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Abstract
This paper examines the short-term or transient dynamics of SIR infectious dis-
ease models in patch environments. We employ reactivity of an equilibrium and
amplification rates, concepts from ecology, to analyze how dispersals/travels between
patches, spatial heterogeneity, and other disease-related parameters impact short-term
dynamics. Our findings reveal that in certain scenarios, due to the impact of spatial
heterogeneity and the dispersals, the short-term disease dynamics over a patch envi-
ronment may disagree with the long-term disease dynamics that is typically reflected
by the basic reproduction number. Such an inconsistence canmislead the public, public
healthy agencies and governments when making public health policy and decisions,
and hence, these findings are of practical importance.

Keywords SIR model · Patches · Dispersion · Transient dynamics · Disease
amplification rate

Mathematics Subject Classification 34K20 · 92B05 · 92D25

1 Introduction

Mathematical modelling is an important and efficient tool for understanding the
transmission dynamics of infectious diseases. It helps us unravel disease spread
mechanisms, forecast the future course of an outbreak, and evaluate public health
interventions. With respect to these topics, there are two crucial questions: (Q1) long-
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term disease dynamics—will the disease eventually die out or become endemic? (Q2)
short-term disease dynamics - is the epidemic escalating or being mitigated at the
present time?

To better explain these two questions and our motivations for this paper, let us first
look at the simplest Kermack–McKendrick model (1927):

⎧
⎪⎨

⎪⎩

S′(t) = −βSI ,

I ′(t) = βSI − γ I ,

R′(t) = γ I .

(1)

In this model, the host population is divided into susceptible, infected and recovered
classes denoted by S(t), I (t) and R(t). Here, β > 0 denotes the transmission rate and
γ > 0 is the recovery rate. For this model, the numberR0 = βS0 · (1/γ ) is called the
basic reproduction number. Noting that 1/γ is the average infection time, it is clear
that R0 measures the average number of new infections that an infected individual
causes when the susceptible population is S0. The value ofR0 determines whether or
not there will be an outbreak for the disease when initially I (0) > 0 and S0 > 0: if
R0 < 1, there will be no outbreak as I (t)monotonically decreases to zero; ifR0 > 1,
the disease experiences a single outbreak before dying out as I (t) first increases up
to a maximum value then decreases to zero. This dichotomy can also be obtained by
looking at

I ′(0) = βS(0)I (0) − γ I (0) = [βS0 − γ ]I (0) =: �0 I (0)

which indicates that there will be no outbreak if �0 = βS0 − γ < 0 (i.e., I ′(0) < 0);
and there will be an outbreak if �0 > 0 (i.e., I ′(0) > 0). Note that �0 = βS0 − γ

is the relative change rate of the subpopulation I (t) at the initial time t = 0, which
measures the initial amplification rate of I (t). Here we have two distinct notions: the
basic reproduction number R0 which is of long-time nature (during the epidemic),
and the initial amplification rate �0 which is of short-time nature (near the initial time
t = 0). The former is supposed to predict the long-time disease dynamics while the
latter is expected to predict the short-time disease dynamics. However, they amazingly
agree with each other in predicting the disease dynamics described by model (1); that
is, the long-term and short-term disease dynamics in terms of outbreak coincide.

The SIRmodel (1) has numerous variants when different transmission mechanisms
and demographies are taken into account, and same or similar threshold type results
have been extended accordingly. For example, when considering a birth rate B(N )

where N (t) = S(t) + I (t) + R(t) is the total population of the host, a per capita
natural death rate d > 0, and a per capita disease-related death rate ε > 0, then (1) is
extended to

⎧
⎪⎨

⎪⎩

S′(t) = B(N ) − βSI − dS,

I ′(t) = βSI − (γ + d + ε)I ,

R′(t) = γ I − dR.

(2)
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Assume that the demographic equation N ′(t) = B(N ) − dN has a unique positive
equilibrium N+ > 0 which is globally asymptotically stable, and before the disease
appears, the host population has settled at (or is close to) N+. This implies that (2) has
a unique disease-free equilibrium E0 = (N+, 0, 0) (as opposed to (1) for which there
are infinitely many disease-free equilibria). It is known that (2) also has the long-term
threshold dynamics in terms of its basic reproduction number R̂0 = βN+/(γ +d+ε):
if R̂0 < 1, then E0 is globally asymptotically stable meaning that the disease will
eventually die out if R̂0 > 1, E0 becomes unstable and there occurs an endemic
equilibrium E+ which is globally asymptotically stable. In the meantime, from

I ′(0) = [βS(0) − (γ + d + ε)]I (0) =: �̂0 I (0),

one knows that if �̂0 < 0, then there will be no outbreak at t = 0; if �̂0 > 0, then
there will be an outbreak at t = 0. Note that generally R(0) = 0 and I (0) is very
small in reality when a disease appears, implying that S(0) ≈ N (0) = N+. Hence,
�̂0 = βS(0) − (γ + d + ε) ≈ βN+ − (γ + d + ε). This implies that R̂0 − 1 and
�̂0 have the same sign. Therefore, R̂0 also determines whether or not an initial small-
scale infection I (0) will lead to an outbreak in the coming short period of time after
t = 0, the same conclusion as for model (1).

The above results for model (2) hold only for the initial time t = 0 when an
epidemic occurs. If, at some given time t0 > 0 during an epidemic, one wants to
predict whether or not there will be an outbreak within a short period, one would
have to look at I ′(t0) = �̂(t0)I (t0) for (2), where �̂(t0) = βS(t0) − (γ + d + ε).
Unfortunately, S(t0) can now be far away from S(0) (hence N+), and hence, the sign
of R̂0 − 1 (independent of t0) may not agree with the sign of �̂(t0). Thus, the value
of the long-term characteristics quantity R̂0 generally cannot predict whether or not
there will be an outbreak in the coming short period of time after t0. That is, even
if R̂0 < 1 (hence eventually I (t) → 0), there can be an outbreak at some t0 > 0;
and even if R̂0 > 1, there may be some time t0 > 0 such that I ′(t0) < 0 which can
be very misleading. Therefore, for a general model of infectious disease dynamics,
the long-term and short-term behaviours often do not imply each other, and they both
deserve careful analysis.

