theorem 4.3 hold so that Es is asymptotically stable when τ = 0, and
we follow the framework of Beretta and Kuang (2002) to proceed.

Assume the opposite of (58), that is

a x̄20 > 2
(
equivalently R̂2(0, τ ) > e2

)
. (63)

Under (63), Eq. (57) admits a unique positive root given by

ω(τ) =
(
d2 + s22 y

) √
(1 − a x̄20)2 − 1. (64)

Following Beretta and Kuang (2002), let I denote the interval in which ω(τ) in (64)
is defined. Solving (63) for τ then gives

I =
[

0,
1

p
ln

b20(
d2 + s22 y

)
e2

)

.

Let θ(τ ) : I → R+ be the solution of

sin θ(τ ) = − ω(τ)
(
d2 + s22 y

)
(1 − a x̄20)

, cos θ(τ ) = 1

1 − a x̄20
. (65)

Then, by Beretta and Kuang (2002), stability switch of Es may occur when τ is a zero
of

Sn(τ ) := τ − θ(τ ) + n 2π

ω(τ)
, τ ∈ I, n ∈ N. (66)
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To finally confirm the stability switch, we need to verify the transversality condition
at zeros of Sn(τ ), τ ∈ I . To this end, we use the implicit differentiation in (55) to
obtain

dλ

dτ
= ( f

′
13 − f13 λ)e−λτ

1 + f13 τ e−λ τ
, (67)

where f13 is shown in (51). We point out that it is more convenient to consider

(
dλ

dτ

)−1

= eλτ + f13 τ

f
′
13 − f13λ

= f13/(λ − f11) + f13τ

f
′
13 − f13λ

. (68)

At a zero τ ∗ of Sn(τ ), we have λ(τ ∗) = iw(τ ∗). This observation together with (55)
and (57) helps us to simplify (68) to

(
dλ

dτ

)−1 ∣
∣
∣
∣
λ=i ω(τi )

= − f11 + f 213 τ − ω i

ω ω
′ − f 213 ω i

= 1

ω2 ω
′2 + f 413 ω2

((
− f11 + f 213 τ

)
ω ω′

+ω2 f 213 +
(
f 213 ω − ω2 ω

′)
i
)

. (69)

By (69), we obtain

d Re(λ)

dτ

∣
∣
∣
∣
λ=i ω(τi )

=
(− f11 + f 213 τ

)
ω ω′ + ω2 f 213

ω2 ω
′2 + f 413 ω2

. (70)

The formula in (70) can be used to determine the transversality for Hopf bifur-
cation. Unfortunately, we cannot confirm the sign of this formula for general model
parameters. However, once the values of parameters are given, it is straightforward
and easy to numerically calculate the zeros of Sn(τ ) and evaluate (70) at these zeros
and therefore determine whether Hopf bifurcation will occur. For example, for param-
eters chosen in Fig. 7, by numerically solving Sn(τ ) = 0, we find that there are two
zeros for S0(τ ), which are τ1 = 0.5 and τ2 = 4.782, as shown in Fig. 7, but none
for Sn(τ ), n = 1, . . .. Moreover, numerical evaluations of (70) at τ1 and τ2 indicate
that d Re(λ)/dτ > 0 at τ1 and d Re(λ)/dτ < 0 at τ2. This implies that the model (24)
undergoes Hopf bifurcation at these two critical values: When τ increases to pass τ1,
Es loses its stability leading to sustained oscillation of the population; while when τ

further increases to pass τ2, the periodic solutions disappear and Es regains its sta-
bility. These are confirmed by numerical simulations of the model (24), as shown in
Fig. 8.

The above analyses have shown that the semi-trivial equilibrium Es may lose its
stability to a stable periodic solution with an intermediate value of τ and regain its
stability when τ is large, through Hopf bifurcation. Note that the Hopf bifurcations
occurred are local, i.e., periodic orbits bifurcate from Es near the bifurcation parame-
ters τ1 and τ2.However, under suitable conditions, global Hopf bifurcation may occur
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Fig. 7 Stability switch of Es . Parameters are: b0 = 8.1311, b1 = 9.1252, a = 0.9858, p = 0.3290, s2 =
1.3924, s3 = 2.4989, y = 0.5376, d2 = 0.7139, k = 1

and multiple periodic solutions with different frequencies may coexist within a certain
range of τ . Detailed analysis and numerical simulations of global Hopf bifurcation
and Hopf branches in terms of the bifurcation parameters can be found in Shu et al.
(2013) and are thus omitted here.

