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GLOBAL STABILITY IN A MODEL FOR

INTERACTIONS BETWEEN TWO STRAINS OF

HOST AND ONE STRAIN OF PARASITE

YANYU XIAO AND XINGFU ZOU

ABSTRACT. We prove a stronger version of the conjecture
from [1] by which a model for interactions between two host
strains and one parasite strain is shown to have global threshold
dynamics in terms of the model’s basic reproduction number
R1: when R1 < 1, the parasite-free equilibrium U0 for the
model (1.2) is globally asymptotically stable; when R1 > 1, U0

becomes unstable and there exists a unique positive equilibrium
Ū for the model which is globally asymptotically stable.

1 Introduction In a recent work [1], a model was proposed to
describe the interactions between two strains of host and two strains
of parasite. The model is given by the following system of ordinary
differential equations
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d

dt
Sk = Λk − ρk1P1Sk − ρk2P2Sk − µSk,

d

dt
Ik1 = ρk1P1Sk − ρ′

k2P2Ik1 − (µ + δk1)Ik1,

d

dt
Ik2 = ρk2P2Sk − ρ′

k1
P1Ik2 − (µ + δk2)Ik2,

d

dt
Ik12 = ρ′

k1P1Ik2 + ρ′

k2P2Ik1 − (µ + δk12)Ik12,

Pi =
∑

k=a,b

(ckiIki + dkiIk12), k = a, b; i = 1, 2.

Here Sa and Sb are the populations of the susceptible host of genotypes
a and b respectively; Iki is the population of host of genotype k infected
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by the parasite of strain i for k = a, b and i = 1, 2; Ik12 is the host
population of genotype k infected by both parasite of both strains; Pi

is the density of parasite of strain i for i = 1, 2. The parameters in
the model are self-explanatory but a reader is referred to [1] for details,
especially for the underlining assumptions for this model.

The main concern of [1] is the evolutionary implications of the inter-
actions between the two host strains and the two parasite strains. To
explore the topic, the authors of [1] started with a reduced model with a
single-strain of parasite but with two strains of host, which is obtained
by setting Ik2 = 0 and Ik12 = 0 in (1.1) (assuming the second strain of
parasite is absent). This reduced model is give by the following system:

(1.2)
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










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
















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

d

dt
Sa = Λa − ρa1P1Sa − µSa,

d

dt
Sb = Λb − ρb1P1Sb − µSb,

d

dt
Ia1 = ρa1P1Sa − (µ + δa1)Ia1,

d

dt
Ib1 = ρb1P1Sb − (µ + δb1)Ib1,

P1 = ca1Ia1 + cb1Ib1.

Let R1 be the basic reproduction number for parasite strain 1, given
by

R1 =
ca1ρa1

µ + δa1

Λa

µ
+

cb1ρb1

µ + δb1

Λb

µ
.

The authors of [1] obtained the following result.

Result 2 in [1]: The parasite-free equilibrium U0 = (Λa/µ, Λb/µ, 0, 0)
for model (1.2) is globally asymptotically stable if R1 < 1, and unstable
if R1 > 1. The interior equilibrium U = (S̄a, S̄b, Īa1, Īb1) exists and is
unique if and only if R1 > 1. Moreover, U is stable if the following
conditions (conditions (34) in [1] ) hold:

(H) C1C2 − C3 > 0, C1C2C3 − C2
3 − C2

1C4 > 0.

where Ci, i = 1, 2, 3 depend on the parameters in the model by the
following lengthy formulas.

C1 = 2µ + µδa + µδb + P̄1ρa1 + P̄1ρb1 − ca1ρa1S̄a − cb1ρb1S̄b,

C2 = µ2 + 2µµδa
+ 2µµδb

+ µδa
µδb

+ µP̄1ρa1 + µδa
P̄1ρa1
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+ µδb
P̄1ρa1 + µP̄1ρb1 + µδa