For the study of long-term disease dynamics, a substantial amount of literature
has been published on various models. Typically the long-term dynamics of a disease
transmission model is of threshold type in terms of the basic reproduction numberR0.
For a model that has a unique disease-free equilibrium,R0 is still biologically defined
as the average number of secondary infections caused by a single infected individual
during his/her entire period of infectiousness in a completely susceptible population.
Mathematically, R0 is defined as the spectral radius of the next generation operator,
which was initially introduced by Diekmann et al. (1990). For compartmental models
formulated as systems of ordinary differential equations (ODEs), van den Driessche
and Watmough (2002) derived an expression for the next generation matrix. The
authors further demonstrated the threshold long-term dynamics by showing that: if
R0 < 1 then the disease-free equilibrium of the model is locally asymptotically
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stable meaning that the disease eventually dies out; if R0 > 1 then the disease-free
equilibrium is unstable and the disease becomes endemic.

In contrast, there are only very few works in literature (see Sect. 2) that analytically
investigate short-term or transient disease dynamics by mathematical models. This
is mainly due to the lack of effective tools and methods. For simple models like
(1) and (2), the equation governing the change rate of the infected subpopulation is
conveniently related to its amplification rate that has an explicit formula. When there
is some heterogeneity, for example, spatial heterogeneity as we will discuss next,
analyzing short-term or transient disease dynamics becomes much more difficult, if
not impossible. On the other hand, short-term disease dynamics is very important
because it may affect the judgement of not only the public, but also public health
agents who typically advise governments of various levels in making decisions on
interventions for controlling the epidemics of an infectious disease.

Nowadays the world is highly connected, and such high connectivity has obviously
enhanced the spread of infectious diseases. The ongoing pandemic of COVID-19 is
such an example. Thus, when modelling the transmission dynamics of an infectious
disease, we need to consider spatial structure. Typically, patch models are used with
each patch representing a country, a city, a province, or a geographic area in some given
context. The population dynamics of each patch is coupled by spatial dispersals or
travels reflecting themovement of the host population. Such couplings bring challenges
to the analysis of the resulting models. Taking the Kermack–McKendrick SIR system
(1) as an example and considering n ≥ 2 patches, the coupled system corresponding
to (1) is

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

S′
i (t) =

∑

j∈�, j �=i

d S
i j S j −

∑

j∈�, j �=i

d S
ji Si − βi Si Ii ,

I ′
i (t) =

∑

j∈�, j �=i

d I
i j I j −

∑

j∈�, j �=i

d I
ji Ii + βi Si Ii − γi Ii ,

R′
i (t) =

∑

j∈�, j �=i

d R
i j R j −

∑

j∈�, j �=i

d R
ji Ri + γi Ii ,

for i ∈ �. (3)

Here � = {1, . . . , n}, and the parameters βi > 0 and γi > 0 have the same
meanings as in (1) but for patch i . The constant dX

i j ≥ 0 is the dispersal/travel rate of
individuals in class X from patch j to patch i where X ∈ {S, I , R}, i, j ∈ {1, . . . , n},
and i �= j . Now due to the coupling, obtaining results similar to those for the non-
spatial model (1) becomes very difficult, if not impossible. This is because (A) the
computation of the basic reproduction numberR0 is more challenging; and (B) there
may be some time moments at which I ′

i (t), i = 1, . . . , n, have different signs,
and hence the measurement of an outbreak should consider all patches. To our best
knowledge, there are only two studies (Mari et al. 2019, 2021) that have considered the
transient dynamics of disease transmission over a patchy environment. For this type of
disease models over patches, even when amodel has a unique disease-free equilibrium
at which the next generation method is applicable to establish the threshold long-
term dynamics, it is, in general, very difficult (if not impossible) to obtain an explicit
expression for R0 as the spectral radius of a large matrix. See, e.g., Arino and Van
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den Driessche (2003); Arino and Van Den Driessche (2003); Wang and Zhao (2004);
Arino andVan denDriessche (2006); Allen et al. (2007); Hsieh et al. (2007); Eisenberg
et al. (2013); Almarashi and McCluskey (2019); Chen et al. (2020) and the references
within.

This paper is stimulated by the aforementioned need for approaches to explore
short-term dynamics of infectious diseases over connected patches. To this end, we
borrow/adopt the notion of reactivity used in ecology and take advantage of the devel-
oped mathematical results for reactivity in mathematical ecology (e.g. Neubert and
Caswell 1997; Mari et al. 2017; Wang et al. 2019; Lutscher and Wang 2020). By
applying this idea to some patch models of disease transmissions, we wish to estab-
lish a framework and develop an approach that can be used for short/transient disease
dynamics for more disease models with spatial structure.

The rest of the paper is organized as below. In Sect. 2, we provide the mathematical
background for some related notions in mathematical ecology, including reactiv-
ity, amplification rate, and resilience. We then move on to apply these notions and
ideas behind them to some disease models over patches to examine their short-term
dynamics. This will allow us to explore how the spatial dispersals/travels, spatial het-
erogeneity and other model parameters as well as initial values affect the short-term
disease dynamics at the initial time (or can be extended to a given time during an
epidemic). Two types of patch models will be examined: Sect. 3 deals with models
without demography, and Sect. 4 focuses onmodels with demographic structure. Some
numerical simulations will also be exhibited in Sect. 5 to more visually demonstrate
our results. Particular attention is paid to the scenarios when the short-term disease
dynamics does agree with the long-term disease dynamics, because such scenarios
may mislead the public and health policymakers. We end the paper with Sect. 6 in
which we summarize our main conclusions and present some discussions.

2 Amplification Rates and Reactivity

The notion of reactivity in ecologywas first introduced byNeubert andCaswell (1997),
as a description of the short-term response to perturbations. Specifically, it is defined
as the maximum initial amplification rate over all possible perturbations to an equi-
librium. An equilibrium with positive reactivity is said to be reactive, corresponding
to the case when some perturbations can grow initially.

Consider the initial value problem of a linear system of ODEs:

dx
dt

= Ax, x(0) = x0 (4)

wherex ∈ R
n andA = [

ai j
]

n×n is a realmatrix. Equation (4) canbe the linearizationof
an ODE system for the population dynamics of n interacting species at an equilibrium,
with x being the deviation from the equilibrium. Thus, the Euclidean norm of x(t),
i.e.,

‖x(t)‖ :=
√

x21 (t) + x22 (t) + · · · + x2n (t),
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measures the size of vector x(t), and it also measures the distance of x(t) to the origin,
or equivalently measures how far away the population vector is from the equilibrium
at time t . Denote by �(t) the relative rate of change of ‖x(t)‖, that is,

�(t) := 1

‖x‖
d‖x‖
dt

.

Obviously, �(t) measures the amplification rate for ‖x(t)‖ at time t . Particularly,
�0 := �(0) is called the initial amplification rate. If x(t) is a solution to (4), then
direct calculation gives (see Neubert and Caswell 1997)

�(t) = xT (t)H(A)x(t)
‖x(t)‖2 where H(A) = A + AT

2
.

