
CANADIAN APPLIED
MATHEMATICS QUARTERLY
Volume 20, Number 1, Spring 2012

GLOBAL DYNAMICS OF A TWO-STRAIN DISEASE
MODEL WITH LATENCY AND SATURATING

INCIDENCE RATE

Dedicated to Professor H.I. Freedman’s 70th birthday

S. M. ASHRAFUR RAHMAN AND XINGFU ZOU

ABSTRACT. This paper deals with a vector-borne disease model
containing latency and nonlinear incidence rates. Global dynamics of the
model is completely determined by suitable Lyapunov functionals. If the
basic reproduction number is less than one, then disease dies out, but if
the number is larger than one, we found that one or both of the the strains
become endemic. A unique co-endemic equilibrium appears when both
the boundary equilibria exist but are unstable, and this in contrast to the
situation when mass action incidence is adopted in which co-persistence
is impossible and competition exclusion is generic. It is also found that
the persistence of a strain not only depends on the respective reproduction
number but also depends on the combined parameters and a strain may
disappear even though the strain specific reproduction number is larger
than one. The higher saturation level of one strain may result in emerge
or extinction of the other strain in some situations.

1 Introduction Cooke [7] presented a mathematical model to describe
the dynamics of a communicable disease through a vector population based
on the scenario below. Human beings are divided into three classes: the sus-
ceptible class with its population denoted by S(t), the infective class with its
population denoted by I(t), and the removed class with its population denoted
by R(t). The susceptible vectors are infected by infectious human individuals.
It was assumed in [7] that it takes an infected vector τ time units to become
infectious. Being infectious, the vectors then infect susceptible human indi-
viduals. Denote the populations of susceptible and infectious vectors at time t
by VS(t) and VI (t) respectively. As a vector population is usually quite large,
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it was also simply assumed in [7] that VI (t) is proportional to I(t − τ). Let
k be the proportionality, that is, VI (t) = kI(t − τ). If the mass action infec-
tion mechanism is adopted, that is, β̂VI (t)S(t), then the force of infection for
human beings at time t is then given by

(1.1) β̂VI (t)S(t) = β̂kI(t − τ)S(t) = βI(t − τ)S(t),

where β = β̂k, with k possibly depending on the length of latency τ . This
leads to the following model of delay differential equations

(1.2)





Ṡ(t) = Λ − µS(t) − βS(t)I(t − τ),

İ(t) = βS(t)I(t − τ) − (µ + γ)I(t),

Ṙ(t) = γI(t) − µR(t),

where R is the population of the removed class. For more biological explana-
tions and the mathematical results for this model; see [3, 14, 18].

The mass action law for infection is the simplest mechanism since it as-
sumes a linear incidence rate g(VI ) = βVI . Motivated by Capasso [5], many
authors (see, e.g., [6, 11, 22]) have used a saturating incidence rate defined by

(1.3) h(VI ) =
β̂VI

1 + α̂VI

,

where α̂ ≥ 0 determines the saturation levels when the infectious population
is large. When α̂ = 0, this reduces to the mass action incidence rate. Thus
the saturated incidence rate is a generalization of mass action incidence rate
and is more reasonable as it reflects the crowding effect of the infective indi-
viduals. Using the this saturation incidence function and under the proportion
assumption suggested in [7], the model (1.2) is generalized to the following
model

(1.4)





Ṡ(t) = Λ − µS(t) −
βS(t)I(t − τ)

1 + αI(t − τ)
,

İ(t) =
βS(t)I(t − τ)

1 + αI(t − τ)
− (µ + γ)I(t),

Ṙ(t) = γI(t) − µR(t),

where α = α̂k. In [19], Xu and Ma analyzed the stability of this SIR epidemic
model. In particular, when the basic reproduction number is larger than 1, they
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showed that the endemic equilibrium is globally asymptotically stable under
certain extra conditions. In a recent work, by using a Lyapunov functional,
McCluskey [16] was able to prove the global stability of endemic equilibrium
without the extra conditions.

It is well known that mutation of a pathogen is common and causes seri-
ous problems in treating the resulting disease. Thus, one often needs to deal
with more than one strain. Hence, the study of disease dynamics with multiple
strains is an important research topic. An example is the influenza in 2009: in
addition to the seasonal influenza, the H1N1 influenza also emerged and be-
came pandemic. Co-infection of vector-borne diseases (e.g. malaria, dengue,
leptospirosis) is also a possible phenomenon, although it is not that frequent
[20] at the present. The management strategy with two vector-borne diseases
or two strains of one vector-borne disease is a challenging task. Indeed, the
dynamics of a single vector-borne disease with multiple strains has attracted
many researchers, and yet, not too many studies on this have been documented
[2, 4, 17]. For instance, the dynamics of acute infection of human malaria
parasites such as Plasmodium falciparum and Plasmodium vivax are not fully
elucidated [1, 15]. It is widely agreed that mathematical modeling is an ef-
fective tool for developing strategies to control possible outbreaks of diseases.
In this paper, we present a mathematical model to describe the dynamics of a
vector-borne disease with two strains along the lines of [7, 16, 19]. By ana-
lyzing this two-strain model with time delays and saturating incidence rates,
we hope to shed some light on how the interaction of the two strains affect the
disease dynamics.