P̄1ρb1 + µδb
P̄1ρb1 + P̄ 2ρa1ρb1

− 2ca1µρa1S̄a − ca1µδb
ρa1S̄a − ca1P̄1ρa1ρb1S̄a

− 2cb1µρb1S̄b − cb1µδa
ρb1S̄b − cb1P̄1ρa1ρb1S̄b,

C3 = µ2µδa
+ µ2µδb

+ 2µµδa
µδb

+ µµδa
P̄1ρa1 + µµδb

P̄1ρa1

+ µδa
µδb

P̄1ρa1 + µµδa
P̄1ρb1 + µµδb

P̄1ρb1

+ µδa
µδb

P̄1ρb1 + µδa
P̄ 2

1 ρa1ρb1 + µδb
P̄ 2

1 ρa1ρb1 − ca1µ
2ρ1S̄a

− 2ca1µδb
ρa1S̄a − ca1µP̄1ρa1ρb1S̄a − ca1µδb

P̄1ρa1ρb1S̄a

− cb1µ
2ρb1S̄b − 2cb1µµδa

ρb1S̄b − cb1µP̄1ρa1ρb1S̄b

− cb1µδa
P̄1ρa1ρb1S̄b,

C4 = µ2µδa
µδb

+ µµδa
µδb

P̄1ρa1 + µµδa
µδb

P̄1ρb1 + µδa
µδb

P̄ 2
1 ρa1ρb1

− ca1µ
2µδb

ρa1S̄a − ca1µµδb
P̄1ρa1ρb1S̄a − cb1µ

2µδa
ρb1S̄b

− cb1µµδa
P̄1ρa1ρb1S̄b.

This result was used in [1] to further consider possible establishment
of parasite strain 2 assuming the establishment of parasite strain 1, and
thus, it plays a crucial role for possible co-invasion of both strains of
parasite. However, the two conditions in (H) for this result do not seem
to be possible to be be verified (except numerically) since they involve
a large amount of computations. On the other hand, these two condi-
tions have no biological explanation(s). Hence, even the authors of [1]
themselves suspected that conditions in (H) are unnecessary and conjec-
tured that U is stable whenever it exists. In this note, we theoretically
confirm that this conjecture is correct. Moreover, we prove that U is
globally asymptotically stable (stronger than local stability) if R1 > 1.
In other words, the reduced model (1.2) does demonstrate the global
threshold dynamics in terms of the basic reproduction number R1, as
described in the following improved “New Reresult 2.”

Theorem. The parasite-free equilibrium U0 = (Λa/µ, Λb/µ, 0, 0) for
model (1.2) is globally asymptotically stable if R1 < 1, and unstable if
R1 > 1. In the latter case, there exists a unique interior equilibrium
U = (S̄a, S̄b, Īa1, Īb1) for (1.2) which is globally asymptotically stable.

Biologically, this new result precisely reflects what the basic reproduc-
tion number means for the model, and hence, is of biological significance.
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This work also complements [1] in a timely fashion because of the the
important role of the Result 2 in [1]. The proof is given in Section 2
by constructing a Lyapunov function together with careful and subtle
estimates of the derivative of this function. We point out that the Lya-
punov function we use here is not new. Indeed it has been adopted for
Lotka-Volterra type systems and recently it has been successfully applied
to several disease models to prove the globally asymptotic stability of
the endemic equilibria of these model systems (see, e.g., [2, 3, 4] and
the references therein). We would especially draw readers’ attention to
the recent work [3] where graph theory is amazingly employed to help
optimally group the terms of the derivative of the Lyapunov function
along the model system. In our proof, the grouping is also guided by
the results in [3].

2 Proof of the theorem In this section we give a proof to the
Theorem. We only need to prove the global asymptotical stability as
the rest has been proved in [1]. Therefore, in the rest of the paper
we always assume R1 > 1, and thus, the interior (positive) equilibrium
U = (S̄a, S̄b, Īa1, Īb1) exists and is unique.

Substituting the last equation in (1.2) into the other four leads to

(2.1)
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
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


































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d

dt
Sa = Λa − ρa1ca1Ia1Sa − ρa1cb1Ib1Sa − µSa,

d

dt
Sb = Λb − ρb1ca1Ia1Sb − ρb1cb1Ib1Sb − µSb,

d

dt
Ia1 = ρa1ca1Ia1Sa + ρa1cb1Ib1Sa − (µ + δa1)Ia1,

d

dt
Ib1 = ρb1ca1Ia1Sb + ρb1cb1Ib1Sb − (µ + δb1)Ib1.