By the definition, �(t) > 0 (�(t) < 0) means that the size of the solution ‖x(t)‖ to
(4) is growing (decaying) at t . Particularly, the sign of the initial amplification rate,

�0 = x0T H(A)x0
x0T x0

, (5)

predictswhether the solutionwith x0 will initially growor decay.Note that�0 = �(x0)
depends on the initial value x0 (so does �(t)).

Let λ1(A) denote the spectral bound of A, i.e., the eigenvalue that has the largest
real part. Then −λ1(A) is called the resilience of (4), which is independent of the
initial value x0 and reflects the long-term dynamics of (4). On the other hand, H(A)

is a real symmetric matrix and hence all its eigenvalues are real. Let λmin and λmax
denote the smallest and largest eigenvalues of H(A) respectively. Since �0(x0) given
by (5) is in the form called the Rayleigh quotient or the Rayleigh-Ritz ratio, it is known
(see, e.g., Horn and Johnson 1985) that

λmin ≤ �0(x0) = xT0 H(A)x0
xT0 x0

≤ sup
x0 �=0

xT0 H(A)x0
xT0 x0

= max‖x0‖=1
xT0 H(A)x0 = λmax. (6)

The reactivity of (4) is defined in Neubert and Caswell (1997) as the largest initial
amplification rate over all initial values, that is,

reactivity = sup
x0 �=0

(
1

‖x‖
d‖x‖
dt

∣
∣
∣
∣
t=0

)

= sup
x0 �=0

xT0 H(A)x0
xT0 x0

= max‖x0‖=1
xT0 H(A)x0 = λmax.

Apparently, the reactivity measures the maximal possible initial growth for (4) which
is of short-term nature. Moreover,

• if the reactivity λmax of (4) is negative, then for any initial value x0, the solution
will initially decay in size (norm) since �0 = �(x0) < 0;

• if λmin > 0, then for any initial value x0, the solution will initially grow in size
since �0 = �(x0) > 0;
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• if λmin < 0 < λmax, then there will be initial values x0 for which �0 = �(x0) < 0
and there will also be x0 for which �0 = �(x0) > 0.

We remark that there have been some extensions/generalizations of the above
notions of reactivity and amplification rates in ecology. For example,Mari et al. (2017)
generalized reactivity to λmax(H(CTCA)) corresponding to a system output y = Cx
where matrix C reflects the interest in a subset of state variables. Wang et al. (2019)
recently extended the measurements of reactivity and amplification rates to some
reaction-diffusion models to explore how spatial heterogeneity affects the transient
dynamics. In a more recent work, Lutscher and Wang (2020) explored the reactivity
of periodic orbits. The results reveal some differences between the reactivity of a
stable equilibrium and that of a stable periodic orbit.

In the subsequent sections, we will investigate short-term disease dynamics of the
SIRmodel (3) without demography (Sect. 3), as well as its corresponding version with
a simple demographic structure (Sect. 4). Combining the existing theory for ecology
reviewed above and with some theoretical analysis, we will present explicit formulas
for the initial amplification rate of the epidemics. These formulas clearly show how the
transient disease dynamics is impacted by the spatial heterogeneity and the dispersals.

We point out that in the context of disease dynamics models (also populationmodels
with predator–prey type interactions), reactivity has been used in Hosack et al. (2008);
Woodall et al. (2014); Mari et al. (2018, 2019); O’Regan et al. (2020); Mari et al.
(2021) to measure the initial growth rate of infected populations for some infectious
disease models. Among these works, only (Mari et al. 2019, 2021) deal with short-
term disease dynamics with discrete spatial variations, which is the focus of this
paper. However, the patch models in Mari et al. (2019, 2021) are of Lagrangian type.
For such Lagrangian type patch models, mobility is implicitly presented by some
parameters representing probabilities pi j that a individual of home patch i will be
in patch j . Moreover, the model in Mari et al. (2019) is for a water-borne disease
and which assumes no host-to-host transmission and new infections can only occur
from the contaminated water. Mari et al. (2021) models the transmission dynamics
of COVID-19 which is a contagious disease, but the interactions between the patches
are reflected by very complicated nonlocal infection force terms that have the above
mentioned probabilities built in. Theoretical analysis of such model system are very
challenging and hence, both (Mari et al. 2019, 2021) mainly explore the models
numerically. In contrast, our models are of Eulerian type with explicit dispersal/travel
rate incorporated, for which, we are able to obtain some results that can explicitly
reveal the impact of the spatially heterogeneous parameters and the travel/dispersal
rates on the initial amplification rate of the epidemic.

3 SIR Epidemic PatchModel

3.1 The Case of Two Patches

We start with special case n = 2 of (3), that is, the following two-patch SIR model
without demography:
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

S′
1(t) = dS

12S2 − dS
21S1 − β1S1 I1,

S′
2(t) = dS

21S1 − dS
12S2 − β2S2 I2,

I ′
1(t) = d I

12 I2 − d I
21 I1 + β1S1 I1 − γ1 I1,

I ′
2(t) = d I

21 I1 − d I
12 I2 + β2S2 I2 − γ2 I2,

R′
1(t) = dR

12R2 − dR
21R1 + γ1 I1,

R′
2(t) = dR

21R1 − dR
12R2 + γ2 I2.

(7)

It is easy to verify that the total population in the two patches is a constant since there
are no births or natural deaths, neither there are disease caused deaths. By Proposition
1.1 inChepyzhov andVishik (2002), all solutions tomodel (7)with non-negative initial
conditions remain non-negative for all t > 0. LetM(t) = S1(t)+S2(t)+ I1(t)+ I2(t).
Then,

M ′(t) = −γ1 I1 − γ2 I2 ≤ 0,

and hence, M(t) is a decreasing function. In addition, M(t) is non-negative, leading to
the conclusion that its limit, lim

t→∞ M(t), exists and thus, lim
t→∞ M ′(t) = 0. This together

with the non-negativity of Ii (t) for i ∈ {1, 2} implies that

I1(t) → 0 and I2(t) → 0 as t → ∞.

Thus, the long disease dynamics is known—the disease will eventually die out in
both patches, and hence, we are just concerned about whether or not there will be a
short-term outbreak.