The rest of this paper is organized as follows. In Section 2, we formulate
a two-strain disease model based on those in [7, 16, 19]. Equilibria and the
basic reproduction number of the model are discussed in Section 3. Section 4
deals with global stability of the equilibria. Section 5 provides some numeric
simulation results which agree with the theoretical results in Section 4. Finally,
Section 6 offers some concluding remarks and discussion.

2 A two-strain disease model The model we present here is a straight-
forward modification of (1.4) by incorporating another strain of the disease. To
proceed, we denote by S, I1 and I2 the sub-populations of susceptible class,
infective classes with strain 1 and strain 2, respectively. Let R still be the pop-
ulation of the removed class. Following the discussion in the introduction, the
vector’s sub-populations can be omitted from the equations by including de-
lays in the infectious classes of human beings. Based on (1.4), the dynamics of
such a vector-borne disease with two strains, assuming a saturating incidence
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rate, is thus governed by the following system of delay differential equations:

(2.1)





Ṡ = Λ − µS −
β1SIτ1

1 + α1Iτ1

−
β2SIτ2

1 + α2Iτ2

,

İ1 =
β1SIτ1

1 + α1Iτ1

− (µ1 + γ1)I1,

İ2 =
β2SIτ2

1 + α2Iτ2

− (µ2 + γ2)I2,

Ṙ = γ1I1 + γ2I2 − µR.

Here, the parameters in the model are summarized in Table 1. Also, to avoid
excessive brackets and notational ambiguity, we use the following conventions:
Iτ1

(t) = I1(t − τ1), Iτ2
(t) = I2(t − τ2).

Parameter Description
Λ Recruitment of individuals
1/µ Life expectancy
β1 Transmission coefficient of susceptible individuals to strain 1
β2 Transmission coefficient of susceptible individuals to strain 2
1/γ1 Average infected period of strain 1
1/γ2 Average infected period of strain 2
µ1 Combination of infection induced death rate and natural death

rate of strain 1
µ2 Combination of infection induced death rate and natural death

rate of strain 2

TABLE 1: Description of variables and parameters of model (2.1).

For biological reasons, it is natural to pose the following conditions on ini-
tial values of the unknowns:

S(0) > 0 and Ii(θ) = φi(θ) ≥ 0 for θ ∈ [−τi, 0], i = 1, 2,(2.2)

where

φi ∈ C([−τi, 0], R+).(2.3)
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3 Basic properties of the model Applying the standard argument, one
can easily show that for initial functions satisfying (2.2)–(2.3), the system (2.1)
has a unique solution with all components being non-negative. Adding all
equations of (2.1), the total population N = S + I1 + I2 + R satisfies

Ṅ ≤ Λ − µN.

Here, we have used the reasonable assumption

µ ≤ min {µ1, µ2} ,

meaning the mortality rates for infectious individuals are not less than that of
the susceptible individuals. By comparison theorem, it follows that

lim sup
t→∞

N(t) ≤
Λ

µ
.

This suggests confining ourselves to the biologically feasible region

(3.1) Γ =

{
(S, I1, I2, R) : S, I1, I2, R ≥ 0, S + I1 + I2 + R ≤

Λ

µ

}
.

Since R is decoupled in (2.1), it is sufficient and reasonable to analyze the
following reduced dimensional system

(3.2)





Ṡ = Λ − µS −
β1SIτ1

1 + α1Iτ1

−
β2SIτ2

1 + α2Iτ2

,

İ1 =
β1SIτ1

1 + α1Iτ1

− (µ1 + γ1)I1,

İ2 =
β2SIτ2

1 + α2Iτ2

− (µ2 + γ2)I2.

Corresponding to (3.1), we only need to consider for (3.2) the following set

(3.3) Γ1 =

{
(S, I1, I2) : S, I1, I2 ≥ 0, S + I1 + I2 ≤

Λ

µ

}
,

which is obviously positively invariant for (3.2).
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3.1 Steady states The system has a disease-free equilibrium (DFE) E0 given
by

E0 = (S0, 0, 0) with S0 =
Λ

µ
.

There are two possible single-infection equilibria, E1 and E2, given by

E1 = (S̄, Ī1, 0) and E2 = (Ŝ, 0, Î2),

where

S̄ =
1

β1
(µ1 + γ1)(1 + α1Ī1), Ī1 =

µ

α1µ + β1
(R1 − 1) ,

and

Ŝ =
1

β2
(µ2 + γ2)(1 + α2Î2), Î2 =

µ

α2µ + β2
(R2 − 1) ,

where
Ri =

S0βi

µi + γi

, i = 1, 2.

