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Abstract Mosquito-borne diseases remain a significant threat to public health and
economics. Since mosquitoes are quite sensitive to temperature, global warming may
not only worsen the disease transmission case in current endemic areas but also
facilitate mosquito population together with pathogens to establish in new regions.
Therefore, understanding mosquito population dynamics under the impact of tem-
perature is considerably important for making disease control policies. In this paper,
we develop a stage-structured mosquito population model in the environment of a
temperature-controlled experiment. The model turns out to be a system of periodic
delay differential equations with periodic delays. We show that the basic reproduction
number is a threshold parameter which determines whether the mosquito population
goes to extinction or remains persistent. We then estimate the parameter values for
Aedes aegypti, the mosquito that transmits dengue virus. We verify the analytic result
by numerical simulations with the temperature data of Colombo, Sri Lanka where a
dengue outbreak occurred in 2017.
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1 Introduction

Mosquito is the vector that transmits numerous diseases including malaria, dengue,
West Nile virus, Chikungunya and Zika. These mosquito-borne diseases cause a major
public health concern and a significant economic burden in tropical and subtropical
regions of the world. For instance, 2.4 billion people around the world are at risk of
malaria, which is transmitted by Anophelesmosquitoes. There are more than 275 mil-
lion malaria cases and over 438,000 malaria deaths every year, according to the 2015
World Malaria Report (see http://www.who.int/malaria/publications/worldmalaria-
report-2015/en/). Dengue fever, which is mainly transmitted by Aedes aegypti, is
another mosquito-borne disease that seriously threatens over one third of the world’s
population. The World Health Organization (WHO) estimates that there are 50 to 100
million infections every year, including 500,000 dengue haemorrhagic fever cases and
22,000 deaths.

Global warming together with increased global connectivity and population move-
ments has affected the distribution of both the pathogens and the vectors and has
accordingly facilitated the mosquito-borne disease transmission to new geographic
regions (Liu-Helmersson et al. 2014; Tatem et al. 2006; Wilder-Smith and Gubler
2008). This has brought new challenge to the prediction of epidemic outbreaks and
the control of the diseases. Due to the lack of effective malaria and dengue vaccines,
most public policies for the control of those diseases focus onminimizing themosquito
population. Therefore, studying the mosquito population dynamics and its relevance
to temperature is fundamental to understanding mosquito-borne disease transmission
dynamics and the design of effective mosquito control strategies.

Mosquitoes go through four distinct stages during their life time: egg, larva, pupa
and adult. The first three immature stages take place in the water while the adult live
on land in the air. After hatching of eggs comes the first larval instar, which is followed
by three moults, leading, respectively, to the second, third and fourth larval instars.
Then pupation gives rise to the pupa. At last, emergence of the pupa results in the
appearance of the adult, male or female. The copulation of the male and the female
leads to the fertilization of the female and then the oviposition occurs if the adult
female had a sufficient blood meal (Christophers 1960; Simoy et al. 2015).

Considerable evidences have shown that temperature has a great impact on both the
mosquito life and the disease transmission cycles (seeBeck-Johnson et al. 2013; Simoy
et al. 2015 and the references therein). With higher temperatures in the favourable sur-
vival range of mosquitoes, the length of the gonotrophic cycle (the egg-laying time)
decreases, causing an increase in egg number (Costa et al. 2010). Increasing temper-
ature also leads to decreases in the lengths of each immature stage, the adult life span
and the extrinsic incubation period, resulting in higher rates of disease transmission
(Hopp and Foley 2001).

Numerous mathematical models incorporating the mosquito stage structure have
been proposed to study the impact of climatic factors on the dynamics of mosquito
population or mosquito-borne infectious disease transmissions (see, e.g. Abdelrazec
and Gumel 2017; Ewing et al. 2016; Ngarakana-Gwasira et al. 2014; Simoy et al.
2015; Wang et al. 2016, 2017 and the references therein). Some of them are delay dif-
ferential equations models in which the delays are employed to describe the mosquito
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stage durations or the extrinsic incubation period (from the uptake of pathogens by a
mosquito until the mosquito becomes infectious). Since the lengths of each mosquito
stage duration and the extrinsic incubation period vary with temperature, several mod-
elswith periodic delays have been developed (see, e.g. Beck-Johnson et al. 2013;Wang
and Zhao 2017a). We refer the readers to (Lou and Zhao 2017; McCauley et al. 1996;
Molnár et al. 2013; Rittenhouse et al. 2016; Wu et al. 2015) for more population
models with time-dependent delays. Most of the researchers did not study the asymp-
totic behaviour of the models due to the difficulty induced by time varying delays.
Recently, Lou and Zhao (2017) studied the global dynamics of a host-macroparasite
model with seasonal developmental durations by introducing a periodic semiflow on
a suitably chosen phase space. By using the similar method in (Lou and Zhao 2017),
Wang and Zhao (2017a) investigated the global dynamics of a malaria transmission
model with periodic time delays. An increasing number of researchers have carried out
temperature-controlled experiments to explore the impact of temperature on mosquito
life cycle (see, e.g. Marinho et al. 2016; Shapiro et al. 2017; Yang et al. 2009). They
estimated values and derived formulas for entomological parameters, which provide
great help for numerical simulations and case studies.

Recently, Beck-Johnson et al. (2013) proposed a stage-structured mosquito popula-
tion model to study the potential effect of temperature on malaria transmission. Their
model consists of four delay differential equations, corresponding to the four stages
of mosquitoes. They transformed the delay equations onto the physiological timescale
so that the temperature-dependent delays become constants. In this paper, we use the
model in Beck-Johnson et al. (2013) as a base to derive a temperature-dependent stage-
structured mosquito population model for the scenario of a temperature-controlled
experiment. Our model turns out to be a system of delay differential equations. In
particular, the delays are time-periodic functions and one delay is nested in another
one. We hope the analytic and numerical results of this paper can provide some help
for future field studies and laboratory experiments in developing and testing control
methods against different stages of mosquitoes.

The rest of this paper is organized as follows. In the next section, we derive the
model. In Sect. 3, we show the threshold dynamics of the model in terms of the basic
reproduction number. In Sect. 4, we parameterize the model with data about Aedes
agypti mosquitoes and implement numerical simulations using the temperature data
of Colombo, Sri Lanka where an outbreak of dengue occurred in 2017. In the last
section, we give a brief discussion about the results and their implications and propose
some possible future works.