In addition to this, aswementioned before, Es may also lose its stability to a positive
equilibrium through equilibrium bifurcation. This is due to the violation of the first
condition in (53) and is reflected by a real eigenvalue crossing the pure imaginary axis
from the left to the right in the complex plane. Such a positive equilibrium is interesting
since it represents a persistent anti-predator defense. Thus, the stability/instability of
such a positive equilibrium is of great importance.

Note that Theorems 4.5 and 4.6 have confirmed that one positive equilibrium or
two positive equilibria may exist under different conditions. However, if τ = 0, Ep2
in Theorem 4.6 cannot exist because the conditions for its existence are contradictory
in this case. Hence, we first consider the case when a unique positive equilibrium Ep1
exists (i.e., when conditions in Theorem 4.5 hold) for τ ≥ 0 and then proceed to the
case where Theorem 4.6 holds by restricting τ > 0. The procedure is exactly the
same as the one for the stability/instability of Es above, mainly using the framework
in Beretta and Kuang (2002), as such we will try to be brief as follows, omitting many
details.

By linearizing (24) at Ep1, we obtain characteristic equation at Ep1:

G(λ, τ ) := λ2 − (g11 + g22) λ + (g11 g22 − g21 g12)

+ (−g13 λ + g13 g22 − g21 g14) e
−λ τ = 0, (71)
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Fig. 8 Stability switch of Es with varying τ. Parameters are: b0 = 8.1311, b1 = 9.1252, a = 0.9858, p =
0.3290, s2 = 1.3924, s3 = 2.4989, y = 0.5376, d2 = 0.7139, k = 1. a Small delay, b intermediate delay,
c intermediate delay, d large delay

where

g11 = −d2 − (s2 − s3 ᾱ1)
2 y,

g12 = 2 s3 (s2 − s3 ᾱ1)x̄21 y,

g13 = (b0 − b1 ᾱ1)
2 e−a x̄21 e−p τ (1 − a x̄21),

g14 = −2 (b0 − b1 ᾱ1) e
−a x̄21 x̄21 e

−p τ b1,

g21 = 2 k ᾱ1(1 − ᾱ1) a s3 (s2 − s3 ᾱ1) y x̄21,

g22 = 2 k x̄21 ᾱ1 (1 − ᾱ1)
(
b21 e

−a x̄21 x̄21 − s23 y
)

. (72)

When τ = 0, the results for the stability of Ep1 can be found in Theorem4.4. Again,
we hope to see whether delay τ would induce stability switch of Ep1. Assuming that
the conditions in Theorem 4.4 hold so that Ep1 is stable when τ = 0. We seek pure
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imaginary root i ω of (71) to examine possible stability switch of Ep1 when τ > 0.
Similar to the proof of Theorem 4.7, we substitute i ω withω > 0 into (71) and obtain

F(ω, τ) = ω4 − ω2
(
g213 + 2 (g11 g22 − g21 g12) − (g11 + g22)

2
)

+
(
(g11 g22 − g21 g12)

2 − (g13 g22 − g21 g14)
2
)

= 0, (73)

where g11, g12, g13, g14, g21, g22 are shown in (72). Let

Δ =
[
g213 + 2 (g11 g22 − g21 g12) − (g11 + g22)

2
]2

−4
[
(g11 g22 − g21 g12)

2 − (g13 g22 − g21 g14)
2
]
. (74)

By (74), we know that (73) admits two positive equilibriaω2
1, ω2

2 withω2
1(τ ) < ω2

2(τ )

if Δ > 0, where

ω2
1(τ ) = 1

2

[(
g213 + 2 (g11 g22 − g21 g12) − (g11 + g22)

2
)