Clearly, for i = 1, 2, Ei is biologically meaningful if and only if Ri > 1.
Other than the two single-infection equilibria, there is a possible co-existence

equilibrium (all components are positive) E∗ = (S∗, I∗1 , I∗2 ), where

I∗i =
1

αi

(
βiS

∗

µi + γi

− 1

)
, i = 1, 2,

and

S∗ =
α1α2Λ + α1(µ2 + γ2) + α2(µ1 + γ1)

α1α2µ + β1α2 + β2α1
.

It is readily seen that the co-existence equilibrium is biologically meaningful
if and only if

(3.4)
βiS

∗

µi + γi

> 1, i = 1, 2.

The following theorem shows that the existence of both boundary equilibria
E1 and E2 is a prerequisite for the existence of the co-existence equilibrium
E∗.

Theorem 3.1. Let Rm = min {R1, R2}. If E∗ exists, then Rm > 1.
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Proof. Let E∗ exists. Then both I∗

1 and I∗2 are positive. Therefore,

Λ = µS∗ +
β1S

∗I∗1
1 + α1I∗1

+
β2S

∗I∗2
1 + α2I∗2

> µS∗

which implies that S0 = Λ/µ > S∗. Thus, if (3.4) holds, then

βiS0

µi + γi

> 1, i = 1, 2,

which implies Ri > 1, i = 1, 2 and thus, Rm > 1. This completes the proof.

By the proof and similar argument, we actually have the following observa-
tions:

(O1) If R1 > 1, then S0 > S̄;
(O2) If R2 > 1, then S0 > Ŝ;
(O3) If Rm > 1, then S0 > S∗.

In Section 4, we will further explore sufficient conditions for the existence
of the co-existence equilibrium E∗.

3.2 Basic reproduction number The basic reproduction number for the model,
denoted by R0, plays an important role in determining the disease persistence.
The number R0 is defined as “the expected number of secondary cases pro-
duced, in a completely susceptible population, by a typical infected individ-
ual” (see, e.g., [8]). For a single strain infectious disease model, it is usually
not hard to compute R0; however, for a multi-strain model the task becomes
harder. Following [21], we will use next-generation matrix to compute R0.
The non-negative matrix F and the non-singular M-matrix V, known as new-
infection and transition matrices respectively for the system (3.2), are given
by

F =

(
Λβ1

µ
0

0 Λβ2

µ

)
V =

(
µ1 + γ1 0

0 µ2 + γ2

)
.

It follows that

FV −1 =

(
Λβ1

µ(µ1+γ1) 0

0 Λβ2

µ(µ2+γ2)

)
=

(
<1 0
0 <2

)
.

The basic reproduction number is then given by the spectrum radius of FV −1,
that is

R0 = ρ
(
FV −1

)
= max {R1, R2} .
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By Theorem 2 in [21], we have the following theorem relating the stabil-
ity/instability of E0 to the value of R0.

Theorem 3.2. E0 is asymptotically stable, if R0 < 1; and it becomes unsta-
ble if R0 > 1.

In this connection we note that, if R0 < 1, both the single-infection equilibria
E1 and E2 do not exist.

4 Global stability analysis In this section, we discuss global stability of
each of the equilibria. To this end, we apply Lyapunov functionals similar to
those recently used by [10, 12, 16]. Such Lyapunov functionals take advan-
tages of the properties of the function

g(x) = x − 1 − ln(x),

which is positive in R+ except at x = 1 where it vanishes. For convenience of
notations in constructing Lyapunov functionals, we will also make use of the
following two functions:

fi(x) =
x

1 + αix
, i = 1, 2.

In the rest of this section, we show that each of the equilibria exhibits global
stability under some threshold conditions. We begin with the DFE E0.

Theorem 4.1. When R0 < 1, E0 is indeed globally asymptotically stable.

Proof. Consider the Lyapunov functional

V (S, I1, I2) = S0g

(
S

S0

)
+ I1

+ β1S0

∫ 0

−τ1

I1(t + θ) dθ + I2 + β2S0

∫ 0

−τ2

I2(t + θ) dθ.

Obviously, V is non-negative in the positive cone Ω = R+×C([−τ1, 0], R+)×
C([−τ2, 0], R+) and attains zero at E0. We need to show that V̇ is negative
definite. Differentiating V along the trajectories of (3.2), we obtain

V̇ =

(
1 −

S0

S

)
Ṡ + İ1 + β1S0(I1 − Iτ1

) + İ2 + β2S0(I2 − Iτ2
)
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=

(
1 −

S0

S

)(
Λ − µS −

β1SIτ1

1 + α1Iτ1

−
β2SIτ2

1 + α2Iτ2

)

+

(
β1SIτ1

1 + α1Iτ1

− (µ1 + γ1)I1

)
+ β1S0(I1 − Iτ1

)

+

(
β2SIτ2

1 + α2Iτ2

− (µ2 + γ2)I2

)
+ β2S0(I2 − Iτ2

)