2 Model Formulation

The purpose of this section is to derive a stage-structured mosquito population model
in the environment of a temperature-controlled experiment. In laboratory experiments,
mosquitoes are usually provided with sufficient food and water and there are no preda-
tors. Thus, we do not consider intraspecific competition. Motivated by the model
proposed by Beck-Johnson et al. (2013), we start formulating our model from the
following system:
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dE(t)

dt
= RE (t) − RL(t) − δE (t)E(t),

dL(t)

dt
= RL(t) − RP (t) − δL(t)L(t),

dP(t)

dt
= RP (t) − RA(t) − δP (t)P(t),

dA(t)

dt
= kRA(t) − δA(t)A(t),

(1)

where the variables E(t), L(t), P(t) and A(t) represent the numbers of eggs, larvae,
pupae and adult female mosquitoes at time t , respectively. Here RE (t) is the recruit-
ment rate of eggs, RL(t) the transition rate from the egg to the larval stage, RP (t) the
transition rate from the larval stage to the pupal stage, and RA(t) the transition rate
from the pupal stage to the adult stage. The per capita mortality rates of the four stages
are represented by δx (t) with x = E, L , P, A, respectively, and k is the proportion
of new adult mosquitoes that are females. To derive the model, we use the arguments
similar to those in Nisbet and Gurney (1983), Omori and Adams (2011) and Wang
and Zhao (2017a). Let q be the development level of mosquitoes such that q increases
at a temperature-dependent rate γx (T (t)) = γx (t) where x = E , L or P . Suppose
q = qE = 0 at the start of stage E , q = qL at the transition from E to L , q = qP at the
transition from L to P , q = qA at the transition from P to A. Let ρ(q, t) be the den-
sity of mosquitoes with development level q at time t . Then RL(t) = γE (t)ρ(qL , t),
RP (t) = γL(t)ρ(qP , t), RA(t) = γP (t)ρ(qA, t).

Let J (q, t) be the flux, in the direction of increasing q, of mosquitoes with devel-
opment level q at time t . Then we have the equations (see, e.g. Kot 2001)

∂ρ(q, t)

∂t
= −∂ J (q, t)

∂q
− δE (t)ρ(q, t), q ∈ [qE , qL ],

∂ρ(q, t)

∂t
= −∂ J (q, t)

∂q
− δL(t)ρ(q, t), q ∈ [qL , qP ],

∂ρ(q, t)

∂t
= −∂ J (q, t)

∂q
− δP (t)ρ(q, t), q ∈ [qP , qA].

Since J (q, t) = ρ(q, t)γE (t), q ∈ [qE , qL ], we have
∂ρ(q, t)

∂t
= − ∂

∂q
[ρ(q, t)γE (t)] − δE (t)ρ(q, t) q ∈ [qE , qL ]. (2)

System (2) has the boundary condition

ρ(qE , t) = RE (t)

γE (t)
= b(t)A(t)

γE (t)
,

where b(t) is the oviposition rate. To solve system (2) with this boundary condition,
we introduce a new variable

ξ = h(t) := qE +
∫ t

0
γE (s)ds.
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Let h−1(ξ) be the inverse function of h(t), and define

ρ̂(q, ξ) = ρ(q, h−1(ξ)), δ̂E (ξ) = δE (h−1(ξ)), γ̂E (ξ) = γE (h−1(ξ)).

In view of (2), we then have

∂ρ̂(q, ξ)

∂ξ
= −∂ρ̂(q, ξ)

∂q
− δ̂E (ξ)

γ̂E (ξ)
ρ̂(q, ξ). (3)

This equation is identical in form to the standard von Foerster equation (see Nisbet
and Gurney 1982). Let V (s) = ρ̂(s + q − ξ, s). It follows from (3) that

dV (s)

ds
= − δ̂E (s)

γ̂E (s)
V (s).

Since ξ − (q − qE ) ≤ ξ , we have

V (ξ) = V (ξ − (q − qE ))e
− ∫ ξ

ξ−(q−qE )

δ̂E (s)
γ̂E (s) ds,

and hence,

ρ̂(q, ξ) = ρ̂(qE , ξ − q + qE )e
− ∫ ξ

ξ−q+qE

δ̂E (s)
γ̂E (s) ds .

Define τE (q, t) to be the time taken to grow from development level qE to level q
by mosquitoes who arrive at development level q at time t . Since dq

dt = γE (t) for
q ∈ [qE , qL ], it follows that

q − qE =
∫ t

t−τE (q,t)
γE (s)ds, q ∈ [qE , qL ], (4)

and hence,

h(t − τE (q, t)) = h(t) −
∫ t

t−τE (q,t)
γE (s)ds = h(t) − (q − qE ).

By change of variable s = h(α), we then see that

∫ ξ

ξ−q+qE

δ̂E (s)

γ̂E (s)
ds =

∫ t

t−τE (q,t)
δE (α)dα.
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It follows that

ρ(q, t) = ρ̂(q, h(t))

= ρ(qE , t − τE (q, t))e
− ∫ t

t−τE (q,t) δE (α)dα

= b(t − τE (q, t))A(t − τE (q, t))

γE (t − τE (q, t))
e
− ∫ t

t−τE (q,t) δE (α)dα
.

Denoting τE (t) = τE (qL , t), we have

γE (t)ρ(qL , t) = b(t − τE (t))A(t − τE (t))
γE (t)

γE (t − τE (t))
e
− ∫ t

t−τE (t) δE (α)
dα.

Letting q = qL in (4) we get

qL − qE =
∫ t

t−τE (t)
γE (s)ds (5)

Taking the derivative with respect to t on both sides of (5) we obtain

1 − τ ′
E (t) = γE (t)

γE (t − τE (t))
.

It follows that

RL(t) = b(t − τE (t))A(t − τE (t))(1 − τ ′
E (t))e

− ∫ t
t−τE (t) δE (α)dα

and 1 − τ ′
E (t) > 0.