− √
Δ

]
,

ω2
2(τ ) = 1

2

[(
g213 + 2 (g11 g22 − g21 g12) − (g11 + g22)

2
)

+ √
Δ

]
. (75)

We first consider possible stability switch of Ep1 where only ω2
2 exists. Similar to (65)

and (66), define θ(τ ) ∈ [0, 2π) such that

sin(θ(τ ))

=
(
(g11 g22 − g21 g12) − ω2

2

)
ω2 g13 − ω2 (g11 + g22) (g13 g22 − g21 g14)

ω2
2 g

2
13 + (g13 g22 − g21 g14)2

,

cos(θ(τ ))

= −
(
(g11 g22 − g21 g12) − ω2

2

)
(g13 g22 − g21 g14) + ω2

2 (g11 + g22) g13

ω2
2 g

2
13 + (g13 g22 − g21 g14)2

.(76)

Then stability switch of Ep1 occurs when τ passes zeros of

S0n (τ ) := τ − θ(τ ) + n 2π

ω2(τ )
, n ∈ N, (77)

where θ is obtained by solving (76). Based on Beretta and Kuang (2002) and again
employing numerical tools, zeros of (77) can be obtained. For example, for the set of
parameter values in Fig. 9, by numerically solving S00 (τ ) = 0, we obtain two zeros
τ1 = 0.123 and τ2 = 0.154, as shown in Fig. 9. Because Ep1 is locally stable when
τ = 0, Ep1 switches from stable to unstable when τ increase to pass τ1 = 0.123.
Again, numerical simulation of the model, as shown in Fig. 10, confirms that when
maturation delay τ is relatively small, the local stability of Ep1 will not change.
However, if τ is larger (τ > τ1), delay will destroy the stability of Ep1 causing
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Fig. 9 Stability switch of Ep1 where only Ep1 exists as a positive equilibrium. Parameters are: b0 =
3.07552, b1 = 4.33876, a = 0.38976, p = 0.750396, s2 = 0.562070, s3 = 1.21206, y = 4.89360, d2 =
0.552225, k = 31.0047

periodic oscillations for both x2 and α (in contrast to the situation when Es loses
stability due to Hopf bifurcation in which only x2(t) oscillates), as demonstrated in
Fig. 10b, c. When τ further increases to pass the second critical value τ2 shown in
Fig. 9, Ep1 regains its stability and both (x2(t), α(t)) tend to the equilibrium Ep1
again, as indicated in Fig. 10d. Here in (77), only S00 (τ ) = 0 has real roots. Hence
there are no other critical values of τ other than τ1 and τ2 that could induce stability
switch of Ep1.We point out that parameters chosen in Fig. 9 only admit positiveω2

2(τ ),
but ω2

1(τ ) is negative and hence only allows a unique positive equilibrium of (73).
Although we cannot prove analytically, our extensive numerical simulations show that
ω2
1(τ ) is always negative.
As for the case when there are two positive equilibria Ep1 and Ep2 under the con-

ditions in Theorem 4.6, by numerical simulations, we find that under such conditions,
Ep2 is always unstable. In this case, going through the same procedure of constructing
S0n (τ ) and numerically solving S0n (τ ) = 0 reveal that the delay-induced instability of
Ep1 is different from the previous case where Ep2 does not exist. As shown in Fig. 11,
S0n (τ ) has only a unique positive root, which is different from Fig. 9 where two distinct
positive roots of S0n (τ ) exist. Accordingly, Ep1 will remain asymptotically stable when
τ > 0 and is small, and will lose its stability to a periodic solution when τ increases
to pass the unique critical value τc > 0 through Hopf bifurcation; however, Ep1 can-
not regain its stability through Hopf bifurcation. These numerical observations are
illustrated in Fig. 12, where the parameters give a unique τc ≈ 2 from S00 (τ ) = 0.
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Fig. 10 Stability switch of Ep1 with varying τ. Parameters are: b0 = 3.07552, b1 = 4.33876, a =
0.38976, p = 0.750396, s2 = 0.562070, s3 = 1.21206, y = 4.89360, d2 = 0.552225, k = 31.0047. a
Small delay, b intermediate delay, c intermediate delay, d large delay

4.3 Full Model

In this section, we consider the original 3-d model (6). Since the full model involves
three equations with delays and is much more complicated, we will mainly explore it
numerically. Before that and in order to simplify the notations, let p = d0 + s0 y, q =
d1 + s1 y. Similar to the analysis of the reduced 2-d model (24) and still making use
of the same R̂2(α, τ ), we may determine the existence of a semi-trivial equilibrium
of (6), as stated in the following lemma.