= −µ (S − S0)
2
−

β1SIτ1

1 + α1Iτ1

−
β2SIτ2

1 + α2Iτ2

+
β1S0Iτ1

1 + α1Iτ1

+
β2S0Iτ2

1 + α2Iτ2

+

(
β1SIτ1

1 + α1Iτ1

− (µ1 + γ1)I1

)
+ β1S0(I1 − Iτ1

)

+

(
β2SIτ2

1 + α2Iτ2

− (µ2 + γ2)I2

)
+ β2S0(I2 − Iτ2

)

= −µ (S − S0)
2
−

β1S0I
2
τ1

1 + α1Iτ1

−
β2S0I

2
τ2

1 + α2Iτ2

− (µ1 + γ1)I1 + β1S0I1

− (µ2 + γ2)I2 + β2S0I2

= −µ (S − S0)
2
−

β1S0I
2
τ1

1 + α1Iτ1

−
β2S0I

2
τ2

1 + α2Iτ2

+ (µ1 + γ1)I1

(
β1S0

µ1 + γ1
− 1

)
+ (µ2 + γ2)I2

(
β2S0

µ2 + γ2
− 1

)

= −µ (S − S0)
2 −

β1S0I
2
τ1

1 + α1Iτ1

−
β2S0I

2
τ2

1 + α2Iτ2

+ (µ1 + γ1)I1 (R1 − 1)

+ (µ2 + γ2)I2 (R2 − 1) .

Therefore, V̇ ≤ 0 if R0 < 1 with equality holding only at E0. By The-
orem 5.3.1 of [9], the solutions approach M, the largest invariant subset of
{dV /dt = 0}. Since dV /dt is zero only at E0, M = {E0} is a singleton set.
Thus, the equilibrium E0 is globally attractive if R0 < 1. Combining this fact
with Theorem 3.2, we conclude that the DFE is indeed globally asymptotically
stable if R0 < 1.

Theorem 4.2. If the single-infection equilibrium E1 exists (i.e. R1 > 1), but
E2 does not exist (i.e., R2 ≤ 1), then E1 is globally attractive.

Proof. Consider the Lyapunov functional
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V =
1

β1f1(Ī1)
VS +

Ī1

β1S̄f1(Ī1)
VI1 + V I1

+
1

β1S̄f1(Ī1)
I2 +

β2

β1f1(Ī1)

∫ 0

−τ2

I2(t + θ)dθ.

where

VS = g

(
S

S̄

)
, VI1 = g

(
I1

Ī1

)
, V I1 =

∫ τ1

0

g

(
I1(t − s)

Ī1

)
ds.

By the properties of g function, it is easy to see that the Lyapunov functional
V is non-negative for non-negative variables and attains zero at E1, i.e., V is
positive definite. We need to show V̇ is negative definite. Differentiating V
along the solution of (3.2), we obtain

V̇ =
1

β1f1(Ī1)
V̇S+

Ī1

β1S̄f1(Ī1)
V̇I1+V̇ I1+

1

β1S̄f1(Ī1)
İ2+

β2

β1f1(Ī1)
(I2 − Iτ2

) .

For the first derivative on the right hand side, we further calculate it as

V̇S =
1

S̄

(
1−

S̄

S

)
Ṡ

=
1

S̄

(
1−

S̄

S

)
(Λ − µS − β1Sf1(Iτ1

) − β2Sf2(Iτ2
))

=
1

S̄

(
1−

S̄

S

)(
µS̄ + β1S̄f1(Ī1) − µS − β1Sf1(Iτ1

) − β2Sf2(Iτ2
)
)

=
1

S̄

(
1−

S̄

S

){
µ(S̄ − S) + β1

(
S̄f1(Ī1) − Sf1(Iτ1

)
)
− β2Sf2(Iτ2

)
}

= −
µ

SS̄
(S − S̄)2 + β1f1(Ī1)

(
1 −

S̄

S

)(
1 −

S

S̄

f1(Iτ1
)

f1(Ī1)

)

−
Sβ2

S̄

(
1 −

S̄

S

)
f2(Iτ2

).

Let
x =

S

S̄
, y =

I1

Ī1
, z =

Iτ1

Ī1
,

and

F1(z) =
f1(Ī1z)

f1(Ī1)
=

f1(Iτ1
)

f1(Ī1)
.
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Then we can write

V̇S = −
µ

SS̄
(S − S̄)2 + β1f1(Ī1)

(
1 −

1

x
− xF1(z) + F1(z)

)

− xβ2

(
1 −

1

x

)
f2(Iτ2

).

Similarly, we calculate V̇I1 as

V̇I1 =
1

Ī1

(
1 −

Ī1

I1

)
İ1

=
1

Ī1

(
1 −

Ī1

I1

)(
β1SIτ1

1 + α1Iτ1

− (µ1 + γ1)I1

)

=
1

Ī1

(
1 −

Ī1

I1

)(
β1S̄f1(Ī1)

S

S̄

f1(Iτ1
)

f1(Ī1)
− (µ1 + γ1)Ī1

I1

Ī1

)
.