To simplify notations, we set

(2.2)
β11 = ρa1ca1, β12 = ρa1cb1,

β21 = ρb1ca1, β22 = ρb1cb1.
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Then (2.1) becomes

(2.3)


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





































d

dt
Sa = Λa − β11Ia1Sa − β12Ib1Sa − µSa,

d

dt
Sb = Λb − β21Ia1Sb − β22Ib1Sb − µSb,

d

dt
Ia1 = β11Ia1Sa + β12Ib1Sa − (µ + δa1)Ia1,

d

dt
Ib1 = β21Ia1Sb + β22Ib1Sb − (µ + δb1)Ib1.

By a standard argument for population models, one can show that for
given positive initial values Sa(0) > 0, Sb(0) > 0, Ia1(0) > 0, Ib1(0) > 0,
system (2.3) has a unique solution U(t) = (Sa(t), Sb(t), Ia1(t), Ib1(t))
which exists for t ∈ (0,∞), remains positive and bounded for all
t ∈ [0,∞).

Define

(2.4) V(Sa, Sb, Ia1, Ib1)

= v1

(

Sa − S̄a − S̄a ln
Sa

S̄a

+ Ia1 − Īa1 − Īa1 ln
Ia1

Īa1

)

+ v2

(

Sb − S̄b − S̄b ln
Sb

S̄b

+ Ib1 − Īb1 − Īb1 ln
Ib1

Īb1

)

where

(2.5) v1 = β21Īa1S̄b and v2 = β12Īb1S̄a.

By calculus of multi-variable functioms, it can be easily seen that
V(Sa, Sb, Ia, Ib) has a global minimun attained at (Sa, Sb, Ia1, Ib1) =
(S̄a, S̄b, Īa1, Īb1). Thus V(Sa, Sb, Ia, Ib) ≥ V(S̄a, S̄b, Īa1, Īb1) = 0 for all
(Sa, Sb, Ia, Ib) ∈ R4

+.
The derivative of V(t) along the positive solution of (2.3) is given by

V′(t) = v1

[(

1 −
S̄a

Sa

)

S
′

a +

(

1−
Īa1

Ia1

)

I
′

a1

]

(2.6)

+ v2

[(

1 −
S̄b

Sb

)

S
′

b +

(

1 −
Īb1

Ib1

)

I
′

b1

]

= v1

[

Λa − β11Ia1Sa − β12Ib1Sa − µSa − Λa

S̄a

Sa
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+ β11Ia1S̄a + β12Ib1S̄a + µS̄a + β11Ia1Sa

+ β12Ib1Sa − (µ + δa1)Ia1 − β11Īa1Sa − β12Ib1Sa

Īa1

Ia1

+ (µ + δa1) Īa1

]

+ v2

[

Λb − β21Ia1Sb − β22Ib1Sb

− µSb − Λb

S̄b

Sb

+ β21Ia1S̄b + β22Ib1S̄b

+ µS̄b + β21Ia1Sb + β22Ib1Sb − (µ + δb1) Ib1

+ (µ + δb1) Īb1 − β21Ia1Sb

Īb1

Ib1

− β22Īb1Sb

]

.

By making use of the equilibrium equations for (2.3) and regrouping the
terms, (2.6) can be rewritten as

V
′

(t) = v1

[

µS̄a

(

2 −
S̄a

Sa

−
Sa

S̄a

)

+ (β11Ia1S̄a + β12Ib1S̄a(2.7)

− (µ + δa1)Ia1) +

(

2β11Īa1S̄a + 2β12Īb1S̄a

− β11Īa1

S̄2
a

Sa

− β12Īb1

S̄2
a

Sa

− β11Ia1Sa

Īa1

Ia1

− β12Ib1Sa

Īa1

Ia1

)]

+ v2

[

µS̄b

(

2 −
S̄b

Sb

−
Sb

S̄b

)

+ (β21Ia1S̄b + β22Ib1S̄b − (µ + δb1)Ib1)