In the rest of this paper, we will use the amplification rate �(0) for x(t) =
[I1(t), I2(t)] to determine whether or not there will be a short-term outbreak. To
this end, we look at the linearization of (7) at the disease-free state

[S1(0), S2(0), I1(0), I2(0), R1(0), R2(0)] = [S10, S20, 0, 0, 0, 0] ∈ R
6+ (8)

where S10 and S20 are the respective susceptible populations in the two patches before
the disease was brought into the patches. We focus on the changes of the infected
compartments x(t) = [I1(t)I2(t)] when they have a perturbation x(0) = [I10, I20].
To this end, we focus on the linearization of (7) at the above disease-free state to obtain
the linear system governing x(t) near x(0):

dx(t)
dt

= A0x(t) with A0 =
(

β1S10 − γ1 − d I
21 d I

12
d I
21 β2S20 − γ2 − d I

12

)

.

From (5) and some straightforward calculations with A = A0 and x0 = (I10, I20), we
obtain

�0 = (β1S10 − γ1 − d I
21)I

2
10 + (β2S20 − γ2 − d I

12)I
2
20 + (d I

12 + d I
21)I10 I20

I 210 + I 220
. (9)
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With the above formula, we can discuss the impact of the parameters and the initial
values on the initial amplification rate. Firstly we observe that�0 is linearly dependent
on parameters d I

12, d
I
21, β1, β2, γ1, and γ2. Moreover, �0 is increasing with respect to

β1 and β2 since

∂�0

∂β1
= S10 I 210

I 210 + I 220
> 0 and

∂�0

∂β2
= S20 I 220

I 210 + I 220
> 0,

and it is decreasing with respect to γ1 and γ2 since

∂�0

∂γ1
= − I 210

I 210 + I 220
< 0 and

∂�0

∂γ2
= − I 220

I 210 + I 220
< 0.

Suppose that some intervention measures are implemented to control the spread of
an infectious disease and therefore to mitigate the outbreak. Wearing masks in public
areas and practicing social distance, for instance, may result in a lower transmission
rates (smaller β1 and β2) and thus a smaller initial amplification rate, helping prevent
short-term outbreaks. Vaccination, as the most effective method of preventing infec-
tious diseases, can be considered as a means of reducing the susceptible populations,
yielding a smaller �0 since

∂�0

∂S10
= β1 I 210

I 210 + I 220
> 0 and

∂�0

∂S20
= β2 I 220

I 210 + I 220
> 0.

Note that �
(i)
0 = βi Si0 − γi is the initial amplification rate of patch i ∈ {1, 2} in

isolation (i.e., di j = 0, meaning no dispersal/travel are allowed). Then �0 given by (9)
can be rewritten as

�0 = �
(1)
0 I 210 + �

(2)
0 I 220 + (I10 − I20)(d I

12 I20 − d I
21 I10)

I 210 + I 220

=
[

I 210
I 210 + I 220

�
(1)
0 + I 220

I 210 + I 220
�

(2)
0

]

+ (I10 − I20)(d I
12 I20 − d I

21 I10)

I 210 + I 220

(10)

Note that the first term on the right side of (10) is the average initial amplification rate
over the two patches, and the second term thus accounts for the deviation from that
average caused by the dispersals. When I10 = I20, or d I

12 I20 = d I
21 I10 (i.e., the net

movement of infectives is balanced), �0 is nothing but just the average and

min
i∈{1,2} �

(i)
0 ≤ �0 ≤ max

i∈{1,2} �
(i)
0 .

If I10 > I20, the second term in (10) shows that allowing an opposite net flow of
the infected population (i.e., smaller d I

12 I20 and larger d I
21 I10) would help reduce �0,

making it possible for �0 to be larger or smaller than any of the two individual initial
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amplification rates �
( j)
0 , j = 1, 2. Also if I10 > I20, then �0 is decreasing in d I

21 and
increasing in d I

12; if I10 < I20, then �0 is increasing in d I
21 and decreasing in d I

12.

3.2 Estimate 00 in Early Stage

In practice, the initial data is not always available. In the early stage of an epidemic,
particularly for a newly emerging infectious disease, it takes time to diagnose or iden-
tify patients and conduct large-scale tests. Let N10 and N20 denote the total populations
at t = 0 in the two patches. Since the number of infection cases is typically very small
during the initial phase,we can approximate the initial disease free state [S10, S20, 0, 0]
in (8) by [N10, N20, 0, 0]. That is, �(i)

0 = βi Si0 − γi ≈ βi Ni0 − γi , i = 1, 2.
According to (6), we can predict the best and worst situations that the epidemic

may develop by the upper and lower bounds of �0 which are the largest and smallest
eigenvalues of H(A0),

λmax = 1

2

[
m1 + m2 +

√
(m1 + m2)2 + D2 − 4m1m2

]
,

λmin = 1

2

[
m1 + m2 −

√
(m1 + m2)2 + D2 − 4m1m2

]
,

(11)

where

m1 = �
(1)
0 − d I

21, m2 = �
(2)
0 − d I

12, and D = d I
12 + d I

21

From (11) we immediately obtain the following results:

(S1) when 4m1m2 − D2 > 0, then

(S1-a) if m1 + m2 > 0, then λmin > 0 and hence, �0 > 0 for all x0 > 0;
(S1-b) if m1 + m2 < 0, then λmax < 0 and hence, �0 < 0 for all x0 > 0;

(S2) when 4m1m2 − D2 < 0, then λmin < 0 < λmax and hence, the sign of �0
depends on initial conditions.

Moreover, if �
(i)
0 > 2max{d I

12, d
I
21} for i ∈ {1, 2}, then conditions for (S1-a) are

satisfied and hence, ‖x(t)‖ will always grow at the initial time, meaning there will
be an initial outbreak; if �

(i)
0 < min{d I

12, d
I
21} − max{d I

12, d
I
21} for i ∈ {1, 2}, then

conditions for (S1-b) are satisfied and hence, ‖x(t)‖will never grow at the initial time.
Note that the two bounds, λmax and λmin, are independent of initial infected popu-

lations; in addition, their dependence on other parameter values is no longer linear like
that of �0. Analyzing the expressions given by (11), we obtain that (see Appendix A)

• λmax and λmin are increasing with respect to �
(i)
0 (hence, they are increasing in βi

and decreasing in γi ) for i ∈ {1, 2};
• λmax is decreasing in d I

21 and increasing in d I
12 if m1 > m2, while it is increasing

in d I
21 and decreasing in d I

12 if m1 < m2;
• λmin is always decreasing with respect to d I

12 and d I
21.
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3.3 General Case of n Patches

Now we generalize the results to the case with n ≥ 2. Given initial conditions

[Si (0), Ii (0), Ri (0)] = [Si0, Ii0, Ri0] ∈ R
3+, i ∈ �,

the long-term dynamics of this system is of the same nature as that of the two-patch
case—disease will eventually die out as t → ∞ (this can be shown by a similar argu-
ment as for the case n = 2). For short-term dynamics, we let x(t) = [I1(t), · · · , In(t)].
Linearize the equations governing the infected components in (3) at a disease-feee state

[Si (0), Ii (0), Ri (0)] = [Si0, Ii0, Ri0] ∈ R
3+, i ∈ �,

to obtain the linear system x(t) = A0x(t) where

A0 = [
ai j

]

n×n : aii = βi Si0 − γi −
∑

j∈�, j �=i

d I
ji , i ∈ �,

ai j = d I
i j , i, j ∈ �, i �= j .