Using the equations relating to the equilibrium E1, it follows that

V̇I1 =
1

Ī1

(
1 −

Ī1

I1

)
β1S̄f1(Ī1)

(
S

S̄

f1(Iτ1
)

f1(Ī1)
−

I1

Ī1

)

=
1

Ī1

(
1 −

Ī1

I1

)
β1S̄f1(Ī1) (xF1(z) − y)

=
1

Ī1
β1S̄f1(Ī1)

(
xF1(z) − y −

xF1(z)

y
+ 1

)
.

Now calculating the derivative of V I1 , we obtain

˙̄VI1 =
d

dt

∫ τ1

0

g

(
I1(t − s)

Ī1

)
ds =

d

dt

∫ t

t−τ1

g

(
I1(s)

Ī1

)
ds

= g

(
I1(t)

Ī1

)
− g

(
I1(t − τ1)

Ī1

)

= g(y) − g(z)

= y − z + ln z − ln y.

Combining the above calculation, we obtain

V̇ = −
µ

β1f1(Ī1)

(S − S̄)2

SS̄
+

(
1 −

1

x
− xF1(z) + F1(z)

)
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−
xβ2

β1

(
1 −

1

x

)
f2(Iτ2

)

f1(Ī1)

+

(
xF1(z) − y −

xF1(z)

y
+ 1

)
+ (y − z + ln z − ln y)

+
1

β1S̄f1(Ī1)

(
β2SIτ2

1 + α2Iτ2

− (µ2 + γ2)I2

)
+

β2

β1f1(Ī1)
(I2 − Iτ2

) .

Adding and subtracting among the first five terms except the third one, and
grouping the resulting terms in a square bracket, we get

V̇ =

[
−

µ

β1f1(Ī1)

(S − S̄)2

SS̄
+

(
1−

1

x
− ln x

)

+

(
1 −

xF1(z)

y
+ ln

(
xF1(z)

y

))

+ (F1(z) − z + ln z − ln F1(z))

]
−

xβ2

β1

(
1 −

1

x

)
f2(Iτ2

)

f1(Ī1)

+
1

β1S̄f1(Ī1)

(
β2Sf2(Iτ2

) − (µ2 + γ2)I2

)
+

β2

β1f1(Ī1)
(I2 − Iτ2

)

=

[
−

µ

β1f1(Ī1)

(S − S̄)2

SS̄
− g

(
1

x

)
− g

(
xF1(z)

y

)

+ (F1(z) − z + ln z − ln F1(z))

]
−

xβ2

β1

(
1 −

1

x

)
f2(Iτ2

)

f1(Ī1)

+
1

β1S̄f1(Ī1)

(
β2Sf2(Iτ2

) − (µ2 + γ2)I2

)
+

β2

β1f1(Ī1)
(I2 − Iτ2

) .

(4.1)

Obviously, each of the first three terms in the square bracket is non-positive.
For the fourth term in square bracket, we further calculate it as

F1(z) − z + ln z − ln F1(z) = (F1(z) − z)

[
1 −

ln F1(z) − ln z

F1(z) − z

]
(4.2)

= (F1(z) − z)

[
1 −

1

ξ

]
,

where, by the Lagrange’s intermidate value theorm, ξ is a number between
z and F1(z). Note that F1(z) is an increasing and concave down function
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satisfying F1(1) = 1. Thus, for z < 1, z < F1(z) < 1 implying ξ < 1 and
hence (F1(z) − z) [1−1/ξ] < 0. Similarly, for z > 1, we have z > F1(z) > 1
and hence ξ > 1, also leading to (F1(z) − z) [1 − 1/ξ] < 0. Therefore,

(4.3) F1(z) − z + ln z − ln F1(z) < 0

for all z > 0 except at z = 1 where it vanishes.

Therefore, the square bracket term is negative except for S = S̄, x = y =
z = 1, at which the square baracket becomes zero.

Next, we estimate the remaining parts on the right hand side of (4.1) as

−
xβ2

β1

(
1 −

1

x

)
f2(Iτ2

)

f1(Ī1)
+

1

β1S̄f1(Ī1)

×
(
β2Sf2(Iτ2

) − (µ2 + γ2)I2

)
+

β2

β1f1(Ī1)
(I2 − Iτ2

)

= −
xβ2

β1

f2(Iτ2
)

f1(Ī1)
+

β2

β1

f2(Iτ2
)

f1(Ī1)
+ x

β2f2(Iτ2
)

β1f1(Ī1)

−
(µ2 + γ2)

β1S̄f1(Ī1)
I2 +

β2

β1f1(Ī1)
(I2 − Iτ2

)

=
β2

β1

f2(Iτ2
)

f1(Ī1)
−

(µ2 + γ2)

β1S̄f1(Ī1)
I2 +

β2

β1f1(Ī1)
(I2 − Iτ2

)

≤
β2

β1

Iτ2

f1(Ī1)
−

(µ2 + γ2)

β1S̄f1(Ī1)
I2 +

β2I2

β1f1(Ī1)
−

β2Iτ2

β1f1(Ī1)

(by f2(Iτ2
) ≤ Iτ2

)

=
(µ2 + γ2)

β1S̄f1(Ī1)

[
S̄β2

µ2 + γ2
− 1

]
I2

<
(µ2 + γ2)

β1S̄f1(Ī1)

[
S0β2

µ2 + γ2
− 1

]
I2 (since S̄ < S0)

=
(µ2 + γ2)

β1S̄f1(Ī1)
[R2 − 1] I2 ≤ 0.