Define τL(q, t) and τP (q, t) to be the time taken to grow from development levels
qL and qP , respectively, to level q by mosquitoes that arrive at development level q
at time t . We then have

q − qL =
∫ t

t−τL (q,t)
γL(s)ds (6)

and

q − qP =
∫ t

t−τP (q,t)
γP (s)ds (7)

Define τL(t) = τL(qP , t), τP (t) = τP (qA, t). Letting q = qP in (6) and q = qA in
(7), we have

qP − qL =
∫ t

t−τL (t)
γL(s)ds, (8)

and

qA − qP =
∫ t

t−τP (t)
γP (s)ds. (9)
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Taking the derivative with respect to t on both sides of (8) and (9) we have

1 − τ ′
L(t) = γL(t)

γL(t − τL(t))
> 0,

and
1 − τ ′

P (t) = γP (t)

γP (t − τP (t))
> 0.

Since J (q, t) = ρ(q, t)γL(t), q ∈ [qL , qP ] and J (q, t) = ρ(q, t)γP (t), q ∈
[qP , qA], we have

∂ρ(q, t)

∂t
= − ∂

∂q
[ρ(q, t)γL(t)] − δL(t)ρ(q, t) q ∈ [qL , qP ],

∂ρ(q, t)

∂t
= − ∂

∂q
[ρ(q, t)γP (t)] − δP (t)ρ(q, t) q ∈ [qP , qA].

By similar arguments to what are used in deriving the form of RL(t), we obtain

RP (t) = γL(t)ρ(qP , t) = RL(t − τL(t))(1 − τ ′
L(t))e

− ∫ t
t−τL (t) δL(α)dα,

and

RA(t) = γP (t)ρ(qA, t) = RP (t − τP (t))(1 − τ ′
P (t))e

− ∫ t
t−τP (t) δP (α)dα.

In virtue of (5), (8) and (9), it easily follows that if γx (t) is a periodic function, then
so is τx (t) with the same period (x = E , L or P).

Substituting the expressions of RL (t), RP (t) and RA(t) into system (1) anddenoting

mE (t) = t − τE (t),

hL(t) = t − τL(t),

hE (t) = mE (hL(t)) = hL(t) − τE (hL(t)) = t − τL(t) − τE (t − τL(t))

gP(t) = t − τP (t),

gL(t) = hL(gP(t)) = gP(t) − τL(gP(t)) = t − τP (t) − τL(t − τP (t))

f (t) = mE (gL(t)) = gL(t) − τE (gL(t))

= t − τP (t) − τL(t − τP (t)) − τE (t − τP (t) − τL(t − τP (t)))

we arrive at the following model system:

dE(t)

dt
= b(t)A(t) − b(mE (t))A(mE (t))(1 − τ ′

E (t))e
− ∫ t

mE (t) δE (α)dα − δE (t)E(t),

dL(t)

dt
= b(mE (t))A(mE (t))(1 − τ ′

E (t))e
− ∫ t

mE (t) δE (α)dα − b(hE (t))A(hE (t))

· (1 − τ ′
E (hL(t)))e

− ∫ hL (t)
hE (t) δE (α)dα

(1 − τ ′
L(t))e

− ∫ t
hL (t) δL (α)dα

− δL(t)L(t),
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Table 1 Biological
interpretations for parameters of
model (10)

Parameters Description

b(t) Oviposition rate

δE (t) Per capita mortality rate of eggs

δL (t) Per capita mortality rate of larvae

δP (t) Per capita mortality rate of pupae

δA(t) Per capita mortality rate of adults

τE (t) Duration of the egg stage

τL (t) Duration of the larva stage

τP (t) Duration of the pupa stage

k Proportion of new adult
mosquitoes that are females

dP(t)

dt
= b(hE (t))A(hE (t))(1 − τ ′

E (hL(t)))e
− ∫ hL (t)

hE (t) δE (α)dα
(1 − τ ′

L(t))

· e− ∫ t
hL (t) δL (α)dα − b( f (t))A( f (t))(1 − τ ′

E (gL(t)))e− ∫ gL (t)
f (t) δE (α)dα

· (1 − τ ′
L(gP(t)))e

− ∫ gP (t)
gL (t) δL (α)dα

(1 − τ ′
P (t))e

− ∫ t
gP (t) δP (α)dα

− δP (t)P(t),
dA(t)

dt
= kb( f (t))A( f (t))(1 − τ ′

E (gL(t)))e− ∫ gL (t)
f (t) δE (α)dα

(1 − τ ′
L(gP(t)))

· e− ∫ gP (t)
gL (t) δL (α)dα

(1 − τ ′
P (t))e

− ∫ t
gP (t) δP (α)dα − δA(t)A(t), (10)

where k is a positive constant and b(t), δE (t), δL(t), δP (t), δA(t), τE (t), τL(t), τP (t)
are positive, continuous and ω-periodic functions for some ω > 0. The biological
interpretations for the parameters of model (10) are listed in Table 1.

It is easy to see that the functions

a1(t) : = e
− ∫ t

t−τE (t) δE (α)dα
,

a2(t) : = e
− ∫ t−τL (t)

t−τL (t)−τE (t−τL (t)) δE (α)dα
,

a3(t) : = e
− ∫ t

t−τL (t) δL (α)dα
,

a4(t) : = e
− ∫ t−τP (t)

t−τP (t)−τL (t−τP (t)) δL (α)dα
,

a5(t) : = e
− ∫ t

t−τP (t) δP (α)dα
,

a6(t) : = e
− ∫ t−τP (t)−τL (t−τP (t))

t−τP (t)−τL (t−τP (t))−τE (t−τP (t)−τL (t−τP (t))) δE (α)dα
,

are also ω-periodic. Thus, model (10) can be written as u′(t) = F(t, ut ) with F(t +
ω, φ) = F(t, φ), and hence, it is an ω-periodic system of functional differential
equations.
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3 Threshold Dynamics

In this section, we study the global dynamics of system (10). The basic reproduction
number, denoted by R0, is the threshold quantity whichmeasures the average expected
number of new female adult offsprings produced by a single female adult mosquito
during its life time (Abdelrazec and Gumel 2017). Ever since the works on R0 by
Diekmann et al. (1990) and van den Driessche andWatmough (2002), there have been
many studies on the theory and applications of R0 for population models in a periodic
environment (see, e.g. Bacaër and Ait Dads 2012; Bacaër and Guernaoui 2006; Inaba
2012; Thieme 2009; Wang and Zhao 2008; Zhao 2017a, b and the references therein).
In what follows, we use the theory in Zhao (2017a) to derive the basic reproduction
number R0. Since each of the first three equations of system (10) is decoupled from
the other equations and the fourth equation is also decoupled from the other three, it
suffices to study the fourth, i.e. the following equation:

dA(t)

dt
= kb( f (t))A( f (t))(1 − τ ′

E (gL(t)))e− ∫ gL (t)
f (t) δE (α)dα

(1 − τ ′
L(gP(t)))

· e− ∫ gP (t)
gL (t) δL (α)dα

(1 − τ ′
P (t))e

− ∫ t
gP (t) δP (α)dα − δA(t)A(t),

(11)

Denote

B(t) = kb( f (t))(1 − τ ′
E (gL(t)))e− ∫ gL (t)

f (t) δE (α)dα
(1 − τ ′

L(gP(t)))e
− ∫ gP (t)

gL (t) δL (α)dα

· (1 − τ ′
P (t))e

− ∫ t
gP (t) δP (α)dα

.