The initial amplification rate, with a bit more lengthy calculations than for (9), is
similarly obtained as

�0 =
∑

i∈�

(
βi Si0 − γi − ∑

j∈�, j �=i d
I
ji

)
I 2i0 + ∑

i, j∈�, j>i (d
I
i j + d I

ji )Ii0 I j0
∑

i∈� I 2i0
.

(12)

This shows that the initial amplification rate is linearly increasingwith respect to trans-
mission rates βi and initial susceptible population sizes Si0, and is linearly decreasing
with respect to removal rates γi . Its dependence on travel rate d I

i j is determined by the
difference in infected populations between two patches, Ii0 and I j0,

∂�0

∂d I
ji

= Ii0(I j0 − Ii0),

which clearly indicates how the impact of dispersals of infected individuals depends
on the infected populations in the patches involved. Similarly, we can find the upper
and lower bounds of �0 by calculating the largest and smallest eigenvalues of H(A0).
However, it is not always possible to obtain explicit expressions for the eigenvalues
when the matrix is large.

Obviously, the formula (12) for the amplification rate over all patches (forming
a health administration unit) can also be rewritten as a deviation from the average
amplification rate over the patches (i.e., the generalization of (10)):

�0 =
∑

i∈�

I 2i0∑
i∈� I 2i0

�
(i)
0 +

∑
i, j∈�, j>i (d

I
i j + d I

ji )Ii0 I j0 − ∑
j∈�, j �=i d

I
ji I

2
i0

∑
i∈� I 2i0

.

(13)
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4 SIR Endemic PatchModel

In this section,we incorporate a simple demographic structure into the SIRpatchmodel
(3). Let Ni (t) = Si (t) + Ii (t) + Ri (t) for i ∈ �. Assume that there are no deaths
caused by the disease, and the birth rate and the natural death rate in each patch are
set to be equal. Hence, the total population size of two patches, N = N1(t) + N2(t),
remains constant. Under such a scenario, the disease dynamics of patches are now
governed by the following system of ODEs:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

S′
i (t) =

∑

j∈�, j �=i

d S
i j S j −

∑

j∈�, j �=i

d S
ji Si + bi Ni − βi Si Ii − bi Si ,

I ′
i (t) =

∑

j∈�, j �=i

d I
i j I j −

∑

j∈�, j �=i

d I
ji Ii + βi Si Ii − γi Ii − bi Ii ,

R′
i (t) =

∑

j∈�, j �=i

d R
i j R j −

∑

j∈�, j �=i

d R
ji Ri + γi Ii − bi Ri ,

for i ∈ �.

(14)

Applying Proposition 1.1 in Chepyzhov and Vishik (2002) to this ODE model over
patches, one can easily verify that all solutions to the initial value problem remain non-
negative for all t > 0, provided that the initial values of the variables are non-negative.
A disease-free equilibrium for model (14) is given by

E0 = [S(0)
1 , . . . , S(0)

n , 0, . . . , 0, R(0)
1 , . . . , R(0)

n ].

According to the R-equation in (14), we have R(0)
i = 0 for all i ∈ �. Then, S(0) =

[S(0)
1 , . . . , S(0)

n ] is a solution to the linear system,

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∑

j∈�, j �=i

d S
i j S j −

∑

j∈�, j �=i

d S
ji Si = 0, i ∈ �,

∑

i∈�

Si = N .

The Basic Reproduction Number. Based on the concept of next generation matrix
presented in van den Driessche and Watmough (2002), we define

F :=

⎡

⎢
⎢
⎢
⎣

β1S
(0)
1 0 . . . 0
0 β2S

(0)
2 . . . 0

. . . . . . . . . . . .

0 0 . . . βn S
(0)
n

⎤

⎥
⎥
⎥
⎦
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and

V :=

⎡

⎢
⎢
⎣

γ1 + b1 + ∑
j �=1 d

I
j1 −d I

12 . . . −d I
1n

−d I
21 γ2 + b2 + ∑

j �=2 d
I
j2 . . . −d I

2n
. . . . . . . . . . . .

−d I
n1 −d I

n2 . . . γn + bn + ∑
j �=n d

I
jn

⎤

⎥
⎥
⎦ .

Then, the next generationmatrix is FV−1 and the basic reproduction number is defined
as its spectral radius, R0 = ρ(FV−1). By Theorem 2 in van den Driessche and
Watmough (2002), the disease-free equilibrium is locally asymptotically stable if
R0 < 1 but is unstable ifR0 > 1.

Reactivity of the Disease Free Equilbrium. Considering merely the infection-related
variables (i.e., I1(t), . . . , In(t)), the Jacobian matrix of model (14) is

J = [
Ji j

]

n×n : Jii = βi Si − γi − bi −
∑

j �=i

d I
ji , i ∈ �,

Ji j = d I
i j , i, j ∈ �, i �= j .

Evaluated at the disease-free equilibrium, E0, the Jacobian matrix becomes J0 =
F−V . One can obtain the same linearization according toMari et al. (2017) by letting
C = [0 I 0] (each block matrix is of the size n × n). Then, the generalized reactivity
of E0 is given by 
0 = λmax(H(J0)). The threshold index for epidemicity as defined
by Hosack et al. (2008) is

E0 = ρ(H(F)H(V )−1) = ρ(F · H(V )−1),

since F is diagonal. According to Hosack et al. (2008), if E0 < 1, then 
0 < 0 and
E0 is non-reactive, and if E0 > 1, then 
0 > 0 and E0 is reactive.

The Amplification Rate at the Disease Free Equilibrium. Evaluating the Jacobian
matrix, J, at the initial point, we acquire the expression of �0,

�0 =
∑

i∈�

(
βi S

(0)
i − γi − bi − ∑

j∈�, j �=i d
I
ji

)
I 2i0 + ∑

i, j∈�, j>i (d
I
i j + d I

ji )Ii0 I j0
∑

i∈� I 2i0
,

which is similar to that of the SIR epidemic patch model given by (12). Based on the
definition of �0, the size of solution, ‖[I1(t), . . . , In(t)]‖, will initially attenuate if
�0 < 0, while it will initially amplify if �0 > 0.