(4.4)

Therefore, V̇ ≤ 0 with equality holding only at E1. By [9], all positive so-
lutions approach M, the largest invariant subset of in the set {dV /dt = 0}
. Since dV /dt is zero only at E1, M = {E1} is a singleton set. Thus, the
equilibrium E1 is globally attractive.
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By symmetry, we can prove the following theorem parallel to Theorem 4.2
in a similar fashion.

Theorem 4.3. Assume that E2 exists (i.e., R2 > 0), but E1 does not exist (i.e.,
R1 ≤ 1). Then E2 is globally attractive.

Proof. In this case, we consider the following Lyapunov functional

V =
1

β2f2(Î2)
VS +

1

β2Ŝf2(Î2)
I1 +

Î2

β2Ŝf2(Î2)
VI2

+ V̂I2 +
β1

β2f2(Î2)

∫ 0

−τ1

I1(t + θ) dθ,

where

VS = g

(
S

Ŝ

)
, VI2 = g

(
I2

Î2

)
, V̂I2 =

∫ τ2

0

g

(
I2(t − s)

Î2

)
ds.

The rest of the proof is similar to that of Theorem 4.2 is omitted here.

Next, we analyze the global stability of the co-existence equilibrium E∗

under the assumption that E∗ exists.

Theorem 4.4. Assume that (3.4) holds so that E∗ exists. Then E∗ is globally
attractive.

Proof. Assume that the endemic equilibrium E∗ = (S∗, I∗1 , I∗2 ) exists. To
determine its stability we construct the following Lyapunov functional

V =
1

β1f1(I∗1 )
VS +

I∗1
β1S∗f1(I∗1 )

VI1 +
I∗2

β1S∗f1(I∗1 )
VI2 +V ∗

I1
+

β2f2(I
∗

2 )

β1f1(I∗1 )
V ∗

I2
,

where VS , VI1 , VI2 , V ∗

I1
and V ∗

I2
are defined as

VS = g

(
S

S∗

)
, VI1 = g

(
I1

I∗1

)
, VI2 = g

(
I2

I∗2

)
,

V ∗

I1
=

∫ τ1

0

g

(
I1(t − s)

I∗1

)
ds, V ∗

I2
=

∫ τ2

0

g

(
I2(t − s)

I∗2

)
ds.

Obviously, V is non-negative in Ω and attains zero at E∗. Following the ap-
proach as in Theorem 4.2 with the following modification on function F as
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u =
S

S∗
, yi =

Ii

I∗i
, zi =

Iτi

I∗i
, i = 1, 2,

and

Fi(zi) =
fi(I

∗

i zi)

fi(I∗i )
=

fi(Iτi
)

fi(I∗i )
, i = 1, 2,

we can find the derivative of V along the trajectories of (3.2) and obtain

V̇ = −
µ

β1SS∗f1(I∗1 )
(S − S∗)2

+

(
1 −

1

u
− uF1(z1) + F1(z1)

)

+
β2f2(I

∗

2 )

β1f1(I∗1 )

(
1 −

1

x
− uF2(z2) + F2(z2)

)

+

(
uF1(z1) − y1 −

uF1(z1)

y1
+ 1

)

+
β2f2(I

∗

2 )

β1f1(I∗1 )

(
uF2(z2) − y2 −

uF2(z2)

y2
+ 1

)

+
(
y1 − z1 + ln z1 − ln y1

)

+
β2f2(I

∗

2 )

β1f1(I∗1 )
(y2 − z2 + ln z2 − ln y2).

(4.5)

Notice the first term is non-positive. Cancelling and rearranging the like terms,
we have

V̇ ≤

(
2 −

1

u
+ F1(z1) −

uF1(z1)

y1
− z1 + ln(z1) − ln(y1)

)
(4.6)

+
β2f2(I

∗

2 )

β1f1(I∗1 )

(
2 −

1

u
+ F2(z2) −

uF2(z2)

y2
− z2

+ ln z2 − ln y2

)

=

[(
1 −

1

u
+ ln

1

u

)
+

(
1 −

uF1(z1)

y1
+ ln

uF1(z1)

y1

)

+
(
F1(z1) − z1 + ln z1 − ln F1(z1)

)]
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+
β2f2(I

∗

2 )

β1f1(I∗1 )

[(
1 −

1

u
+ ln

1

u

)
+

(
1 −

uF2(z2)

y2

+ ln
uF2(z2)

y2

)
+
(
F2(z2) − z2 + ln z2 − ln F2(z2)

)]

=

[
− g

(
1

u

)
− g

(
uF1(z1)

y1

)
+
(
F1(z1) − z1

+ ln z1 − ln F1(z1)
)]

+
β2f2(I

∗

2 )

β1f1(I∗1 )

[
− g

(
1

u

)

− g

(
uF2(z2)

y1

)
+
(
F2(z2) − z2 + ln z2 − ln F2(z2)

)]

From the properties of the funciton g(u) and (4.3) that V̇ ≤ 0 in Ω with equal-
ity holding only at E∗. Again by [9], every positive solution approaches E∗,
that is, the co-endemic equilibrium E∗ is globally attractive, completing the
proof.