Then system (11) can be rewritten as

dA(t)

dt
= B(t)A( f (t)) − δA(t)A(t). (12)

Let τ̂ = max{maxt∈[0,ω] τE (t),maxt∈[0,ω] τL(t),maxt∈[0,ω] τP (t)}, C = C(

[−3τ̂ , 0],R), C+ = C([−3τ̂ , 0], R+). Then (C,C+) is an ordered Banach space
equipped with the maximum norm and the partial order induced by the positive cone
C+. For any given continuous function v : [−3τ̂ , σ ) → R with σ > 0, we define
vt ∈ C by

vt (θ) = v(t + θ), ∀θ ∈ [−3τ̂ , 0]

for any t ∈ [0, σ ).
Equation (12) is linear with the recruitment represented by F : R → L(C,R)

defined by

F(t)ϕ = B(t)ϕ(−τP (t) − τL(t − τP (t)) − τE (t − τP (t) − τL(t − τP (t)))).

The evolution of the existing adult population is governed by the periodic ordinary
differential equation
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du(t)

dt
= −δA(t)u(t).

LetΦ(t, s), t ≥ s, be the evolution operator of the above linear system, that is,Φ(t, s)
satisfies

∂

∂t
Φ(t, s) = −δA(t)Φ(t, s), ∀t ≥ s, and Φ(s, s) = 1, ∀s ∈ R.

It then easily follows that Φ(t, s) = e− ∫ t
s δA(r)dr .

Let Cω be the ordered Banach space of all continuous and ω-periodic functions
fromR toR, which is equipped with the maximum norm and the positive cone C+

ω :=
{v ∈ Cω : v(t) ≥ 0,∀t ∈ R}.

Suppose that v ∈ Cω is the initial number of adult female mosquitoes. Then for
any given s ≥ 0, F(t − s)vt−s is the number of female mosquitoes that are newly
recruited into adult stage per unit time at time t − s, which are produced by the adult
female mosquitoes who were introduced over the time interval [t − s − 3τ̂ , t − s].
Then Φ(t, t − s)F(t − s)vt−s is the number of those adult female mosquitoes who
newly became adult at time t − s and remain alive at time t . It follows that

∫ ∞

0
Φ(t, t − s)F(t − s)vt−sds =

∫ ∞

0
Φ(t, t − s)F(t − s)v(t − s + ·)ds

is the number of accumulative new adult females at time t produced by all those adult
female mosquitoes introduced at all previous time to t .

Define a linear operator L : Cω → Cω by

[Lv](t) =
∫ ∞

0
Φ(t, t − s)F(t − s)v(t − s + ·)ds, ∀t ∈ R, v ∈ Cω.

Following (Zhao 2017a), we define R0 = r(L), the spectral radius of L .
By Hale and Verduyn Lunel (1993, Theorem 6.1.1) and Smith (1995, Theorem

5.2.1), we obtain the following result for linear system (12).

Lemma 1 For any ϕ ∈ C, system (12) has a unique solution y(t, ϕ) for t ≥ 0 with
y0 = ϕ; moreover, if ϕ ∈ C+, then y(t, ϕ) ≥ 0 for all t ≥ 0.

Let P̂(t) be the solution maps of system (12) on C , that is, P̂(t)ϕ = yt (ϕ), t ≥ 0,
where y(t, ϕ) is the unique solution of (12) with y0 = ϕ ∈ C . Then P̂ := P̂(ω) is
the Poincaré map associated with linear system (12). Let r(P̂) be the spectral radius
of P̂ . By Zhao (2017a, Theorem 2.1), we have the following result.

Lemma 2 R0 − 1 has the same sign as r(P̂) − 1.

Let

Ω := C([−τP (0) − τL(−τP (0)) − τE (−τP (0) − τL(−τP (0))), 0],R+).

We then have the following preliminary result for system (12).
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Lemma 3 For any ϕ ∈ Ω , system (12) has a unique solution z(t, ϕ) with z0 = ϕ,
and zt (ϕ) ∈ Ω for all t ≥ 0.

Proof Since gP(t) = t − τP (t), gL(t) = gP(t) − τL(gP(t)), f (t) = gL(t) −
τE (gL(t)), 1 − τ ′

P (t) > 0, 1 − τ ′
L(t) > 0 and 1 − τ ′

E (t) > 0, it then easily fol-
lows that gP(t), gL(t) and f (t) are strictly increasing in t .

Let τ̄ = min{mint∈[0,ω] τE (t),mint∈[0,ω] τL(t),mint∈[0,ω] τP (t)}. For any t ∈
[0, τ̄ ], we have

−τP (0) ≤ gP(t) ≤ τ̄ − τP (τ̄ ) ≤ τ̄ ,

⇒ −τP (0) − τL(−τP (0)) ≤ gL(t) ≤ τ̄ − τL(τ̄ ) ≤ τ̄ ,

⇒ −τP (0) − τL(−τP (0)) − τE (−τP (0) − τL(−τP (0))) ≤ f (t)

≤ τ̄ − τE (τ̄ ) ≤ τ̄ − τ̄ = 0,

and hence,

z( f (t)) = ϕ( f (t)).

Therefore, we have the following ordinary differential equation for t ∈ [0, τ̄ ]:
dz(t)

dt
= B(t)ϕ( f (t)) − δA(t)z(t).

Given ϕ ∈ Ω , the solution z(t) of the above equation exists for t ∈ [0, τ̄ ]. In other
words, we have obtained values of ψ(θ) = z(θ) for θ ∈ [−τP (0) − τL(−τP (0)) −
τE (−τP (0) − τL(−τP (0))), τ̄ ].