It is well-known that for disease mode with demographic structure, the basic repro-
duction number R0 is an index for long-term asymptotic behaviour. Now our newly
introduced initial amplification rate�0 is an index for initial short-term disease dynam-
ics. With respect to these two indices, there are four possibilities:

(I) when R0 < 1,
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(I-a) if �0 > 0, then ‖[I1(t), I2(t)]‖ initially grows but eventually converges to
zero;

(I-b) if �0 < 0, then ‖[I1(t), I2(t)]‖ initially decays and converges to zero in the
long run;

(II) when R0 > 1,

(II-a) if �0 > 0, then ‖[I1(t), I2(t)]‖ initially grows and ultimately approaches a
positive steady state;

(II-b) if �0 < 0, then ‖[I1(t), I2(t)]‖ initially decays before reaching a positive
steady state.

For�0, we have derived an explicit formula for�0 in terms of the model parameters
and S(0)

i , i = 1, 2, · · · , n, together with the initial infections Ii0, i = 1, 2 · · · , n. But

S(0)
i , i = 1, 2, · · · , n also depend on the model parameters and it is not easy to obtain

explicit formula for such dependence for general n. ForR0 however, as in most (if not
all) diseasemodel on patches, unfortunately it is also challenging to derived an explicit
formula for the basic reproduction number R0 in terms of the model parameter. This
makes analytical exploration of the above four possibilities impossible, and we need
to explore them numerically. To make the numerical explorations a bit easier in the
next section, we only consider simple case of n = 2 for which (14) reduces to

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

S′
1(t) = dS

12S2 − dS
21S1 + b1N1 − β1S1 I1 − b1S1,

S′
2(t) = dS

21S1 − dS
12S2 + b2N2 − β2S2 I2 − b2S2,

I ′
1(t) = d I

12 I2 − d I
21 I1 + β1S1 I1 − γ1 I1 − b1 I1,

I ′
2(t) = d I

21 I1 − d I
12 I2 + β2S2 I2 − γ2 I2 − b2 I2,

R′
1(t) = dR

12R2 − dR
21R1 + γ1 I1 − b1R1,

R′
2(t) = dR

21R1 − dR
12R2 + γ2 I2 − b2R2,

(15)

For (15), one can easily find the unique disease-free equilibrium as

E0 = [S(0)
1 , S(0)

2 , 0, 0, 0, 0] =
[

dS
21N

dS
12 + dS

21

,
dS
12N

dS
12 + dS

21

, 0, 0, 0, 0

]

.

For this simple case of n = 2, our numerical computations of R0 and �0 for (15)
indicate that all four possibilities can occur.

5 Numerical Explorations

In this section, we present some numerical results for (15) and (7). The goal is to show
that the four possibility can occur within appropriate parameter ranges; and also to
numerically and visually demonstrate the impact of the model parameters on the two
important indices R0 and �0.
(N1).R0 − 1May or May Not Be Consistent with �0for (15).
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Fig. 1 Indices �0 (solid line) and R0 (dotted line) for 4model:endemic:2-patch with the parameter values
in (16). a β2 = 4 × 10−5, γ1 = 0.3, γ2 = 0.2; b β1 = 2 × 10−5, γ1 = 0.3, γ2 = 0.2; c β1 = 2 × 10−5,
β2 = 4 × 10−5; γ2 = 0.2; d β1 = 2 × 10−5, β2 = 4 × 10−5; γ1 = 0.3 (Color figure online)

To demonstrate the four possibilities (I-a), (I-b), (II-a) and (II-b), we fixed the
parameters:

{
b1 = b2 = 0.2, dS

21 = 0.4, dS
12 = 0.6, d I

21 = 0, d I
12 = 0.3;

[S10, S20, I10, I20] = [10000, 15000, 1000, 3000]. (16)

Then by varying the values of βi and γi , i = 1, 2, we can observe the four combi-
nations, as shown in Fig. 1. For example, from Fig. 1a, as β1 increases, we observe
switches from I-(b) to (II-b) and then to (II-a); while from Fig. 1b, we observe switches
from scenario I-(b) to (I-a) and then to (II-a). Similarly, from Fig. 1c, as γ1 increases,
we observe switches from (II-a) to (I-b) and then to (I-b); while when γ1 is fixed and
γ2 increases, Fig. 1d gives the same switch pattern as in Fig. 1c.
(N2). Impact of Spatial Heterogeneity on Initial Disease Dynamics for (7).

In Sect. 3, we have seen the initial amplification rate �0 given by formula (9) is
a linear increasing function of β1, the transmission rate in patch 1. Positive/negative
�0 indicates an initial escalation/mitigation of the disease measured by ‖x(t)‖—a
measurement of the epidemic severity over the two patches as a whole (a distance from
the disease-free scenario). A decrease in β1, yielding a lower �0, leads to effective
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Fig. 2 Three sample points of β1 are taken as: (i) 0.2 × 10−4, (ii) 0.8 × 10−4, and (iii) 1.5 × 10−4. a
The initial amplification rate �0 is negative for (i) and (ii), while it is positive for (iii). b The outbreak is
mitigated with β1 decreasing from (iii) to (ii) and is completely under control when β1 further reduces to (i).
c For the chosen value (ii), the magnitude of the solution initially experiences a short-period reduction then
grows to its maximal value. Other parameters are set to β2 = 2 × 10−5, γ1 = 0.2, γ2 = 0.4, dS21 = 0.08,

dS12 = 0.1, d I21 = 0.02, d I12 = 0.05 and [S10, S20, I10, I20] = [10000, 15000, 2000, 5000] (Color figure
online)

Fig. 3 Three sample points of S20 are taken as: (i) 5000, (ii) 17,000, and (iii) 30,000. a The initial amplifi-
cation rate �0 is a linear increasing function of S20, whose value is negative for (i) and (ii) and is positive
for (iii). b The dynamics of ‖x(t)‖ = ‖[I1(t), I2(t)]‖ for different initial conditions. c The linear dynamics
of ‖x(t)‖ near the initial point. The other parameters are set to β1 = 5× 10−5, β2 = 2× 10−5, γ1 = 0.2,
γ2 = 0.4, dS21 = 0.08, dS12 = 0.1, d I21 = 0.02, d I12 = 0.05 and [S10, I10, I20] = [10,000, 2000, 5000]
(Color figure online)

control of the epidemic, as is shown in Fig. 2b. Figure2c gives an example when
‖[I1(t), I2(t)]‖ initially decreases but the outbreak will continue after a short period
of time. In this case, the local basic reproduction numbers in the two patches without
dispersal satisfyR(1)