+

(

2β21Īa1S̄b + 2β22Īb1S̄b − β21Īa1

S̄2
b

Sb

− β22Īb1

S̄2
b

Sb

− β21Ia1Sb

Īb1

Ib1

− β22Ib1Sb

Īb1

Ib1

)]

= K1 + K2 + v1µS̄a

(

2 −
S̄a

Sa

−
Sa

S̄a

)

+ v2µS̄b

(

2−
S̄b

Sb

−
Sb

S̄b

)

,

where K1 and K2 are defined and estimated below. Firstly,

K1 = v1

[

β11Ia1S̄a + β12Ib1S̄a − (µ + δa1)Ia1

]

(2.8)
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+ v2

[

β21Ia1S̄b + β22Ib1S̄b − (µ + δb1)Ib1

]

= Ia1

[

β11S̄av1 + v2β21S̄b − v1(µ + δa1)
]

+ Ib1

[

β12v1S̄a + β22v2S̄b − v2(µ + δb1)
]

= Ia1[β11S̄aβ21Īa1S̄b + β21S̄bβ12Īb1S̄a

− (µ + δa1) β21Īa1S̄b] + Ib1[β12S̄aβ21Īa1S̄b

+ β22S̄bβ12Īb1S̄a − (µ + δb1) β12Īb1S̄a]

= β21S̄bIa1

[

β11S̄aĪa1 + β12Īb1S̄a − (µ + δa1)Īa1

]

+ Ib1β12S̄a

[

β21Īa1S̄b + β22Īb1S̄b − (µ + δb1)Īb1

]

.

Thus, from the equilibrium equations, we actually get K1 ≡ 0. Next

K2 = v1

(

2β11Īa1S̄a + 2β12Īb1S̄a − β11Īa1

S̄2
a

Sa

− β12Īb1

S̄2
a

Sa

(2.9)

−β11Ia1Sa

Īa1

Ia1

− β12Ib1Sa

Īa1

Ia1

)

+ v2

(

2β21Īa1S̄b + 2β22Īb1S̄b − β21Īa1

S̄2
b

Sb

− β22Īb1

S̄2
b

Sb

−β2Ia1Sb

Īb1

Ib1

− β22Ib1Sb

Īb1

Ib1

)

= v1β11Īa1S̄a

(

2 −
S̄a

Sa

−
Sa

S̄a

)

+ v1β12Īb1S̄a

(

2 −
S̄a

Sa

−
Ib1

Īb1

Īa1

Ia1

Sa

S̄a

)

+ v2β22Īb1S̄b

(

2 −
S̄b

Sb

−
Sb

S̄b

)

+ v2β21Īa1S̄b

(

2 −
S̄b

Sb

−
Ia1

Īa1

Īb1

Ib1

Sb

S̄b

)

= v1β11Īa1S̄a

(

2 −
S̄a

Sa

−
Sa

S̄a

)

+ v2β22Īb1S̄b

(

2 −
S̄b

Sb

−
Sb

S̄b

)

+ v1v2

(

4 −
S̄b

Sb

−
Ia1

Īa1

Īb1

Ib1

Sb

S̄b

−
S̄a

Sa

−
Ib1

Īb1

Īa1

Ia1

Sa

S̄a

)

≤ 0



218 YANYU XIAO AND XINGFU ZOU

with the equality holding if and only if Sk = S̄k, Ik1 = Īk1, k = a, b.
Finally, for the third and fourth terms on the last line of (2.7), we

similarly have

(2.10) v1µS̄a

(

2 −
S̄a

Sa

−
Sa

S̄a

)

≤ 0

with the equality holding if and only if Sa = S̄a, and

(2.11) v2µS̄b

(

2 −
S̄b

Sb

−
Sb

S̄b

)

≤ 0

with the equality holding if and only Sb = S̄b.

From (2.7)–(2.11), it follows that V
′

(t) ≤ 0 with the equality holding
if and only if (Sa, Sb, Ia1, Ib1) = (S̄a, S̄b, Īa1, Īb1). Therefore, the positive
equilibrium U = (S̄a, S̄b, Īa1, Īb1) is globally asymptotically stable in the
sense that it attracts all positive solutions.
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