For any t ∈ [τ̄ , 2τ̄ ], we have

−τP (0) = 0 − τP (0) ≤ τ̄ − τP (τ̄ ) ≤ gP(t) ≤ 2τ̄ − τP (2τ̄ ) ≤ 2τ̄ ,

⇒ −τP (0) − τL(−τP (0)) ≤ gL(t) ≤ 2τ̄ − τL(2τ̄ ) ≤ 2τ̄ ,

⇒ −τP (0) − τL(−τP (0)) − τE (−τP (0) − τL(−τP (0))) ≤ f (t)

≤ 2τ̄ − τE (2τ̄ ) ≤ 2τ̄ − τ̄ = τ̄ ,

and hence, z( f (t)) = ψ( f (t)). Solving the following ordinary differential equation
for t ∈ [τ̄ , 2τ̄ ] with z(τ̄ ) = ψ(τ̄ ):

dz(t)

dt
= B(t)ψ( f (t)) − δA(t)z(t),

we then get the solution z(t) on [τ̄ , 2τ̄ ]. Repeating this procedure for t ∈ [2τ̄ , 3τ̄ ],
[3τ̄ , 4τ̄ ], . . ., it then follows that for any ϕ ∈ Ω , system (12) has a unique solution
z(t, ϕ) with z0 = ϕ and zt (ϕ) ∈ Ω for all t ≥ 0. �

Remark 1 By the uniqueness of solutions in Lemmas 1 and 3, it follows that for
any ψ ∈ C+ and φ ∈ Ω with ψ(θ) = φ(θ) for all θ ∈ [−τP (0) − τL(−τP (0)) −
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τE (−τP (0)−τL(−τP (0))), 0], we have y(t, ψ) = z(t, φ) for all t ≥ 0, where y(t, ψ)

and z(t, φ) are solutions of system (12) satisfying y0 = ψ and z0 = φ, respectively.
Let P(t) be the solution maps of system (12) on Ω , that is, P(t)ϕ = zt (ϕ), t ≥ 0,

where z(t, ϕ) is the unique solution of system (12)with z0 = ϕ ∈ Ω . By the arguments
similar to those in Lou and Zhao (2017, Lemma 3.5), we have the following result.

Lemma 4 P(t) : Ω → Ω is an ω-periodic semiflow in the sense that (i)P(0) = I ;
(i i)P(t+ω) = P(t)◦P(ω), ∀t ≥ 0; (i i i)P(t)ϕ is continuous in (t, ϕ) ∈ [0,∞)×Ω .

Let P = P(ω) be the Poincaré map of the linear system (12) on the space Ω ,
and r(P) be its spectral radius. Then we have the following threshold type result for
system (12).

Lemma 5 The following statements are valid:

(i) If r(P) < 1, then limt→∞ A(t, ϕ) = 0 for any ϕ ∈ Ω .
(ii) If r(P) > 1, then limt→∞ A(t, ϕ) = +∞ for any ϕ ∈ Ω \ {0}.
Proof For any given ϕ,ψ ∈ Ω with ϕ ≥ ψ , let ū(t) = u(t, ϕ) and u(t) = u(t, ψ)

be the unique solutions of system (12) with u0 = ϕ and u0 = ψ , respectively. Let
τ̄ = min{mint∈[0,ω] τE (t),mint∈[0,ω] τL(t),mint∈[0,ω] τP (t)}.

Since for any t ∈ [0, τ̄ ],

−τP (0) − τL(−τP (0)) − τE (−τP (0) − τL(−τP (0))) ≤ f (t) ≤ 0,

we have ū( f (t)) = ϕ( f (t)) and u( f (t)) = ψ( f (t)) for all t ∈ [0, τ̄ ], and hence,
ū( f (t)) ≥ u( f (t)) for all t ∈ [0, τ̄ ]. In view of ū(0) = ϕ(0) ≥ ψ(0) = u(0), the
comparison theoremfor cooperative ordinarydifferential equation systems implies that
ū(t) ≥ u(t) for all t ∈ [0, τ̄ ]. Repeating this procedure for t ∈ [τ̄ , 2τ̄ ], [2τ̄ , 3τ̄ ], . . .,
it follows that u(t, ϕ) ≥ u(t, ψ) for all t ≥ 0. This implies that P(t) : Ω → Ω is
monotone for each t ≥ 0. Next we show that the solution map P(t) : Ω → Ω is
eventually strongly monotone. Let ϕ,ψ ∈ Ω satisfy ϕ > ψ . Denote u(t, ϕ) = ȳ(t)
and u(t, ψ) = y(t).

Since f (t) is continuous and strictly increasing in t , there exists a unique solution to
the equation f (t) = 0. Denote the unique solution of f (t) = 0 as t̄ , i.e. f (t̄) = 0. We
first prove that ȳ(t0) > y(t0) for some t0 ∈ [0, t̄]. Otherwise, we have ȳ(t) = y(t) for
all t ∈ [0, t̄], and hence, d ȳ(t)dt = dy(t)

dt for all t ∈ (0, t̄). Thus, we have B(t)[ȳ( f (t))−
y( f (t))] = 0, ∀t ∈ [0, t̄]. It follows that ȳ( f (t)) = y( f (t)) for all t ∈ [0, t̄], that is,
ϕ(θ) = ψ(θ) for all θ ∈ [−τP (0) − τL(−τP (0)) − τE (−τP (0) − τL(−τP (0))), 0],
which contradicts the assumption that ϕ > ψ .

Let

g(t, x) := B(t)y( f (t)) − δA(t)x .

Since
d ȳ(t)

dt
= B(t)ȳ( f (t)) − δA(t)ȳ(t)

≥ B(t)y( f (t)) − δA(t)ȳ(t)

= g(t, ȳ(t)),
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we have

d ȳ(t)

dt
− g(t, ȳ(t)) ≥ 0 = dy(t)

dt
− g(t, y(t)), ∀t ≥ t0.

Since ȳ(t0) > y(t0), the comparison theorem for ordinary differential equations (Wal-
ter 1997, Theorem 4) implies that ȳ(t) > y(t) for all t ≥ t0. It follows that

ȳt > yt , ∀t > t̄ − f (0).