0 > 1 > R(2)
0 , where R(i)

0 = βi Si0/γi , i = 1, 2.
Figure 3 illustrates how vaccination impacts the initial amplification rate by reduc-

ing the initial susceptiple populations. Assume that only the number of susceptible
individuals in patch 2 changes while all other initial conditions and parameter values
are fixed. The numerical examples given in Fig. 3b show that the outbreak is better
controlled by decreasing S20 (e.g., vaccinating more people). The linear dynamics
of solutions near the initial point, as is displayed in Fig. 3c, are consistent with the
corresponding value of �0.
(N3). Impact of Dispersals on Short-term and Long-term Dynamics
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The dependence of �0 on the between-patch travel rates of infectious individuals
is demonstrated in Fig. 4a–d for the epidemic model (7). Comparing Fig. 4a and c, 4b
and d, the results imply that a higher local (when isolated) initial amplification rate
produces a greater �0, which is consistent with expression (10). The dynamics of
‖x(t)‖ for the sample sets of travel rates are shown in Fig. 4e, f, where the solutions
(i)-1 and (iii)-1, (ii)-1 and (iv)-1, (i)-2 and (iii)-2, (ii)-2 and (iv)-2 share the same�0.We
observe that the systemmay demonstrate various behaviours when different parameter
values are chosen, even if the calculated �0 and initial conditions are the same. This
is because such linear approximation is only valid in a small neighbourhood close to
the initial point, and at later times the effect of nonlinearities becomes dominant.

For the endemic model (14), among the four possible combinations of short-term
and long-term dynamics summarized in Sect. 4, we are mostly interested in the two
scenarios: (I-a) the disease dies out in the long run but there exists at least a tran-
sitory outbreak; (II-b) the disease persists for all t > 0 but the epidemic size drops
initially. See the figures in Fig. 5 for a demonstration. These two cases are of partic-
ular importance in disease controlling, because the inconsistency of the short-term
disease dynamics and the long-term disease dynamics may easily mislead not only
the public but also the health policymakers. The effect of a control measure may be
misunderstoodwithout knowing its effect on both long-term and short-term dynamical
behaviours. IfR0 is the only index to be examined, the unanticipated epidemic in (I-a)
may have very serious consequences. If (II-b) happens, people may be misled by the
initial decrease in the size of infections when the disease is indeed an endemic.

The impact of dispersal on long-term asymptotic dynamics and transitory amplifi-
cation/attenuation in infection size is demonstrated by Figs. 6 and 7. According to the
definitions given in Sect. 4, both �0 andR0 depend on the dispersal rates of infectives.
An example is shown in Fig. 6 where the contours give the values of �0 and R0 for
combinations of d I

12 and d
I
21. With the chosen parameter values and initial conditions,

�0 and R0 are increasing in d I
21 and decreasing in d I

12. Besides, there exists an area
on the d I

21–d
I
12 plane within which transitory epidemic is possible before the disease

dies out (�0 > 0 but R0 < 1).
As for the dispersal rates of susceptibles, they do not affect �0 but change the value

ofR0 via the population sizes in disease-free equilibrium. Figure7 shows the contour
graphs ofR0 on the dS

21–d
S
12 plane, which includes the four possible combinations of

short-term and long-term behaviours. It seems to suggest that an infectious disease is
more likely to develop into an endemic when �0 > 0. In addition, we point out that
the dispersal of recovered individuals has no impact on �0 and R0.

6 Conclusion and Discussion

For a newly emerging infectious disease, intervention/control decisions are usu-
ally based on the initial/present short term disease dynamics which may not be
reflected/implied by the long term disease dynamics. The later is typically described
by the basic reproduction number and has been extensively and intensively studied
for various mathematical models. The former, however, has been paid less attention,
particularly in the context of mathematical modelling and analysis of disease dynam-
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Fig. 4 a–d are the contour plots of �0 with respect to dispersal rates of infected populations. e–f illustrate
the dynamics of ‖x(t)‖ for the sample sets. For the two dispersion rates d I12 and d I21, the choices (i)-1 and
(iii)-1, (ii)-1 and (iv)-1, (i)-2 and (iii)-2, (ii)-2 and (iv)-2, each respectively yields the same �0. The other
parameters are set to β1 = 5 × 10−5, β2 = 2 × 10−5, γ1 = 0.2, dS21 = 0.4, dS12 = 0.6, and γ2 = 0.4 in
(a)–(b); γ2 = 0.2 in (c)-(d). The initial conditions are [S10, S20, I10, I20] = [10,000, 15,000, 5000, 2000]
in (a)–(c)–(e); and [S10, S20, I10, I20] = [10,000, 15,000, 2000, 5000] in (b)–(d)–(f) (Color figure online)
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Fig. 5 Long-term and short-term dynamics of ‖[I1(t), I2(t)]‖. a is an example of (I-a) with β1 = 10−5

and β2 = 6 × 10−5. b is an example of (II-b) with β1 = 6 × 10−5 and β2 = 2 × 10−5. Set dR21 = 0.4,

dR12 = 0.6 and [S10, S20, I10, I20, R10, R20] = [10,000, 15,000, 100, 300, 0, 0]. Other parameter values
are the same as those used in Fig. 1 (Color figure online)

Fig. 6 The contour graphs of �0 andR0 for dispersal rates of infectives. Other parameter values and initial
conditions are the same as those used in Fig. 1 (Color figure online)

Fig. 7 The contour graphs ofR0 for dispersal rates of susceptibles. Set a d I21 = 0.2 and d I12 = 0.8 so that

�0 < 0; b d I21 = 0.9 and d I12 = 0.1 so that �0 > 0. Other parameter values and initial conditions are the
same as those used in Fig. 1 (Color figure online)
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ics. In this work, we have studied the short-term disease dynamics, in comparison to
the long-term disease dynamics, of some SIR models over a patch environment. After
reviewing some related notions in mathematical ecology, we introduced the disease
amplification rate tomeasurewhether the epidemic of an infection disease is escalating
or mitigating at the initial time or at a specified time. This amplification rate is closely
related to the notion of reactivity in Neubert and Caswell (1997) and many follow-up
works in ecological context (e.g. Mari et al. 2017; Wang et al. 2019; Lutscher and
Wang 2020 ). The initial amplification rate �0 is defined as the relative rate of change
of the epidemic size at initial time (t = 0) measured by the Euclidean norm of the
infected populations over the patches and hence, its sign can predicts escalation or
mitigation of the epidemics in a near short period of time after t = 0. We point out
that the initial time of our model (t = 0) is not necessary to denote the beginning of
an outbreak; indeed, it can be set as any point of time during the course of a disease
when disease control policies are considered.