We have established the global attractivity of E∗ whenever it exists. Al-
though (3.4) gives explicit conditions for E∗ to exist (in terms of S∗), it is in-
teresting, from the view point of dynamical systems, to see how the existence
is related to the stability of the two boundary equilibria E1 and E2. Theorem
3.1 gives a necessary condition for E∗ to exist, under which, both E1 and E2

exist. The following theorem shows E∗ can exists only when both E1 and E2

are unstable.

Theorem 4.5. Assume Rm > 1 and let

R1 =
β1Ŝ

(µ1 + γ1)
and R2 =

β2S̄

(µ2 + γ2)
.

Then,

(i) E1 is globally attractive if R2 < 1, and it is unstable if R2 > 1;
(ii) E2 is globally attractive if R1 < 1, and it is unstable if R1 > 1.

Proof. The Jacobian matrix of (3.2) at E1 is

J (E1) =




−µ − β1Ī1
1+α1Ī1

β1S̄

(1+α1Ī1)2
−β2S̄

β1Ī1
1+α1Ī1

β1S̄

(1+α1 Ī1)2
− (µ1 + γ1) 0

0 0 β2S̄ − (µ2 + γ2)


 .
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It is easy to see that J (E1) has an eigenvalue

λ̄ = β2S̄ − (µ2 + γ2) = (µ2 + γ2)

(
β2S̄

(µ2 + γ2)
− 1

)

= (µ2 + γ2)(R2 − 1).

Thus, if R2 > 1, then λ̄ > 0, and hence, E1 is unstable, having a one dimen-
sional unstable manifold pointing to the interior of Ω. However, if R2 < 1,
then from the third line from the end in equation (4.4), we know that the Lya-
punov functional V in Theorem 4.2 still works, ensuring the global attractivity
of E1 and hence proving (i). By symmetry, (ii) also holds, and the proof is
completed.

The above theorem makes one conjecture that Rm = min
{
R1, R2

}
> 1

(equivalent to instability of both E1 and E2) is indeed equivalent to (3.4), and
hence, is necessary and sufficient for E∗ to exist. We confirm this conjecture
below. Firstly, we rewrite (3.4) as

(4.7)
µi + γi

βi

< S∗, i = 1, 2.

Note that Ŝ and S̄ can be rewritten as

Ŝ =
µ2 + γ2 + α2Λ

α2µ + β2
, S̄ =

µ1 + γ1 + α1Λ

α1µ + β1
.

Thus, we can rewrite S∗ as

S∗ =
α1α2Λ + α1(µ2 + γ2) + α2(µ1 + γ1)

α1α2 + β1α2 + β2α1

=
α1(α2Λ + µ2 + γ2) + α2(µ1 + γ1)

α1(α2µ + β2) + β1α2

=
Ŝ + (µ1 + γ1)x

1 + β1x
=: h(x),

(4.8)

where
x =

α2

α1(α2µ + β2)

Note that h(0) = Ŝ, h(∞) = µ1+γ1

β1

. It is easy to show that h(x) is decreasing
if R1 > 1 and increasing if R1 < 1. Therefore,

(4.9)

µ1 + γ1

β1
= h(∞) < h(x) = S∗ < h(0) = Ŝ when R1 > 1;

µ1 + γ1

β1
= h(∞) > h(x) = S∗ > h(0) = Ŝ when R1 < 1.
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Similarly, or symmetrically, we can show that

(4.10)

µ2 + γ2

β2
< S∗ < S̄ when R2 > 1;

µ2 + γ2

β2
> S∗ > S̄ when R2 < 1.

The equivalence of (3.4) and Rm > 1 follows from (4.7) and (4.9)–(4.10).