Lemma 4.1 A semi-trivial equilibrium Es0 = (x̄10, x̄20, 0) exists if

R̂2(0, τ ) > 1, τ > 0, (78)
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Fig. 11 Stability switch of Ep1 where both Ep1 and Ep2 may exist. Parameters are: b0 = 4.6332, b1 =
5.4762, a = 0.1694, p = 0.3781, d2 = 0.5693, s2 = 0.5797, s3 = 3.7623, y = 4.7052, k = 0.7519
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Fig. 12 Stability switch of Ep1 with varying τ. Parameters are: b0 = 4.6332, b1 = 5.4762, a =
0.1694, p = 0.3781, d2 = 0.5693, s2 = 0.5797, s3 = 3.7623, y = 4.7052, k = 0.7519. a Small delay
and b large delay

where

x̄10 =
(
d2 + s22 y

)
(ep τ − 1)

a p
ln R̂2(0, τ ),

x̄20 = 1

a
ln R̂2(0, τ ). (79)
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Fig. 13 Steady state or oscillation of system (6) with varying k. Parameters are: b0 = 3.07552, b1 =
4.33876, a = 0.38976, p = 0.750396, q = 0.2, s2 = 0.562070, s3 = 1.21206, y = 4.89360, τ =
0.12276, d2 = 0.552225, k = 16 or k = 19. a Small k and b large k

Theorem 4.10 Assume that R̂2(0, τ ) > 1, τ > 0 so that the semi-trivial equilibrium
Es0 = (x̄10, x̄20, 0) exists. Then it is locally asymptotically stable if

R̂2(0, τ ) <
b0 (2 b1 p + q b0)

2 s2 s3 y p + q d2 + q y s22
and R̂2(0, τ ) ≤ e2. (80)

Proof The characteristic equation of system (6) at Es0 is

G(λ, τ ) := (λ + p)
[
λ + k

(
2 b0 b1 e

−a x̄20 x̄20 + q x̄10 − 2 s2 s3 x̄20 y
)]

[
λ + d2 + y s22 + e−a x̄20 e−p τ b20(a x̄20 − 1) e−λ τ

]
, (81)

where x̄10, x̄20 are shown in (79). Equation (81) has two real eigenvalues

λ1 = −p < 0, λ2 = −k
(
2 b0 b1 e

−a x̄20 x̄20 + q x̄10 − 2 s2 s3 y x̄20
)

. (82)

From (82), one can easily verify that

λ2 < 0 if R̂2(0, τ ) <
b0 (2 b1 p + q b0)

2 s2 s3 y p + q d2 + q y s22
. (83)

All other eigenvalues of (81) are determined by the same equation as (55). The remain-
ing part of the proof is the same as the proof in Theorem 4.7 and is thus omitted. ��

Next,we numerically explore themodel dynamics, hoping to gain some information
and insights about the roles that anti-predator defense of adult prey plays in predator–
prey interactions.
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Fig. 14 Steady state or oscillation of system (6) with varying b1. Parameters are: b0 = 3.07552, a =
0.38976, p = 0.750396, q = 0.2, s2 = 0.562070, s3 = 1.21206, y = 4.89360, τ = 0.12276, d2 =
0.552225, k = 18.31767, b1 = 4.2 or 4.35. a Small b1 and b large b1

We start by considering the impact of the parameter k which represents the sensitiv-
ity of adaptive anti-predator response. Figure 13a illustrates that, for relatively small
k, the populations of both juvenile prey and adult prey, as well as the adaptive defense
level of adult prey, all converge to positive constants. However, for relatively large k,
we have observed periodic oscillations of the solutions of the model, as is shown in
Fig. 13b. This indicates that, in addition to the maturation delay τ , this parameter of
sensitivity may also destabilize an otherwise stable positive equilibrium, leading to
the occurrence of periodic solutions.