This shows that P(t) : Ω → Ω is strongly monotone for any t > t̄ − f (0). It follows
from (Hale and Verduyn Lunel 1993, Theorem 3.6.1) that the linear operator P(t) is
compact onΩ . Choose an integer n0 such that n0ω > t̄− f (0). Since Pn0 = P(n0ω),
(Liang and Zhao 2007, Lemma 3.1) implies that r(P) is a simple eigenvalue of P
having a strongly positive eigenvector, and the modulus of any other eigenvalue is
less than r(P). It then follows from (Wang and Zhao 2017b, Lemma 1) that there is a

positive ω-periodic function v̄(t) such that v∗(t) = e
ln r(P)

ω
t v̄(t) is a positive solution

of system (12).
In the case r(P) < 1, we have limt→∞ v∗(t) = 0. For any ϕ ∈ Ω , choose

a sufficiently large number K > 0 such that ϕ ≤ Kv∗
0 . Then by the comparison

theorem, we have

A(t, ϕ) ≤ Kv∗(t), ∀t ≥ 0.

Hence, limt→∞ A(t, ϕ) = 0. This proves statement (i).
In the case r(P) > 1, we have limt→∞ v∗(t) = ∞. For any ϕ ∈ Ω \ {0}, we can

choose a sufficiently small real number δ > 0 such that ϕ(θ) ≥ δv∗(θ), θ ∈ [ f (0), 0].
Then by the comparison theorem, we have A(t, ϕ) ≥ δv∗(t) for all t ≥ 0. Hence,
limt→∞ A(t, ϕ) = ∞. This proves statement (ii). �


By the same arguments as in Lou and Zhao (2017, Lemma 3.8), we have r(P) =
r(P̂). Combining Lemmas 2 and 5we have the following result on the global dynamics
of system (12).

Theorem 1 The following statements are valid for system (12):

(i) If R0 < 1, then the zero solution is globally attractive for system (12) in Ω;
(ii) If R0 > 1, then all nontrivial solutions of system (12) go to infinity eventually.

In the rest of this section, we derive the dynamics for the variables E(t), L(t) and
P(t) in system (10). Under the compatibility conditions

E(0) =
∫ 0

−τE (0)
b(ξ)A(ξ)e− ∫ 0

ξ δE (s)dsdξ,

L(0) =
∫ 0

−τL (0)
RL(ξ)e− ∫ 0

ξ δL (s)dsdξ,

P(0) =
∫ 0

−τP (0)
RP (ξ)e− ∫ 0

ξ δP (s)dsdξ,

(13)
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we can solve E(t), L(t) and P(t) as

E(t) =
∫ t

t−τE (t)
b(ξ)A(ξ)e− ∫ t

ξ δE (s)dsdξ,

L(t) =
∫ t

t−τL (t)
RL(ξ)e− ∫ t

ξ δL (s)dsdξ,

P(t) =
∫ t

t−τP (t)
RP (ξ)e− ∫ t

ξ δP (s)dsdξ,

(14)

In the case where R0 < 1, we have limt→∞ A(t) = 0. It then follows from (14)
that

lim
t→∞(E(t), L(t), P(t)) = 0.

In the case where R0 > 1, we have limt→∞ A(t) = +∞. From (14) it is easy to
show that

lim
t→∞(E(t), L(t), P(t)) = +∞.

Consequently, we have the following result on the global dynamics of system (10).

Theorem 2 The following statements are valid for system (10):

(i) If R0 < 1, then (0, 0, 0, 0) is globally attractive for system (10);
(ii) If R0 > 1, then the nontrivial solutions of system (10) go to infinity eventually.

Remark 2 (On the dichotomy of either 0 or infinity) It is impossible for the mosquito
population grows to infinity in natural environment. We get such a result when R0 > 1
in Theorem 2 because our model is based on a laboratory experiment environment and
the density-dependent mortality is ignored.Wewill further discuss possible extensions
along this line in Sect. 5.

4 Numerical Simulations

Dengue is endemic in Sri Lanka, an island country in South Asia. According to the
report of the Epidemiology Unit of the Ministry of Health (MoH) Sri Lanka, there
are 80732 dengue fever cases including 215 deaths from 1 January to 7 July 2017.
World Health Organization (WHO) is supporting the MoH Sri Lanka to ensure com-
prehensive and efficient response measures. In this section, we use the temperature
data of Colombo, Sri Lanka (given in Table 2) to derive the formulas for the periodic
parameters. Then we numerically calculate the basic reproduction number and verify
the analytic result obtained in the last section. Assuming that the sex ratio of adult
mosquitoes is 1 : 1, we take k = 1/2.

Using the Curve Fitting Toolbox in MATLAB we get the following function which
approximately describes how temperature varies seasonally in Colombo, Sri Lanka
(See Fig. 1 for the fitted curve).
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Table 2 Monthly mean temperature for Colombo, Sri Lanka (in ◦C)

Month Jan Feb Mar Apr May June

Temperature 26.45 27.26 28.36 28.58 28.64 27.92

Month Jul Aug Sept Oct Nov Dec

Temperature 27.64 27.64 27.6 27.34 27.02 26.75

13ceD1tpeS1yaM1naJ
Time (day)

26.5

27

27.5

28

28.5

Te
m

pe
ra

tu
re

 (
°C

)

Fig. 1 (Color figure online) Fitted curve for temperature of Colombo, Sri Lanka

T (t) = −0.6248 cos(2π t/365) + 0.4664 sin(2π t/365) − 0.4392 cos(4π t/365)

− 0.1597 sin(4π t/365) + 0.006974 cos(6π t/365) − 0.09078 sin(6π t/365)

− 0.03427 cos(8π t/365) − 0.08193 sin(8π t/365) + 0.05021 cos(10π t/365)

− 0.05556 sin(10π t/365) + 0.01499 cos(12π t/365)

+ 0.02312 sin(12π t/365) + 27.6.