We firstly applied �0 to the SIR epidemic patch model (3). We have shown that
this extended system (3) also does not allow the disease to persist since Ii (t) → 0
as t → ∞. The calculation of �0 helps us to explore the patterns by which the
disease dies out. We have obtained an expression of �0 for the patch model (3) and
analyzed its dependence on the involved parameters and initial conditions. Particularly,
the overall amplification rate �0 can be expressed as a deviation from the average
amplification rate among all patches. Such an expression help us understand how the
spatial heterogeneities reflected by the local amplification rates (�(i)

0 , i = 1, · · · , n)
and the dispersions between the patches affect the overall amplification rate �0. Some
numerical examples have been given for the 2-patch case and the results visually
demonstrate how different interventions affect �0. Based on the upper and lower
bounds of the Rayleigh quotient, we have also estimated �0, with t = 0 indicating the
onset time of an epidemic when the system is at an (approximate) disease-free state.

We continued to study the SIR endemic patchmodel (14)with a simple demographic
structure in Sect. 4. Unlike the blue epidemic model (3), this model system admits a
locally asymptotically stable disease-free equilibrium. Therefore, we are able to obtain
R0 by the next generation matrix method (van den Driessche and Watmough 2002)
and calculate the initial infection amplification according to Neubert and Caswell
(1997); Mari et al. (2017). The expression for �0 is similar to that of the SIR epidemic
patch model in Sect. 4. While R0 determines the long-term asymptotic behaviour,
both reactivity and �0 measure the short-term transitory dynamics. In addition, �0
is the instant amplification/attenuation rate evaluated at the initial time, meaning that
it depends on the initial condition. Reactivity, however, is defined as the maximal
amplification rate over all possible (small) perturbations to disease-free equilibrium.
We have further numerically compared �0 and R0 as functions of infection-related
parameters and dispersal rates of different compartments. The results suggest four
possible combinations of transitory and asymptotic behaviours. Two of the scenarios
are of particular interest in disease controlling: (I-a) the disease eventually dies out
but transitory epidemics are possible; (II-b) the size of infected populations initially
decreases but the disease will persist. This is because the disagreement between the
short-termdisease dynamics and the long-termdisease dynamics in these two scenarios
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may easily mislead not only the public, but also the health policymakers. Due to
the influence of spatial heterogeneity and the dispersals, a disease with R0 > 1
may demonstrate initial decay short-term disease dynamics (harmful misleading);
conversely, a disease withR0 < 1 may also show a short-term outbreak.

By the definition of �0, we quantify the transitory behaviour for infected compart-
ments as a whole instead of examining the specific dynamics in each patch. Euclidean
norm has been used to measure the size of a vector. Thus, the value of �0 and its sign
are not always consistent with I ′

1(0), I
′
2(0) or I

′
1(0)+ I ′

2(0) (in the case of two patches
for an example), and the results will be different if other norms are adopted. Also, our
idea of solely considering the infection-related variables is a special case of the gener-
alization proposed by Mari et al. (2017). Indeed, the measure can be evaluated based
on unequally weighted state variables. We refer to that paper for a detailed discussion
on amplification and reactivity of some of the state variables.

Wepoint out that the initial amplification ratemerely characterizes the linear dynam-
ics near a given “initial time". Nonlinearities, however, can produce longer and more
complex transient dynamics, as observed in Figs. 2c, 3b and 4e, f. In addition to reac-
tivity, amplification envelope has also been proposed by Neubert and Caswell (1997)
as anothermeasure of transient dynamics, which is not included in thiswork in the con-
text of infectious disease dynamics. On the other hand, Hastings and Higgins (1994)
stressed the importance of transients in spatially structured ecological systems. For
discrete-space models, there are some works that have explored transient behaviours
by numerical simulations. See, e.g., Ruxton and Doebeli (1996); Saravia et al. (2000)
for one-species models andHastings (2001) for predator–prey systems. However, only
a few studies have theoretically analyzed the effect of spatial heterogeneity on transient
dynamics. The notions of reactivity and amplification envelop have been extended to
advective systems by Anderson et al. (2008) and to reaction-diffusion systems by
Wang et al. (2019). As for the patch model, we will leave this for future work.

To conclude this paper, we point out that this work is largely motivated by Neu-
bert and Caswell (1997); Mari et al. (2017); Wang et al. (2019); Lutscher and Wang
(2020)) in methodology. Hence, we follow these and some other follow-up works to
use the Euclidian norm to measure the size of a vector. As for other norms, we have
just noticed a recent publication (Harrington et al. 2022), in which other norms are
discussed for the topics of reactivity, attenuation and transients in metapopulations.
The authors present some examples showing that reactivity/attenuation in those dis-
cussed norms do not imply each other, but they advocate the use of l1 norm because
of the biological interpretations. Indeed, one of the referees also suggested the use of
l1 norm. Considering this manuscript is already pretty lengthy, we have to leave it as
a future research project.
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Appendix

The Dependence of �max and �min for SIR Epidemic Patch Model

Taking partial derivatives of (11) with respect to �
(i)
0 for i ∈ {1, 2}, we have

∂λmax

∂�
(1)
0

= ∂λmin

∂�
(2)
0

= M + √
M2 + D2

2
√
M2 + D2

and
∂λmax

∂�
(2)
0

= ∂λmin

∂�
(1)
0

= −M + √
M2 + D2

2
√
M2 + D2

where M := m1 − m2 = �
(1)
0 − d I

21 − �
(2)
0 + d I

12 and D = d I
12 + d I

21 > 0. All of
these partial derivatives are positive since

√
M2 + D2 > |M |. (17)

With respect to travel rates, the partial derivative of λmax,

∂λmax

∂d I
21

= D − M − √
M2 + D2

2
√
M2 + D2

,

is positive if M < 0 and is negative if M > 0, and,

∂λmax

∂d I
12

= D + M − √
M2 + D2

2
√
M2 + D2

,

is positive if M > 0 and is negative if M < 0. As for λmin, the partial derivatives are

∂λmin

∂d I
21

= −D + M − √
M2 + D2

2
√
M2 + D2

and
∂λmin

∂d I
12

= −D − M − √
M2 + D2

2
√
M2 + D2

,

which are both negative by the inequality (17).
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