Note that the parameter b1 in the function b(α, x2) describes how fast b(α, x2)
decreases with respect to the increase of α and hence accounts for the cost of the
anti-predation response in the reproduction. The simulation results show that this
parameter can also destabilize an otherwise stable positive equilibrium, as demon-
strated in Fig. 14. Similar destabilizing effect by another parameter d1, the cost of the
fear in the death rate of the juveniles due to less sufficient care from the parental prey,
has also been observed; see Fig. 15.

Our model assumes a simplest scenario for the predator population: constant preda-
tor population y (see the justification for this in the introduction). We now investigate
the impact of this parameter. Interestingly, we have found that within certain range of
other parameters, increasing y can stabilize an otherwise unstable positive equilibrium;
see the simulation results in Fig. 16.

It is also interesting to examine the impact of key parameters on the components
of a positive equilibrium. Figure 17 describes the dependence of Ep1 on predator
population y: Fig. 17a indicates that the population of both juvenile prey and adult
prey decreases with increasing population of predators, and Fig. 17b shows that anti-
predator defense level of adult prey increases with larger predator population—this
is biologically reasonable (not surprising) because adult prey is easier to perceive
predation riskwith higher density of predators and demonstrates stronger anti-predator
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Fig. 15 Steady state or oscillation of system (6) with varying d1. Parameters are: b0 = 3.07552, b1 =
4.33876, a = 0.38976, p = 0.750396, s2 = 0.562070, s3 = 1.21206, τ = 0.12276, d2 = 0.552225, k =
18.31767, y = 4.8936, s1 = 0.01, d1 = 0.1 or 0.2. a Small d1 and b large d1
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Fig. 16 Steady state or oscillation of system (6) with varying y. Parameters are: b0 = 3.07552, b1 =
4.33876, a = 0.38976, p = 0.750396, q = 0.2, s2 = 0.562070, s3 = 1.21206, τ = 0.12276, d2 =
0.552225, k = 18.31767, y = 4.85 or 5.1. a Small y, b large y

behaviors. Figure 18 shows the dependence of Ep1 on the cost of fear b1 in the
reproduction while fixing other parameters. Figure 18a demonstrates that adult prey
population decreases with increasing cost of fear. Figure 18b indicates that adult
prey shows weaker anti-predator behaviors if the cost of such behaviors becomes too
larger. Notice that from Fig. 18a, the population of juvenile increases slowly with
large b1. This is because adult prey devotes more energy in juvenile’s reproduction
and protection of juveniles with larger cost of anti-predator defense. As a consequence,
the population of juvenile prey increases slightly.
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Fig. 17 Impact of y on the positive equilibrium Ep1(x̄1, x̄2, ᾱ). Parameters are: b0 = 3.07552, b1 =
4.33876, a = 0.38976, p = 0.750396, q = 0.2, s2 = 0.562070, s3 = 1.21206, τ = 0.12276, d2 =
0.552225. a Impact of y on x̄1, x̄2 and b impact of y on α
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Fig. 18 Impact of b1 on the positive equilibrium Ep1(x̄1, x̄2, ᾱ). Parameters are: b0 = 3.07552, a =
0.38976, p = 0.750396, q = 0.2, s2 = 0.562070, s3 = 1.21206, τ = 0.12276, d2 = 0.552225, y =
4.8936. a Impact of b1 on x̄1, x̄2 and b impact of b1 on α

We also compare the effects that the adaptive defense level of adult prey α has
on adult prey population with the case where α is a constant, i.e., the case when
there is no adaptation for the strategy α. As shown in Fig. 19, the steady-state pop-
ulation of adult prey x̄21 in Ep1 is always larger than the steady-state population
of adult prey x+

2 in (15) when 0 ≤ α ≤ s2/s3. Figure 19 indicates that adap-
tive defense of adults will have more benefit for prey in terms of its long-term
population.
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Fig. 19 Difference between x̄21 in Ep1(x̄21, ᾱ1) and x+
2 in (15). Parameters are: b0 = 9.4609, b1 =

13.2741, p = 0.0856, q = 3.0554, d2 = 0.0467, s2 = 0.2009, s3 = 1.5685, y = 2.6194, τ =
2.2335, a = 5.