Recently, Yang et al. (2009) conducted a temperature-controlled experiment to
assess the effects of temperature on the Aedes aegypti population. Based on their
experimental results, they adjusted the oviposition rate, the mortality rate of aquatic
stages (larval and pupal) and the mortality rate of adult females, respectively, by the
following polynomials:

b(T ) = − 5.4 + 1.8T − 0.2124T 2 + 1.015 × 10−2T 3 − 1.515 × 10−4T 4,

δ(T ) = b0 + b1T + b2T
2 + b3T

3 + b4T
4,

δA(T ) = c0 + c1T + c2T
2 + c3T

3 + c4T
4,

where T is the temperature (in ◦C) and b0 = 2.13, b1 = −3.797 × 10−1, b2 =
2.457 × 10−2, b3 = −6.778 × 10−4, b4 = 6.794 × 10−6, c0 = 8.692 × 10−1,
c1 = −1.590× 10−1, c2 = 1.116× 10−2, c3 = −3.408× 10−4, c4 = 3.809× 10−6.
Plugging in the temperature function T (t) into b(T ), δ(T ) and δA(T ) we get the
oviposition rate function b(t) and mortality rate functions δ(t) (for larval and pupal
stages) and δA(t) (for adult) as follows.
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b(t) = − 0.3461 cos(2π t/365) − 0.2318 cos(4π t/365) − 0.0143 cos(6π t/365)

− 0.01718 cos(8π t/365) + 0.02681 cos(10π t/365)

+ 0.007914 cos(12π t/365) + 0.2167 sin(2π t/365)

− 0.07796 sin(4π t/365) − 0.04793 sin(6π t/365)

− 0.05344 sin(8π t/365) − 0.02979 sin(10π t/365)

+ 0.006904 sin(12π t/365) + 7.942,

δ(t) = 0.000513 cos(2π t/365) − 0.0006237 sin(2π t/365)

+ 0.0003774 cos(4π t/365) + 0.0002605 sin(4π t/365)

− 0.0001673 cos(6π t/365) + 7.95 × 10−5 sin(6π t/365)

− 2.573 × 10−6 cos(8π t/365) + 1.985 × 10−5 sin(8π t/365)

− 7.88 × 10−5 cos(10π t/365) + 1.501 × 10−5 sin(10π t/365)

− 2.842 × 10−6 cos(12π t/365) − 7.536 × 10−5 sin(12π t/365)

+ 2.815 × 10−5 cos(14π t/365) − 5.796 × 10−6 sin(14π t/365) + 0.05847,

δA(t) = 0.000961 cos(2π t/365) + 0.0006243 cos(4π t/365)

+ 9.585 × 10−5 cos(6π t/365) + 4.681 × 10−5 cos(8π t/365)

− 6.948 × 10−5 cos(10π t/365) − 2.454 × 10−5 cos(12π t/365)

− 0.0005156 sin(2π t/365) + 0.000163 sin(4π t/365)

+ 0.0001273 sin(6π t/365) + 0.0001716 sin(8π t/365)

+ 8.356 × 10−5 sin(10π t/365)

− 3.562 × 10−6 sin(12π t/365) + 0.0273.

However, obtaining the overall mortality rate function δ(t) for larval and pupal
stages together is not enough. We need the respective mortality rate functions for each
stage of mosquitoes. To this end, we have to estimate the length of each stage. Indeed,
it is also necessary to know the expressions of such duration functions τE (t), τL(t)
and τP (t) to finish the numerical simulations. Marinho et al. (2016) collected samples
of Aedes aegypti in three cities in Brazil and assessed their life cycles under different
constant temperatures. Themeans of duration (days) of each stage under these constant
temperatures are listed in Table 3. We take the average of the three duration values of
these three cities at each temperature as the value of the duration corresponding to that
temperature, and then adjust the relationship between the duration and the temperature
by the following polynomials (see Fig. 2 for the graphs of these functions).

τE (T ) = −0.000282T 4 + 0.03009T 3 − 1.14T 2 + 17.59T − 82.56,

τL(T ) = −0.0006582T 4 + 0.06869T 3 − 2.575T 2 + 40.08T − 200.2,

τP (T ) = −0.0002051T 4 + 0.01981T 3 − 0.6765T 2 + 9.3T − 36.67.
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Fig. 2 (Color figure online) Fitted curve of development duration functions with respect to temperatures
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Fig. 3 (Color figure online) Development duration functions for the three aquatic stages of mosquitoes

Byusing the formula of the temperature function T (t), we get the following duration
functions in terms of time t (see Fig. 3 for the graphs).

τE (t) = 0.1972 cos(2π t/365) − 0.1102 sin(2π t/365) + 0.1309 cos(4π t/365)

+ 0.0384 sin(4π t/365) + 0.01632 cos(6π t/365) + 0.02702 sin(6π t/365)

+ 0.0112 cos(8π t/365) + 0.03287 sin(8π t/365) − 0.01341 cos(10π t/365)

+ 0.01845 sin(10π t/365) − 0.004763 cos(12π t/365)

− 0.001001 sin(12π t/365) − 0.003726 cos(14π t/365)

+ 0.0002592 sin(14π t/365) + 3.535,

τL(t) = 0.3011 cos(2π t/365) − 0.1639 sin(2π t/365) + 0.1995 cos(4π t/365)

+ 0.05676 sin(4π t/365) + 0.02762 cos(6π t/365) + 0.0412 sin(6π t/365)

+ 0.01768 cos(8π t/365) + 0.05094 sin(8π t/365) − 0.01979 cos(10π t/365)

+ 0.02873 sin(10π t/365) − 0.00741 cos(12π t/365)

− 0.0005297 sin(12π t/365) − 0.006148 cos(14π t/365)

+ 0.0005606 sin(14π t/365) + 6.759,
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τP (t) = 0.01964 cos(2π t/365) − 0.001059 sin(2π t/365) + 0.01194 cos(4π t/365)

− 0.001411 sin(4π t/365) + 0.008138 cos(6π t/365)

+ 0.002024 sin(6π t/365) + 0.002489 cos(8π t/365)

+ 0.005095 sin(8π t/365) + 0.0002754 cos(10π t/365)

+ 0.002864 sin(10π t/365) − 0.0005423 cos(12π t/365)

+ 0.0022 sin(12π t/365) − 0.001453 cos(14π t/365)

+ 0.0004463 sin(14π t/365) − 0.0004065 cos(16π t/365)

− 0.0002446 sin(16π t/365) − 0.0002068 cos(18π t/35)

− 0.000118 sin(18π t/365) + 2.172.

By averaging the overall means (the rightmost column of Table 3) of each stage
duration, we estimated the length of each aquatic stage (egg, larva, pupa) as follows:

τ̄E = 5.86 + 5.03 + 5.92

3
= 5.6033,

τ̄L = 10.39 + 10.19 + 10.42

3
= 10.3333,

τ̄P = 3.3 + 3.11 + 3.22

3
= 3.2100.