5 Numerical simulations In this section, we simulate the model for some
parameter values. The parameters are chosen so that it can illustrate some vital
aspects of the model which have also been confirmed by analytical conclu-
sions. In Figure 1, we see that both strains may co-persist when the contact
rates are relatively high, but saturation levels are low. Keeping α1 = 0 for
strain 1 makes strain 1 the dominant strain and causes strain 2 to become ex-
tinct (Figure 2). On the other hand, if we raise α1 to a significant level, then
strain 1 dies out and strain 2 persists and this is shown in Figure 3. If both α1

and α2 are kept zero then the co-persistence equilibrium E∗ does not exist and
one of the strains must die out (as is shown in Figure 4; in this case strain 2
dies out). Finally, both strains can be made extinct with lower contact rates
and higher saturation levels that can be seen in Figure 5.
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FIGURE 1: Both strains are endemic. Parameter values are β1 = 0.0001, β2 =

0.00012, γ1 = 0.007, γ2 = 0.009, µ = 0.02, µ1 = 0.02, µ2 = 0.02, α1 =

0.001, α2 = 0.002, and Λ = 200, giving R1 = 37.04, R2 = 34.29, R1 =

10.07, R2 = 6.49.
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FIGURE 2: Strain 1 is endemic and strain 2 goes to exintintion. Parameter
values are β1 = 0.0001, β2 = 0.00012, γ1 = 0.007, γ2 = 0.015, µ =

0.02, µ1 = 0.02, µ2 = 0.02, α1 = 0.00, α2 = 0.002, and Λ = 200, giving
R1 = 37.04, R2 = 34.29, R1 = 10.07, R2 = 0.93.
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FIGURE 3: Strain 2 is endemic and strain 1 becomes extinct. Parameter values
are β1 = 0.0001, β2 = 0.00012, γ1 = 0.045, γ2 = 0.015, µ = 0.02, µ1 =

0.02, µ2 = 0.02, α1 = 0.2, α2 = 0.002, and Λ = 200, giving R1 =

15.38, R2 = 34.29, R1 = 0.93, R2 = 32.76.
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FIGURE 4: Abandoning saturating incidence in strain 1: α1 = 0.0. Parameter
values are β1 = 0.001, β2 = 0.0012, γ1 = 0.07, γ2 = 0.09, µ = 0.02, µ1 =

0.03, µ2 = 0.04, α2 = 0.0, and Λ = 100, giving R1 = 50.0, R2 =

11.76, R1 = 4.25, R2 = 0.23.
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FIGURE 5: Disease free state. Parameter values are β1 = 0.00001, β2 =

0.000012, γ1 = 0.007, γ2 = 0.009, µ = 0.02, µ1 = 0.02, µ2 = 0.02, α1 =

0.2, α2 = 0.1, and Λ = 50, giving R1 = 0.25, R2 = 0.06, R1 =

0.27, R2 = 0.06.
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6 Conclusion and discussion Adopting the assumption in [7] that the
population of infectious vectors at time t is proportional to the population of
the infectious hosts, and making use of the saturating incidence rate functions,
instead of mass action or standard incidence functions, we we have formulated
a mathematical model to describe the dynamics of a vector-borne disease with
two-strains and with latency delays. For this model, the global dynamics is
completely determined by selecting suitable Lyapunov functionals. Roughly
speaking, the analytical results obtained shows that the model supports equili-
birum dynamics, in the sense one of the equilibria is globally attractive. More
precisely, we have shown that if the basic reproduction number R0 is less than
one, the disease dies out from the population; however, if R0 > 1, then the
disease will persist and one or both of the strains become endemic: depend-
ing the model parameter values, either one of the two boundary (one-strain)
equilibrium or the co-persistence equilibrium is globally attractive. Unlike the
single strain model [16], the condition R0 > 1 does not ensure the existence of
the co-persistence equilibrium. This equilibrium exists if both boundary equi-
libria exist and are unstable (featured by Rm > 1). The persistence of a strain
not only depends on the respective reproduction number but also depends on
the combined parameter Ri, i = 1, 2. That is why a strain may die out even
though the strain specific reproduction number is larger than one.

The impact of the saturation levels, characterized by αi (i = 1, 2), can be
easily seen from the dependence of Ri (i = 1, 2) on αi (i = 1, 2). For instance,
R1 increases in α2 if Λ > µ(µ2 + γ2) and decreases if Λ < µ(µ2 + γ2). A
higher saturation level for strain 2, α2, may lead strain 1 to become endemic by
raising R1, if Λ > µ(µ2 + γ2). However, this saturation level of strain 2 may
also cause strain 1 to be extinct if Λ < µ(µ2 + γ2). That is, if the inflow (Λ) is
sufficiently large, then the saturation level for strain 2 has a positive impact on
the infection of strain 1, but if the inflow is not large enough then this level has
a negative impact on the infection of strain 1. In analogy to the impact of α2

on strain 1, the saturation level of strain 1 (α1) also has similar effects on the
infection of strain 2. If both α1 and α2 become zero then the co-persistence
equilibrium does not exists and one or both of the strains must die out. In such
a case, competition exclusion is generic when R0 > 1. Thus, the adoption of
saturated incidence rate functions does lead to an essential difference in disease
dynamics.

The existence of equilibria and the value of reproduction numbers do not
depend explicitly on the latency delays. However, the proportional constant
β̂ in (1.1) depends, in general, on the latency delay τ , hence, do does the
combined parameter β. Typically, β̂ and β are decreasing in τ . Moving to
the two strain model (2.1), the paramters β1 and β2 should be decreasing in τ .
Therefore, the latency τ affects the calculated parameters Ri and Ri (i = 1, 2)
in such an implicit way.
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