5 Conclusion and Discussion

Motivated by some recent experimental field study on the fear effect of prey, we pro-
posed a mathematical model to examine the impact of the fear effect on the population
dynamics of prey. The model is in the form of a system of delay differential equations.
The novelty lies in the incorporation of cost of the anti-predation response of the prey
both in the offspring reproduction (produce less) and the death of juveniles (high death
rate due to less sufficient care from the parent prey), as well as the adaptive defense
level. We have theoretically analyzed the model dynamics for two simpler cases and
numerically explored the full model in the general case with focus on the impact that
some keymodel parameters have on the long-term behaviors of solutions of themodel.

Results show that, in addition to the maturation delay which has been found to
destroy the stability of an equilibrium and cause periodic oscillations in many delay
differential equation models, some other essential parameters can also affect the sta-
bility of an equilibrium, as illustrated in Sect. 4. While more rigorous and thorough
analysis is still needed to obtain more qualitative and quantitative results about the full
3-d model, the numerical results based on the framework of the model have already
provided some important information on the role that an anti-predator response may
play in determining the long-term population dynamics. For example, in the case of
a constant defense level, there may exist an optimal anti-predator defense level, and
in the adaptive defense level case, within the certain ranges of parameters, periodic
defense levels may be a choice. Most importantly, these results together with those
recent field experimental results offered strong evidences of the significance of the
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fear effect in predator–prey interactions. All these seem to suggest the incorporation
of the fear effect in existing predator–prey models, and consideration of such a new
mechanism may lead to interesting and significant findings. For example, our recent
work (Wang et al. 2016) on a simpler model with the fear effect offered an alternative
way to eliminate the so-called paradox of enrichment.

In the model, the predator population is assumed to remain as a constant. Although
there are numerous situations that fit in such a scenario, as we explained in the intro-
duction, a case where the predator population is not a constant may intrigue further
extensions. Here we outline how to modify the model (6) to accommodate noncon-
stant predator population. If the predator population varies with time, a fourth equation
which describes the time evolution of predator population is obviously necessary. The
equation for the adaptive defense level α still holds as it maximizes the instant growth
rate of prey as a species, regardless of whether y remains a constant or not. From
(6), it is clear that the population of predators y has an impact on prey’s anti-predator
defense level. For the case where y does not change with time, the impact that the
predator population exerts on the avoidance behaviors of prey remains the same with
evolution of time. However, prey selects anti-predator level depending on the current
predator population and adjusts behaviors to instant change of the environment, if y
is not a constant. However, in such a case, the corresponding model increases from
three dimensions to four dimensions and is obviously very challenging and difficult to
analyze. But we conjecture that a single optimal strategy for prey or periodic strategies
for prey to avoid predation still exist if the predator population varies with time.

Another possible and important extension for future work is to incorporate the
predation strategy for predators and study the coevolution with the avoidance strategy
of prey. The coevolution is particularly important if the predator is a specialist predator
because the ability to attack prey is essential for their own survival and reproduction. In
such a scenario, both prey and predators adjust their behaviors depending on the current
environment in order to gain the maximal benefits for each. It brings new framework
for modeling and is thus interesting to analyze. However, due to the complexity and
different focus of modeling, the stage structure of prey may no longer be a suitable
choice because it obviously overcomplicates the potential model.

Furthermore, as far as the predator–prey interaction is concerned, spatial effect
is an important factor due to foraging behaviors of both prey and predators. This
suggests models with spatial dispersal, in addition to the spatial implicitly predation,
anti-predator defense of prey, and the corresponding cost on prey population. All
the aforementioned possible extensions are interesting, biologically important but yet
mathematically challenging, and we have to leave them for future research projects.
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