Let 1/μL and 1/μP be the proportions of the acquatic (larval and pupal) development
time that larval and pupal stages make up, respectively. Then

μL ≈ τ̄L + τ̄P

τ̄L
= 1.3106,

μP ≈ τ̄L + τ̄P

τ̄P
= 4.2191

and

1

μL
+ 1

μP
= 1.

It follows that

δL(t) = μLδ(t) and δP (t) = μPδ(t).

Further, we assume that

δE (t) = μE

μL
δL(t),

where μE ≈ τ̄L
τ̄E

μL = 10.3333
5.6033 × 1.3106 = 2.4170. The graphs of the oviposition

rate function and the mortality rate functions are given in Figs. 4 and 5, respectively.
To numerically calculate R0, we use (Zhao 2017a, Theorem 2.2), (Liang et al. 2017,
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Fig. 4 (Color figure online)
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Fig. 5 (Color figure online) Mortality rate of mosquitoes

Lemma 2.5) and the bisection method. Using the above-estimated parameter values,
we obtain R0 = 30.8563. Figure 6 shows that the mosquito population keeps growing
in this case.

Next, we investigate the effects of two possible measures for controlling mosquito
population. The first strategy is to reduce the oviposition rate, which may be realized
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Fig. 6 (Color figure online)
Long-term behaviour of the
solution. Here R0 = 30.8563
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Fig. 7 (Color figure online) a R0 as a function of κ , b R0 as a function of λ

by elimination of mosquito breeding sites such as containers and discarded tires. By
multiplying b(t) by κ , κ ∈ [0, 1] and keeping the other parameter values the same
as those in Fig. 6, we can observe that R0 is an increasing function of κ as shown in
Fig. 7a. The second strategy is by increasing the mortality of adults, which may be
obtained by indoor spraying of insecticide aerosol products. By multiplying δA(t) by
λ, λ ∈ [1, 50] and fixing the other parameter values the same as those in Fig. 6, we
see that R0 is a decreasing function of λ in Fig. 7b. Figure 7 indicates that decreasing
the egg production rate and increasing the mortality of adults are probably effective
methods in controlling mosquito population and it gives a quantitative evaluation of
these two strategies. In Fig. 8, we choose two special values of κ and λ to see the
effects of these two control measures. In Fig. 8a, we set κ = 0.02. In this case,
R0 = 0.6171 and we see that the mosquito population dies out eventually. In Fig. 8b,
by fixing λ = 50, we get R0 = 0.6180. In this case, the mosquito population also
goes to extinction as time elapses. The numerical simulation results in Figs. 6 and 8
are consistent with the analytic result in Theorem 2.
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Fig. 8 (Color figure online) a κ = 0.02, R0 = 0.6171, b λ = 50, R0 = 0.6180

5 Discussion

In this paper, we developed a periodic delay differential equations model to estimate
mosquito population size of each stage under the influence of temperature. Since each
of the first three equations are decoupled from others, we convert the mathematical
analysis of the model system into that of the last equation which is for the adult female
mosquitoes. Then we derived the basic reproduction number R0 for the model system.
By using the theory of monotone dynamical systems and the comparison method, we
showed the threshold dynamics of the system in terms of R0. Biologically, the analytic
result implies that the mosquito population goes to extinction eventually if R0 < 1
and keeps growing to positive infinity if R0 > 1. According to the recent laboratory
experiment by Yang et al. (2009) and the field exploration result by Marinho et al.
(2016), we obtained the function relationships between the entomological parameters
and the temperature. Then we expressed the parameters as time-periodic functions
using the temperature data from Colombo, Sri Lanka. The simulation results about
long-term behaviours of the solutions are consistent with the analytic result. We also
assessed two control measures quantitatively by showing the potential of reducing R0.
We found that both decreasing the oviposition rate and increasing the mortality rate
of adult mosquitoes are effective measures in controlling mosquito population size.
In order to decrease the oviposition rate, it is helpful to reduce mosquito breeding
sites by elimination of discarded tires and draining of unnecessary containers (Thomé
et al. 2010). Insecticide-treated bed nets and indoor residual spraying play impor-
tant roles in adult mosquito control. With the emergence of insecticide resistance in
recent years, new control measures are urgently needed to substantially and sustain-
ably reduce mosquito-borne disease transmission and the disease-related economic
burden. In particular, it is recommended that integrated control strategy rather than a
single intervention method should be employed.

Our model is based on the environment of a temperature-controlled experiment
in which the intraspecific competition of mosquitoes is excluded. The model can be
extended to describe mosquito population dynamics in natural environment. In that
case, however, it is necessary to incorporate the density-dependent larval competition
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which has been considered an important determinant ofmosquito population dynamics
(Ewing et al. 2016; Fang et al. 2016; Legros et al. 2009). Indeed, larval competition can
affect adult longevitywhich has a significant impact onmalaria transmission dynamics
due to the long extrinsic incubation period (the development time of malaria parasites
in a mosquito before the mosquito becomes infectious) (Fang et al. 2016). Larval
competitionmay also alter susceptibility of adult mosquitoes to dengue infection (Alto
et al. 2008). We refer readers to (Fang et al. 2016; Liu et al. 2017) for more details
about intra- and interspecific competition among mosquito larvae, as well as other
insect and amphibian species. Incorporation of the density-dependent larval mortality
is also helpful for us to explore successful larval control measures. Larval mosquitoes
undergo four moult substages. In order to estimate mosquito population size more
accurately, we can develop a model which includes all the four substages of larval
mosquitoes.

In addition to temperature, rainfall also dramatically influencesmosquito population
dynamics anddisease outbreaks in natural environment. Some researchers have studied
the effects of temperature and rainfall onmosquito population and disease transmission
dynamics (see, e.g. Abdelrazec and Gumel 2017;Wang et al. 2016, 2017). It would be
very interesting yet challenging to incorporate the effects of temperature and rainfall
simultaneously in a delay differential equationsmodel of mosquito population dynam-
ics. For better understanding of vector population or disease transmission dynamics,
we call for a good collection of data from biological and ecological researchers. For
example, our simulation result would be better if we knew the accurate relationship
between the mortality of each stage and the temperature. The method to analyse the
asymptotic behaviour of solutions in this paper can also be used to study other linear
periodic delay differential equations with periodic time delays.
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